Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

SIMULATION INTERFACE FOR THE BENEVOLENT
BANDIT LABORATORY

Rusti Baker January 1989
CSD-890001

Table of Contents
page

1 Introduction cravesanseseesstieranas crarsseneesssistenaeis eerersree et eaaaes cvreraseeneansreeis
2 Installation ... treessresneeesstisanres teesereesneesrassrrannes cerresatesesesreresrenas
3 Resource Manager rversssteaasssreenaraeas revreeneeeeeenrraares vreseeseeneaeseriane
3.1 Description creraneene e saeas crrerresreetesranrnes ceverenanesssesrenne cerrerreeneens

3.2 Operation ..o reerasetrestenres s cerrreseae e crerreeneeassaies

3.3 Terminationc..eecicceiceersacens rersrasnersssaesaannes vrreneeeaneeenreanneeas

4 Node Managercueemeeeeens reavessneesstaensraane revereneeseesnteeneen cerreneessnnernenns
4.1 Description creserersresasaeesresane rveeraesrreeensesneens rererrreentaesas e rans

4.2 Operationeeeeeiseneenes ereeereeerresaeeaneens ceeertresnresseeeenees crnrenteeaes

4.3 Termination teervesreaneesrassnaens eerresneeeeeesnesraranean resresseeeseneesaeaas

5 Simulation Interface erveessrreseneessssnssassans trervrersneesaneesateaneas reesreessaneerearsanens
5.1 Description rrvrerereeeressassreaaeas cerveseeeserrenstesiasenane rresentaeenenenrrens

5.2 Operation ereessreneeessrresaeans crrerrereesersanrae e creerrerenereaanrsennes

5.3 Terminationc..owveerieesennes s eanet e crerreeeteeat e e 10

6 Writing Simulations for SIBBL rreeeeneesreeaataaens errereeeeee st asnanaas JOROO 11
7 Simulation Executioniveieenens revtesrsnesntenestessnenaes cerrersaeeaseeres sae s . 12
7.1 The Simulation Configuration File (STAGE.SIm) ...cccoiinnniicenn 12
7.1.1 Required Datacocovemvceninnncnnn reerreeseneeenses s narnes vevresnteeearane 12

7.1.2 Optional Data - Input Parameters eeeneeneesrennrsena 13

7.2 The Simulation Input Data Library ... rrerraeeneearaesnrans 13

7.3 Simulation Results Fileccoiiniiinnniinnes revateeeeraet st vreemeenee 14

8 References rrererseenaessatsennseane cevtesnneetes st eeneens rearesteeeerrestantaaa 15
9 Appendix A: Demonstration of the SIBBL Systemccccoeeev. reererraenatesraens 16
10 Appendix B: Optimizing maximum number of Processors 22

sSlslslnnthn LWL - =

iii

List of Figures

Figure 1. Execution Time versus Number of Processors (STAGE.sim)

Figure 2. Speedup versus Number of Processors (STAGE.sim)

Figure 3. Execution Time versus Number of Processors (BROWN. sim)

Figure 4. Speedup versus Number of Processors (BROWN.sim)

v

..........

......................

....................

page

23
23
24
25

Simulation Interface for the Benevolent Bandit Laboratory
User Manual

Rev. 1.0
Software Version 4.0

1 Introduction

This manual is designed to facilitate the use of the Simulation Interface for
the Benevolent Bandit Laboratory (SIBBL) which runs in the Benevolent Bandit La-
boratory (BBL) environment [SCHO88], {SCHO88a]. SIBBL is a shell that runs on
microcomputers in a PC network and permits the parallel execution of a simulation
on multiple microcomputers. This system is available on IBM PC’s running DOS.
The system allows the user to transparently run many points of a simulation in paral-
lel.

2 Installation

SIBBL runs in the BBL environment. The BBL software requires the the following
hardware:

1) At least 3 IBM PC-AT or compatible systems
2) 3Com EtherLink Board #3C501 for each PC
3) Ethernet interconnection network

and software:
1) DOS version 3.1 including virtual disk installation (e.g. D: disk).
SIBBL requires the following three executable software modules:

1) Resource Manager (RM) - also used in BBL
2) Node Manager (NM) - also used in BBL.
3) Simulation Manager (SM)

and two files (bbluser.h, bbluser.lib) used in compiling code to run on the system.

The BBL system provides an alternate interface for the execution of distribut-
ed programs. The User Interface/Process Manager (UI/PM) is used in place of the
SM for distributed program execution. The BBL system requires the following
modules:

1) Resource Manager (RM)
2) Node Manager (NM)
3) User Interface/Process Manager (UI/PM)

The BBL and SIBBL user share the same pool of nodes executing the Node Manager
code and use only one Resource Manager. The User Interface/ Process Manager or
Simulation Manager can be chosen to provide the appropriate interface to NM and
RM. This manual includes a brief description of the RM and NM and information re-
garding the use of these modules by the SM manager. For more information on the

RM and NM, see [SCHO88] and [SCHO88a].

The Resource Manager must be installed and running on only ONE (1)
machine on the network. The other two modules can be installed and running on any
number of machines on the network. Ususally, the NM should be installed on all sys-
tems and DOS should be configured to automatically start the NM shell each time the
system is brought up. The SM module needs to be available on systems that SIBBL
users will run simulations from. Instructions for operation and termination of each
module are outlined in the following sections.

Each piece of software should carry the same version number, otherwise com-
patibility problems may result. To find the version number of a module, consult the
Operation subsection of the appropriate module’s section.

3 Resource Manager
3.1 Description

The Resource Manager is a dedicated machine responsible for keeping track
of the available PCs in the network. When a PC is not used for the number of seconds
that has been defined as the timeout period, the Node Manager declares that the
machine is idle and an "I_AM_UP" message is sent to the Resource Manager. Thus,
an idle NM is added to the pool of free nodes owned by the RM. In this manner, an
unused machine is made available to do work for BBL. When the user returns to the
machine, the current owner of the machine (RM or SM) immediately returns control
to the owner.

When the Resource Manager receives a request for free nodes from the Simu-
lation Manager, it returns a list of physical Ethernet addresses. The SM uses these
addresses when allocating new work to a node that is idle or done, or when reassign-
ing work from a NM that has been taken away by its owner. The RM is able to sup-
port an arbitrary number of users of the BBL system, provided that there are sufficient
idle PCs to fulfill all the requests.

3.2 Operation

The RM is invoked by running the executable file ‘RM.exe’. Execute the RM
by typing:

RM
When the RM begins execution, the following message appears on the PC screen:
BBL Resource Manager Version X. XX

where "X.XX" is the version number of the RM. This version number should match
those on both the SM and all the NMs. This manual is intended to describe the opera-
tion of software version 4.0,

After printing its version number, the RM prints system status information.
The RM lists the current NMs or registered users by printing the number of users on
the system, the number of available NMs and the current time on the screen. As these
numbers change, the current values will be updated on the screen. A typical example
of the message printed by the RM at initialization follows:

BBL Resource Manager Version 4.00

Sending reset channel message
Delaying

Sending I_AM_THE_RM message
Delaying

Users= 0 Nodes=1 16:33:11.74
WHERES_THE_RM

Users= 0 Nodes= 1 16:33:35.69
Users= 0 Nodes= 1 16:33:42.28
Users= 1 Nodes= 0 16:33:46.95

Users=1 Nodes=0 16:33:56.12

After the simulation has been initiated, the RM will let the SM know if new nodes be-
come available. Depending on the number of maximum nodes requested for the
simulation and the number of nodes currently owned by the SM, the RM may be
asked to allocate new nodes to the SM. The Resource Manager notifies the Simula-
tion Manager each time an "I_AM_UP" message is received. The Simulation
Manager will request ownership of the new NM if it has not exceeded the number of
maximum nodes specified by the user.

3.3 Termination

The Resource Manager can be terminated by simply typing any key on the
keyboard. The system monitors the keyboard continuously, and terminates the exe-
cution of the RM whenever a key is hit. Once a key is hit the following messages
should appear:

GOT KEY HIT.... TERMINATING
Pointer is NULL

First Reset got (80)

Second Reset got (89)

RESTORING INTERRUPT VECTOR

followed by the DOS prompt. The RM can be restarted by simply typing "RM".
Stopping the RM will not usually terminate the simulations being run on the SM and
NM nodes. However if the SM makes a request for free nodes from the RM before it
is restarted, it may detect the missing RM and start error processing that will slow
down the execution of the simulations. Ususally, the RM should not be stopped and
restarted while simulations are running on SIBBL.

4 Node Manager
4.1 Description

The Node Manager’s purpose is to steal a machine from its owner after the
machine has been in the idle state for a given number of seconds. A PC is said to be
idle when it is displaying a DOS prompt, waiting for the owner to type a command.
The Node Manager is designed as a shell on top of DOS and emulates its operation.
It is normally configured to automatically execute when the system boots. The NM
shell waits for the owner to type commands, decrementing a timer as it waits. When
the owner completes a command by hitting the return key, the timeout counter is
reset and the NM passes the command on to DOS for execution. The timeout value is
a parameter passed when the shell is started.

In addition to allowing the user to execute DOS commands, the NM’s task is
to send a message to the Resource Manager indicating it is free for use. The NM then
waits to be assigned to a UI/PM that wants to perform a distributed computation or
the SM node that wants to utilize it in a distributed simulation. When the NM is as-
signed to a SM node, it waits for messages from the SM which contain code to be ex-
ecuted and the arguments to be passed on the command line to the simulation. Once
this code is received, the NM executes the code and returns the results to the SM
which logs the output from the simulation in a file in the user’s directory.

If a key is hit at any time while the NM has control of the PC, the NM notifies
the Resource Manager (if it is still in the RM’s pool of available nodes), or the Simu-
lation Manager (if it has been assigned to a user) that it is going down and immedi-
ately returns to processing commands from its owner. The owner does not notice any
delay, since the overhead for processing the context switch is negligible.

When the Node Manager receives the simulation code to be run it places the
code into a virtual disk in the memory of the PC. This downloaded code is simply an
executable file. When it receives the parameters from the SM the NM appends them
to the command line that will passed to DOS to invoke the simulation. The SM
notifies the NM that it is to start running the code, at which time the NM gives DOS
the command line. Output from the program, which contains results of the simula-
tion, is copied from standard output to a temporary file during execution. At the end
of the simulation, these results are written back to the SM, and the next point to be
run is given to the NM.

4.2 Operation

The NM runs as a process on top of DOS. It is invoked by running the execut-
able file called ‘shell.exe’. The Node Manager will begin execution by simply typing
"SHELL n" ("n" replaced by an integer). The parameter passed to the shell is the
number of seconds that the machine must be idle before the Node Manager takes
over. The only indication that the NM is running is by the prompt printed on the
screen. It is generally of the form "BBL [C:BBL]". The prompt begins with "BBL"
and then contains the name of the current directory inside brackets. The above exam-
ple shows that the default directory is "BBL" on the C disk (hard disk). Operation at
this point will appear to the user to be the same as if DOS were running. Any DOS
commands simply pass through the program and are executed by DOS. There are
some exceptions to this. The current version of the NM (4.0) will not work in con-

junction with PC Interface (PCI), the program to allow file access to a mainframe
running a PCI server. This is because both the NM and PCI use the 3Com EtherLink
board and we have yet to resolve the contention. Therefore, do not run the NM and
PCI simuitaneously! They are actively hostile to each other and the machine. You
will be forced to reboot the machine if these two programs are running concurrently.

The command quit causes the NM to terminate and return direct control to
DOS. If the owner opts not to include her PC in the pool of BBL NMs, the NM shell
can be terminated by typing "EXIT" or "QUIT" to it.
4.3 Termination

As mentioned above, to terminate the NM shell, simply type "QUIT" or
"EXIT" at the BBL prompt.

5 Simulation Interface
5.1 Description

The SM interface is invoked by running the executable file ‘sim.exe’. Exe-
cute the SM by typing:

SIM
When the SM begins execution, the following message appears on the PC screen:

> The Resource Manager has x nodes available
>

The prompt for the SM is a ">". The value of x depends on however many nodes the
RM has available at the time the SM is initialized. If there is no message from the
RM, it implies no connection has been established yet between the SM and RM. In
this case, the rm command should be entered followed by free to find out how many
nodes exist at the RM.

The SM interface enables the user to execute the simulation on a set of "tran-
sient" processors without explicitly initiating this execution or tracking the output
from each execution. The SM also permits the user to view the current work being
performed by NMs (view command), the data returned from the completed simula-
tions (results command), and also allows the user to modify parameters during exe-
cution so that additional points can be run, or unnecessary ones deleted
(change points or data_file command).

One SM node exists for each user running simulations on the system. The
Simulation Manager schedules the points that the user gives in the configuration file
or in the input data file. To accomplish this, the SM must coordinate the allocation of
NMs and reschedule points that do not complete because the NM is taken away. The
SM also keeps track of the results from each simulation in a log file named by the
user.

The SM stores the status of each of its nodes. A node allocated to the SM can
be in one of five states; free to be used by a simulation, loaded with the simulation
code, busy running the code, done running the code, or dead. The SM relies on this
information when a node is taken back by its owner. The status of the node is used in
rescheduling the work being performed by the node in the event that the user reclaims
the node. The status flags are also used to determine the availability of a node in the
event that points are added to the simulation during execution.

5.2 Operation
The SM accepts commands from the user and takes actions based on the

prompt. Menus and help messages assist the user in finding the appropriate action to
request. This interface closely parallels that of the U/PM.

The SM module manages the allocation of nodes (based on information pro-
vided by the user), the downloading of code to the NMs owned by the SM, and the
scheduling of work to be assigned to each NM. The SM defines two classes of com-
mands; those considered legal during the selection and initialization of a simulation
(the setup phase) and those intended for use during and after the execution of the
simulation (the runtime phase). The SM presents a different set of commands depend-
ing on whether the system is in the setup or the runtime phase. A user selects a com-
mand by either typing out the name in full or typing however many characters are
needed for the SM to recognize the name as unique. A description of the SM com-
mand language follows: ™

SM Command Language
Command Phase¥ Description

bye B Exit from the BBL environment

change_points R Allow the input parameters to be modified if
these parameters were give in the
configuration file for the simulation

data_file B Change the default data input file if input
parameters were not given in the simulation
configuration file

dos B Invoke a DOS environment

exit dos B Return from DOS environment

flow _control_diagram B Diagram of the flow of control of the SM
command language

free nodes B Ask the RM how many NMs are available

heartbeat B Ask the RM to broadcast a heartbeat message
to pick up any stray NMs

help B Present the current SM command language
options

output_file B Select a new file for simulation results to be
written to

quit B Exit the BBL environment (same as the bye
command)

reset B Reset the simulation to its initial state

results R Display the current list of results received
from completed simulations

rm_addr B Broadcast to find the address of the RM
(when the RM is started after the SM)

runtime S Enable the runtime phase routines

setup S Enable the setup phase routines

simulation S Choose a simulation from the ‘info.sim’
simulation library file

1 The phase during which the command is enabled; S=Setup, R=Runtime, B=Both.

SM Command Language (continued)
Command Phasef Description

start R Start the execution of the user’s distributed
simulation

time R Retrieve execution times of NMs and entire
simulation

view_points R Allow the user to view the system state (i.e.
The data point that is being run by each active
node).

i B Present the current command language op-
tions {(same as the help command)

The user is prompted in the setup phase to select a simulation from the list
contained in the ‘info.sim’ file. The simulation description files that are listed in this
file contain information about the name of the executable file, the maximum number
of nodes to be used, and optionally, the parameter values to be run in the simulation.
In the configuration file, a negative integer indicates an unbounded limit on the max-
imum number of processors. The optional information in this file follows the simula-
tion executable name and the maximum number of processors. The following
describes the organization of the entries in the simulation configuration file:

<Comments and header information>

test.exe /* Name of the executable */
-1 /¥ Maximum number of NMs */

<1st parameter beginning value>
<1st parameter ending value>
<1st parameter delta value>

<2nd parameter beginning value>
<2nd parameter ending value>
<2nd parameter delta value>

<last parameter beginning value>
<last parameter ending value>
<last parameter delta value>

The items in brackets are optional. The space between the header line and the exe-
cutable file name is required, all others are optional and are included to improve rea-
dability. If the user does not wish to include the input parameters in the configuration
file, or if the values are not easily represented as a range with discrete increments
over the interval, the user may exclude this field from his simulation description file.

+ The phase during which the command is enabled; S=Setup, R=Runtime, B=Both.

If no input parameters are given in the configuration file, the SM will prompt the user
for the input data file. This file is chosen from a list of files in ‘data.lst’. The user
must edit the ‘datalst’ file to include the name of the data file prior to the setup
phase. There is not an option to enter the parameter list interactively at this time.
Parameters can either be entered in the configuration file, or in a data input file named
in the data file library.

During execution the user monitors the progress of the simulation by using
the runtime phase commands. The view command allows the user to display the
parameters being run by each NM owned by the SM manager. The results command
allows her to check the output from simulations that have completed. If the user
wishes to modify the points that are being run, she has two options. If the points are
parameters included in the configuration file, she can modify the parameters with the
change_points command. If the parameters are being read from an input data file, the
user may edit this file during execution to either add or delete points; this is accom-
plished by using the dos command to go the DOS environment in order to edit the
file, and returning to SM by the exit command. The user can determine which NMs
have completed by issuing a time command which will list the vids which are still
busy and the completion time for those that are done. For an example of the interac-
tion with the user to retrieve setup information see Appendix A.

5.3 Termination

The commands bye or quit are used to exit the SM.

10

6 Writing Simulations for SIBBL

The BBL systemn provides a set of library routines to allow the user program
to execute on the NM. For the SIBBL environment, the only library routine required
is the function Init_Vars which must be the first line in the program. This function
allows the NM to set up various data structures and links into the user’s code
specifically, an area for packet buffers and associated control structures and the ad-
dress of an exit routine to be called when the NM is forced to terminate the user’s
code.

The Init_Vars function must be called at the beginning of the user code. This
is because the NM must have an address of an exit routine to call when a key gets hit,
or when instructed to kill the node. The address of the exit routine is passed as a
parameter to Init_Vars as "user_exit". This exit routine must free any allocated
space. This routine must end with a call to the function "exit". The other parameters
passed are information for the BBL system and are not used by SIBBL. Generally
the call will look like this:

Init_Vars(input_buffer, input_size, input_free, U_QUEUE_SIZE, user_exit);

In order to issue the function call to the NM, the user must include the ‘bbluser.h’ file
in their C source and must include the ‘bbluser.lib’ file when linking their code. The
include file, ‘bbluser.h’ defines the parameter structures used in the Init_Vars call.
The Init_Vars routine is in ‘bbluser.lib’. This library file is linked with the user’s
source.

In addition to making a call to the BBL library routine Init_Vars, the simula-
tion must be written to accept its inputs as arguments from standard input and write
its results to standard output. The input line cannot exceed 80 characters when con-
verted to an ascii string, and the output should be no more than 1100 bytes.

In summary, the restrictions upon simulation programs are:

1) Code must be written in C
(to link with the BBL library)
2) Each simulation in the library
must be compiled into a ‘.exe’ file
3) No interrupt driven routines
4) First executable statement MUST be a call to the Init_Vars routine
5) Input passed as an argument to the program and no
more than 80 characters
6) Output written to standard output and less than 1100 bytes
7) Must be compiled with the large model in Turbo C
8) Must provide an exit routine that releases user allocated memory in
the event of abnormal termination.

11

7 Simulation Execution

In this section, a sample simulation (STAGE.sim) is provided to illustrate the
use of SIBBL, The purpose of this simulation is to analyze the correctness of an ap-
proximation made in an analytical evaluation of a task graph model. The parameters
to ‘STAGE.exe’ program are the number of stages and the number of processors used
in the distributed computation of a task. The product of these two numbers is the
number of iterations in the calculation of mean execution time. The creation of all
necessary files for the execution of this simulation will be described in this section.

7.1 The Simulation Configuration File (STAGE.sim)

After writing and compiling the simulation code into the file called
‘STAGE.exe’ the simulation description file must be created. The simulation
configuration file ‘STAGE.sim’ is created and added to the list of other configuration
file names in the ‘info.sim’ library file, so that it is accessible from the SIBBL en-
vironment.

The ‘STAGE.sim’ file contains the name of the executable and additional in-
formation about the execution of the simulation. An upper bound on the number of
processors to be used to run points can be set in this file and the ranges of values for
parameters can be given for the simulation. If the user has not given the parameters
in the configuration file, they are prompted for the name of the data file which con-
tains the points to be run. Each line of input in the input data file should be separated
by a carriage return. After this information is input, the system is ready to invoke the
runtime phase commands.

7.1.1 Required Data

The beginning entries in a configuration file are required, while the latter are
optional. The first required lines of the file are comments meant to describe the simu-
lation. Therefore, ‘STAGE.sim’ might begin something like:

The stages simulation is allowed to utilize as many processors as
it is able to allocate. The length of execution time is proportional
to the product of the two input parameters. Inputs are integers
ranging from 1..10.

STAGE.EXE /* executable name */

-1 /* maximum number of nodes */

10 /* first parameter to the simulation */

1 /¥ ranges from 10..1 */

-1 /* decremented by one at each step */
10 /* the second parameter is always 10 */
10

0

A blank line terminates the comment section. This is followed by the name of the
‘ exe’ file, and the maximum number of processors on which this code should run.

12

For ‘STAGE.sim’ maximum is set to -1, indicating an unlimited upper bound. The
lines following this are optional; they describe the parameters to the simulation.

7.1.2 Optional Data - Input Parameters

The optional entries in the configuration file should be arranged in the order
which they are to be passed to the simulation. Each parameter requires three lines
which describe the beginning, end, and delta value for the parameter. These values
can be real or integer, positive or negative. If the parameters to the simulation are
non-numeric values, the parameters must be retrieved from an input data file, the
parameter input cannot be specified in the configuration file. For the "STAGE.sim"
file there are two parameters to the simulation, one ranges from 10..0 decremented by
one after each execution, and the second parameter is always 10. The parameters for
the simulation should be given in order of greatest to least anticipated execution time.
This is necessary to insure that scheduling of the points is highly efficient. The points
are run in the order given in the configuration file. If the input data is being read
from a file it is run in the order given in the file, so the same guidelines apply. The
simulation will terminate as soon as one of the parameters has reached the end value
specified unless the delta value for this parameter was zero.

7.2 The Simulation Input Data Library

Input data file names must be appended to the system ‘data.lst’ file in order to
be listed and selected from the SM. Data in the files listed in this library should be the
argument lines to be passed to each invocation of the program written by the user.
Each line must be terminated by a carriage return as in the input data file for the
stages simulation, ‘STAGE.dat’:

1010
910
8 10
710
610
510
410
310
210
110

If the ‘STAGE.sim’ configuration file had not specified the input parameters,
the user would be prompted to select an input data file. The example data file given
above would cause the same points to be executed as in the configuration file
‘STAGE.sim’ example, After each execution of the simulation, the results from the
preceding executions can be displayed. Then modifications can be made to the data
input file for subsequent runs of the simulation. It is not necessary to reset the simu-
lation. If a data file exists that contains the next group of points to be run this file can
be selected with the data_file command. Alternatively, the user could edit the
current data file by exiting to dos then returning to runtime after modifying the file. It
is not necessary to go through allocation and download again; the simulation can be
run with the new points via the start command. Each time the simulation is restart-
ed, SIBBL prompts the user for the name of a new output file. This is to prevent the

13

accidental overwriting of data accumulated in a previous run.
7.3 Simulation Results File

The output from each completed simulation is logged to a file named by the
user at either setup or run time. Each line of the output file has the following format:

<input parameters> <output received from the NM> <carriage return>

The input is followed by the results for the inputs given and a carriage return
terminates the entry in the file. The contents of the results file can be viewed during
or following execution by using the results command. The results command displays
one screen of data at a time, The user can inspect the completed points without exit-
ing the runtime mode or resetting the simulation. The display of data is terminated
by issuing a quit command when the SM prompts the user for continuing the display
of data. If a quit is not issued, the user pages through the data until the end of the
results file is reached.

The output from the user simulation should not have new lines in the data to
be returned. The Simulation Manager interprets extraneous carriage returns as termi-
nation of data and will not write any additional data following a carriage return char-
acter to the log.

14

8 References

[SCHOS8]

[SCHOR8a]

Schooler, E.M., Felderman, R.E. Kleinrock, L., "The
Benevolent Bandit Laboratory: User Manual for Software Ver-
sion 3.0" Technical Report #880017, University of California,
Los Angeles, CA, (March 1988).

Schooler, E.M., Felderman, R.E., Kleinrock, L., "A Testbed for
Distributed Algorithms using PCs on Ethernet" Technical Report
#880016, University of California, Los Angeles, CA, (March
1988).

15

9 Appendix A: Demonstration of the SIBBL System

The following demo of the SIBBL environment makes use of the example
simulation discussed in section 7.1, The Simulation Configuration File. The
configuration file for the stages simulation looks as follows;

The stages simulation is allowed to utilize as many processors as
it is able to allocate. Inputs are integers
ranging from 1..10.

STAGE.EXE /* executable name */

5 /* maximum number of nodes */

10 /* first parameter to the simulation */

0 /* ranges from 10..0 */

-1 /* decremented by one at each step */
10 /* the second parameter is always 10 */
10

0

The entries in the configuration file are identical to those given in the earlier
example with the exception of the maximum number of processors. In this
configuration, the simulation is not to acquire more than five NMs. To begin the
demonstration of the SIBBL environment, the user types "SIM" to the DOS prompt.

SM User Interface Version 4.00

> The Resource Manager has 4 free nodes
> help

Command Language :

<debug_control>

<dos>
<flow_control_diagram>
<free_nodes>
<heartbeat>

<help | 7>

<quit | bye>

<reset>

<setup>

> set

16

SETUP routines have been enabled

Choose one of the following simulation choices: (default is 'STAGE.sim’)
(0) STAGE.sim
(1) BROWN.sim
(2) STRATEGY .sim
(3) OFF.sim
(4) TEST.sim
0
Nodes requested = 5, nodes to use = 4
Downloading
DOWNLOAD completed: All nodes successfully downloaded

Enter the name of the output file for results to be written to:
outl

The SM downloads the code, gets the input parameters for the first four exe-
cutions of the simulation and sends this information to its assigned NMs. The user
has given a maximum number of nodes equal to five. The simulation will only be al-
located four initially. If a fifth NM becomes free during the execution of the simula-
tion, the SM will acquire the NM. If any uncompleted work remains, the SM will
download the simulation executable to the newly allocated NM and will assign it the
next point to run.

> help
Command Language :
<data_file> <quit | bye>
<debug_control> <output_file>
<dos> <reset>
<flow_control_diagram> <runtime>
<free_nodes> <rm_addr>
<heartbeat> <simulation>
<help | 7>

At this point the RUNTIME phase routines can be enabled, and the simulation
started.

17

> run
RUNTIME routines have been enabled

Command Language :
<change_points> <quit | bye>
<debug_control> <output_file>
<dos> <reset>
<flow_control_diagram> <results>
<free_nodes> <rm_addr>
<heartbeat> <start>
<help | 7> <time>
<data_file>

> start

> help
Command Language :
<change_points> <output_file>
<debug_control> <reset>
<dos> <results>
<flow_control_diagram> <rm_addr>
<free_nodes> <start>
<heartbeat> <time>
<help | 7> <view_points>
<quit | bye>

> results

Results From Completed Nodes:

10 10 15.3842 15.1035 1.8240 29.2897 29.2905 -0.0027
0 14.1314 13.8514 1.9815 26.3607 26.3614 -0.0027
0 12.8639 12.5855 2.1636 23.4317 23.4324 -0.0027
0 11.5785 11.3039 2.3709 20.5028 20.5033 -0.0027
0 8.9356 8.6843 2.8123 14.6448 14.6452 -0.0027
0 10.2710 10.0043 2.5966 17.5738 17.5743 -0.0027
0 7.5627 7.3417 2.9215 11.7159 11.7162 -0.0027

<< End of Data >>

The first two entries on each line are the input parameters sent to the simula-
tion. The user determines the format of the output and the amount of data output by
the simulation.

> time

18

Completion Time:

Vid 0 00:02:44.15
Vid 1 not done
Vid 2 not done
Vid 3 not done

NM Execution Time:
Vid 0 00:02:44.15
Vid 1 BUSY
VYid 2 BUSY
Vid 3 BUSY

Simulation not complete

After all points have completed, the user can again view the results from the
simulation execution. If it is desirable to run additional points, the parameters can be
modified using the SM change command and the simulation can be rerun using the
new values as parameters.

>

Completion: All nodes have completed

>change

Which parameter would you like to change? (default is none)

0) BEG: 10 END: 0 DELTA: -1
1) BEG: 10 END: 10 DELTA: 0
0

Which field would you like to change? (default is none)
1: Beginning value
2: Ending value
3: Delta value

1

Input new value:
6

Which field would you like to change? (default is none)
1: Beginning value
2: Ending value
3: Delta value

3

Input new value:
-2

19

Which field would you like to change? (default is none)
1: Beginning value
2: Ending value
3: Delta value
Which parameter would you like to change? (default is none)

0) BEG: 6 END: 0 DELTA: -2
1) BEG: 10 END: 10 DELTA: 0

>start

Enter the name of the output file for results to be written to:
out2

>view

Current work for each node:

vid 0: 6 10
vid 1: 4 10
vid 2: 210
vid 3:

>
Completion: All nodes have completed

>reset

reset_sys: send FREE_NM

reset_sys: free up allocated space free simulation related space
reset_sys: send SUICIDE

reset_sys: reset channels

reset_sys: free up debug info

reset_sys: re-initialize debug info

reset_sys: re-initialize structures

The user must use the reset command if she wishes to choose another simula-
tion. The reset command returns the environment to the setup mode where a new
simulation is chosen and new input parameters are retrieved and new output results
files are opened.

> set
SETUP routines have been enabled

Choose one of the following simulation choices: (default is 'STAGE.sim”)
(0) STAGE.sim
(1) BROWN.sim
(2) STRATEGY .sim
(3) OFF.sim

20

(4) TEST.sim
0
Nodes requested = -1, nodes to use =4
DOWNLOAD completed: All nodes successfully downloaded

Choose one of the following data_files: (default STAGE.1)

(1) STAGE.1
(2) BROWN.1
(3) STRATEGY.1
(4) TEST.1

1

Enter the name of the output file for results to be written to:
out3

> run
RUNTIME routines have been enabled

Command Language :
<change_points> <quit | bye>
<debug_control> <output_file>
<dos> <reset>
<flow_control_diagram> <results>
<free_nodes> <rm_addr>
<heartbeat> <start>
<help | 7> <time>
<data_file>

> start

Completion: All nodes have completed

When all simulations have been completed, the user can exit by issuing the
quit command.

> quit

pm_gquit: send SUICIDE

pm_quit: send FREE NM

pm_quit: free up allocated space

free algorithm related space

pm_quit: free up debug info

First reset got (89)

Second reset got (89)

RESTORING INTERRUPT VECTOR

21

10 Appendix B: Optimizing maximum number of processors

In many simulations the program execution times will depend upon parame-
ters passed to the program, in others the parameters will have no affect upon simula-
tion execution time. For those simulations where execution time depends upon the
program parameters, the sequence in which points are run can greatly affect the total
execution time. In general, the greater the time required for the simulation to execute
a point, the sooner that point should be scheduled. Anticipated running time can be
used to determine the execution priority of each point. The SM attempts to schedule
points based on their execution time. To this end, the SM assumes that points are or-
dered from greatest to least execution time. If the input parameters are given in the
configuration file, they should have a beginning value of the largest peint and an end
value of the least (delta values can be negative). If the parameters are retrieved from
a data file, the inputs should be in order of greatest to least execution time., Points are
scheduled in the order in which they are entered in the configuration or input data file.

The ‘STAGE.sim’ file specifies ten points to be run in the simulation. In this
simulation, the length of each simulation point depends upon the size of the parame-
ters passed to it. The parameters to the program control the number of iterations of
the calculation performed in the program. Thus, in the execution of the points in
‘STAGE.sim’, the longest simulation is the point <10, 10>. The speedup of the simu-
lation is bounded by the length of the longest single computation. Since the simula-
tion cannot be executed more quickly than the single longest point, a lower bound on
the simulation execution time is the time for the point <10, 10>. Timing tests demon-
strate (see Figure 1) that the simulation execution time is not improved when more
than six NMs are allocated for the ten points run in this example.

800

600 —

Execution
Time 400 -
(Sec)

200 -

I T T T 1 T I |
1 2 3 4 5 6 7 8 9 10
Number of Processors

Figure 1. Execution Time versus Number of Processors (STAGE.sim).

22

This behavior should be taken into consideration when trying to optimize the max-
imum number of processors in the ‘.sim’ configuration file. The speedup for the exe-
cution of all points is graphed in Figure 2. The speedup peaks at six processors.

10 perfect

Speedup stage

7 | | T T I I T
1 2 3 4 5 6 7 8 9 10

Number of Processors

Figure 2. Speedup versus Number of Processors (STAGE.sim).

Allocating more than six nodes does not increase the speedup of the execution time
for all simulation points being run in ‘STAGE.sim’. In addition, it will reduce the
number of NMs available to other users of BBL. The nodes which have completed
remain idle until the last node completes and the simulation is restarted (with new
work), or the Simulation Manager is returned to setup mode. Since SM retains own-
ership of all nodes as long as it is in runtime mode, the completion of a node does not
mean it is returned to the pool of free nodes managed by the RM. Allocating more
than six nodes to run this set of points wastes resources.

Not all simulations will exhibit this kind of behavior. For example, the
Brownian motion simulation program has an execution time which is dependent only
upon the number of trials executed. If all points perform the same number of trials,
the execution times are very homogeneous. As a result, execution continues to de-
crease with additional processors.

23

15

Emcution1 0+
Time
(Sec)

0

1 1 T 1 T 1T T 1T 1 T T T T 1
1 23 45 6 7 8 9101112131415 1617

Number of Processors
Figure 3. Execution Time versus Number of Processors (BROWN.sim).

The execution time for the Brownian motion simulation continues to decrease with
addition of NMs because one point does not dominate the others in execution time as
it did with the stages simulation. The speedup for this simulation is graphed against
perfect speedup in Figure 4.

24

perfect

154

10 brown
Speedup

0

1 1T 1T 1T T T 1T T T T 1 T 11
1 23 45 6 7 8 910111213 14 1516 17

Number of Processors

Figure 4. Speedup versus Number of Processors (BROWN.sim).

Speedup continues to improve until as many processors are being used as there are
points to be run. Each processor is running only one point when there are at least six-
teen processors. For this simulation, the speedup continues to increase with the addi-
tion of nodes. In general, it is desirable to allocate as many NMs as possible for a
simulation running points with similar execution times.

25

