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Abstract

Representing input/output distributively pro-
vides several desirable properties, e.g. associa-
tions and generalizations directly arise from the
representations and the system is robust against
noise and damage. One way to form distributed
representations is to classify each input item along
a number of predetermined semantic microfea-
tures and to represent each microfeature locally.
How to determine the appropriate microfeatures
remains a problem. Developing representations in
the hidden layers of a backpropagation network
avoids this issue, but the representations are in-
ternal and local to that layer. In the FGREP ap-
proach the backpropagation error signal is used to
develop representations in an external network (a
lexicon). Backpropagation in this approach oper-
ates in a reactive training environment, i.e. the
required input/output mappings change as the
1/O representations change. These representa-
tions evolve to improve the system’s performance
in the processing task and end up reflecting the
properties of the input items which are most cru-
cial to the task, facilitating excellent association
and generalization. The microfeatures of the re-
sulting representation in general are not identifi-
able. Different aspects of an input item are dis-
tributed over the whole set of units in a holo-
graphic fashion, making the system particularly
robust against damage. Each representation also
carries expectations about its possible contexts.

*To appear in Touretzky, Hinton and Sejnowski, edi-
tors, Proceedings of the 1988 Connectionist Models Sum-
mer School, CMU, June 17-26 1988, Morgan Kaufmann
Publishers, Inc.
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JPL. The first author was also supported in part by grants
from the Academy of Finland, the Finnish Cultural Foun-
dation, The Jenny and Antti Wihuri Foundation and The
Thanks to Scandinavia Foundation. The simulations were
carried out on equipment donated to UCLA by Hewlett
Packard.
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Figure 1: Case role assignment of The ball hit the
girl with the dog.

1 Introduction

Sentence case role assignment is an example of a cog-
nitive task which is well suited for modelling with con-
nectionist systems. The syntactic structure of the sen-
tence is given and consists of e.g. the subject, verb,
object and a with-clause. The task is to decide which
constituents play the roles of agent, patient, instru-
ment and patient modifier in the act (figure 1). This
requires forming a shall-w semantic interptetation of
the sentence.

For example, in The ball hit the girl with
the dog, the subject ball is the instrument of the
hit-act, the object girl is the patient. the with-
clause, dog, is a modifier of the patient, and the agent
of the act is unknown. Role assignment is context de-
pendent: in The ball moved the same subject ballis
taken to be the patient. Assignment also depends on
the semantic properties of the concept. In The man
ate the pasta with cheese the with-clause modi-
fies the patient but in The man ate the pasta with
a fork the with-clause is the instrument. In yet other
cases the assignment must remain ambiguous. In The
boy hit the girl with the ball there is no way of
telling whether ball is an instrument of hit or a mod-
ifier of girl.

Case role assignment requires taking into account
all the positional, contextual and semantic constraints
simultaneously, which is what the connectionist sys-
tems are particularly good at. An important issue is
how the input and output to such systems should be
encoded.

In the distributed approach, the input/output con-
cepts are represented as different patterns of activ-
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Figure 2: Semantic microfeature encoding of the word
rock (from [McClelland and Kawamoto, 1986]).

ity over the same set of units. Desirable properties
achieved are: (1) it is possible to associate similar con-
cepts and generalize properties by sharing the same ac-
tivity subpatterns, and (2) the system is robust against
noise and damage [Hinton et al., 1986].

One approach for forming distributed representation
patterns is semantic microfeature encoding, used
e.g. by McClelland and Kawamoto in the case role as-
signment task [McClelland and Kawamoto, 1986] (see
also [Hinton, 1981)). Each concept is classified along
a predetermined set of dimensions such as human-
nonhuman, soft-hard, male-female etc. Each microfea-
ture is assigned a processing unit (or a group of units,
e.g. one for each value), and the classification becomes
a pattern of activity over the assembly of units (fig-
ure 2).

This kind of representation is meaningful by itself.
It is possible to extract plenty of information just by
looking at the representation, without having to have
a trained network to interpret it. Several different sys-
tems can directly use the same representation patterns
and communicate using them.

On the other hand, the patterns must be pre-
encoded and they remain fixed. Performance cannot
be optimized by adapting the representations to actual
task and data. Because all concepts must be classified
along the same dimensions, the number of dimensions
becomes very large, and many of them are irrelevant
to the particular concept (e.g. gender of rock). Decid-
ing what dimensions are advantageous to use is a hard
problem. There is also a serious epistemological ques-
tion of whether the process of deciding what dimensions
to use 1s justifiable or not. Hand coded representations
always have a degree of ad hocness and bias in them.
In some cases it is possible to make the task trivial by
a clever encoding of the input representations.

Developing internal representations in hid.
den layers of a backpropagation network avoids
these problems (see e.g. the family tree example in
[Hinton, 1986]). A network of this type usually con-
sists of input, output and three hidden layers (fig-
ure 3). The input and output layers are localist, i.e.
exactly one unit is dedicated to each concept. The
hidden layers next to the input and output layers con-
tain considerably fewer units, which forces these layers

Input Input

representation ——

Output
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Figure 3: Developing internal representations in hid-
den layers.

to form compressed distributed activity patterns for
the input/output concepts. Developing these patterns
occurs as an essential part of learning the processing
task, and they end up reflecting the regularities of the
task [Hinton, 1986].

This approach does not address the issue of encoding
input/output representations. The system does not
deal with the representations per se; they develop only
as a side effect of modifying the weights to improve
the task performance. The patterns are not available
outside the system, and they are not used in commu-
nication with the system. Moreover, since both penul-
timate layers develop their activity patterns indepen-
dently, each concept has two different representations:
one as an input and another one as an output con-
cept. These activity patterns are local, internal pro-
cessing aids more than input/output representations
which can be used in a larger environment.

This paper describes a third approach, FGREP
[Miikkulainen and Dyer, 1988], where representations
are also developed automatically while the network is
learning the processing task, making use of the back-
propagation error signal. However, the representations
are global input/output to the network and they are
stored in an external network (a lexicon), which guar-
antees unambiguity and makes communication using
these representations possible.

2 FGREP: Forming global
representations with extended
backpropagation '

2.1 System architecture

The FGREP system is based on a basic three-layer
backward error propagation network (figure 4). The
network learns the processing task by adapting the
connection weights according to the standard back-
propagation equations {Rumelhart et al., 1986, pages
327-329), At the same time, representations for the in-
put data are developed at the input layer according to
the error signal extended to the input layer. Input and
output layers are divided into assemblies and several
concepts represented and modified simultaneously.

The representations are stored in an external lexicon
network. A routing network forms each input pattern
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Figure 4: FGREP architecture.

and the corresponding teaching pattern by concate-
nating the lexicon entries of the input and teaching
concepts. Thus the same representation for each con-
cept 1s used in different parts of the backpropagation
network, both in the input and in the output.

The process begins with a random lezicon contain-
ing no pre-encoded information. During the course of
learning, the representations adapt to reflect the im-
plicit regularities of the task. It turns out that single
units in the resulting representation do not necessarily
have a clear interpretation. The representation does
not implement a classification of the concept along
identifiable features. In the most general case, the rep-
resentations are simply profiles of continuous activity
values over a set of processing units.

The approach is motivated by the eventual goal of
using a simple network as a building block in more
complex systems. An FGREP network could be used
as a module in a larger system, where the different
subsystems communicate using the lexicon.

2,2 Extending backpropagation to the
representations

Standard backpropagation produces an error signal for
each hidden layer unit. By propagating the signal one
layer further to the input layer, the representations
can be changed as if they were weights on connections
coming in to the input layer.

In a sense, the representation of a concept serves as
input activation to the input layer. The activation of
an input unit is identical to the corresponding compo-
nent in the representation. In this analogy, the activa-
tion function of an input unit is the identity function
and its derivative is one. The error signal can now be
computed for each input unit as a simple case of the
general error signal equation [Rumelhart et al., 1986,
Eq.14]:

b1 = Zézjwuj- (N
j

where 6., stands for the error signal for unit y in layer
z, and wy;; is the weight between unit 7 in the input
layer and unit j in the first hidden layer.

Imagine a localist 0:th layer before the input layer,
with one unit dedicated to each input concept in each
assembly. In this layer at most one unit per assembly is
active with value 1 at any time (the one corresponding
to the current input), the rest of the units have zero
activity, Each localist unit is connected to all units
in the input assembly with weights equal to the input
representations. Extending back propagation weight
change to these weights can be interpreted as changing
the representations themselves:

Arg = ndyry, (2)

where r.; is the representation component i of concept
¢, &1; is the error signal of the correspending input
layer unit and n is the learning rate. Using this anal-
ogy, representalion learning is implemented as an ez-
tension of the back propagation aslgorithm. While the
weight values are unlimited, the representation values
must be limited between the maximum and minimum
activation values of the units. The new value for the
representation component i of concept ¢ is obtained as

rei(t+1) = mazfor, minfoy, ra(t) +Arg]],  (3)

where o is the lower limit and o, is the upper limit
for unit activation.

Note that the backpropagation “sees” the represen-
tations simply as an extra layer of weights, By separat-
ing the representations from the network and treating
them as global, external objects (instead of local, in-
ternal weights) we can develop a single, concrete repre-
sentation for each concept. Since the representations
adapt according to the error signal, there is reason
to believe that the resulling represeniations effectively
code properiies of the input elemenis which are most
erucial to the lask.

2.3 Reactive training environment

The process differs from ordinary backpropagation in
that both the input and the teaching patterns are
changing. An input pattern is formed by drawing the
current representations of the sentence constituents
from the lexicon and loading them into the input as-
semblies (figure 4). The activity is propagated through
the network to the output layer, where the error sig-
nal is formed by comparing the output pattern to the
teaching pattern, which is also formed by drawing the
current representations from the lexicon. The error
signal is propagated back to the input layer, changing
weights and the input concept representations along
the way. Next time the same tnput sentence occurs,
the output will be closer to the same teaching pattern.
The modified representations are now put back to the
lexicon, replacing the old ones and thereby changing
the nert teaching pattern for the seme input. The



shape of the error surface is changing at each step,
i.e. backpropagation is shooting at a moving target in
a reactive training environment.

It turns out that as long as the changes made in the
process are small, the process converges nevertheless,
The learning time does not seem to be significantly
longer than in the ordinary case. The changes in the
error surface are a form of noise (a noisy error signal)
which backpropagation in general tolerates very well.

b

3 Simulations in the case role
assignment task

In [McClelland and Kawamoto, 1986] the authors de-
scribe a system which learns to assign case roles to sen-
tence constituents. The same task with the same data
was used to test FGREP, because it provides a conve-
nient comparison to a system using fixed microfeature
encoding. The task was restricted to a small reper-
toire of sentences studied in the original experiment.
These sentences consist of a subject, verb, object and
a with-clause. The possible case roles are agent, act,
patient, instrument, and modifier-of-patient. The sen-
tence generators are depicted in table 1 and the noun
categories in table 2. The generators produce 1553 dif-
ferent sentences, of which 1515 was used for training
and 38 was reserved for testing generalization.

The sentence frames and the noun categories are
not visible to the system: they are only manifest in
the combinations of words that occur in the input sen-
tences. To do the case role assignment properly the
system had {o figure out the underlying relations and
code them into the representations.

In this particular task, the teaching input is made up
from the input sentence constituents (figure 5). This is
by no means necessary for learning the representations.
The required output of the network could be anything
and the FGREP method would work the same. A
“pigeonholing” task is actually harder than a general
task because of the reactive training effect.

The training consisted of cycling through the train-
ing set 50 times in random order. Initially the compo-
nents of the representations were uniformly distributed
in the interval [0,1] and the connection weights of the
network in the interval [-1,1]. The behaviour of the
system was fairly insensitive to the learning param-
eters and system configuration parameters. Several
different values of the learning rate n within the range
0.01 - 5.0 were tried and also increasing it in six steps
from 0.01 to 0.5 (see [Plaut et al., 1986]). All these
cases lead to essentially identical results. The number
of units in the representation and the number of hid-
den units were not crucial either: values as low as 5
and as high as 100 were tested. If more hidden units
are used, the task performance, generalization capa-
bility and damage resistance improve slightly and the
learning in general is faster. Decreasing the number of

hidden units on the other hand lays more pressure on
the representations, and they become more deserip-
tive. In general, the best results are obtained when
the number of hidden units is somewhat less than half
the number of units in the input layer. It also turns
out that the best generalization and the most descrip-
tive representations are obtained at around the 20th
epoch: overtraining tends to make the network reflect
the idiosyncronies of the training data, as has been
reported e.g. in [Tesauro and Sejnowski, 1988]. Fig-
ure 5 shows a snapshot of a real-time display of the
simulation running on an HP 9000/350 workstation.

4 Results

4.1 Representations

Figure 6 shows the representations developed by the
system, organized according to the noun categories.
Starting from random representations, the similarity
of the nouns belonging to the same category increases
until the changes begin to cancel out. This happens
usually within the first 20 epochs. During the remain-
ing epochs, the representations are fairly stable while
the task performance still improves. With different ini-
tial representations, the final set of representations in
general is different. The overall characteristics of the
representations and the performance of the system is
approximately the same in all cases,

Some concepts belong exactly to the same categories
and consequently occur exactly in the same contexts.
They are indistinguishable in the data and their repre-
sentations become identical. [man, voman, boy, girl]
forms one such group, [tork, spoon), [wolf, lion],
([plate, window], [ball, hatchet, hammer], [paperwt,
rock] and (cheese, pasta, carrot] others. If there is
at least one difference in usage of two nouns, their rep-
resentations become different. The discriminating in-
put modifies one of the representations while the other
one remains the same. Since each noun belongs to sev-
eral categories its representation can be seen as evolv-
ing from the competition between the categories. This
is clearest on the part of the ambiguous nouns chicken
and bat, which on the other hand are both animals,
but chicken is also food and bat is a hitter. The
representation is a combination of both, weighted by
the number of occurrences of each meaning. On the
other hand, the fact that there is a common element in
two categories tends to make all representations of the
two categories more similar. Thus the properties of
one concept are generalized, to a degree, to the whole
class.

Note that the categorization of a concept in figure 6
is formed outside the system and is independent of the
task, other categories and other concepts. The system
itself is not attempting categorization, it is forming the
most efficient representation of each concept for a par-
ticular task. Interestingly, if one runs a merge cluster-



Gn sentence Frame Lorrect case roles Catégory  Nouns
s human ate. agent Ruman RAnNL WOomAD bog girl
o8

2 The human ate the food. agent-patient animal bat chicken shesap
3 The human ate the food with the food. agent-patient-modif wol? lion
4 The human ate the food with the utensil. agent-patient-instr] ipredator wolf lion
6 The animal ate. agent gro chicken shesp
6 The predator ats the prey. agent-patient oo chicken cheese pasta
. . , carrot
7 The human broke the fragileobj. agent-patient utensil fork spoon
8 The human broke the fragileob] with breaker agent-patient-inatr| [fra ileobj plate window vase
8 The breaker broke the fragileobj. instr-patient hitier at ball hatchet hammer
10 The animal broke the fragileobj. agent-patient vase paperwt rock
11 The fragileobj broke. patien breaker bat ball hatchet hammer
12 The human hit the thing. agent-patiant possession E:g.i:flrl::*tchot hanmer
13 The human hit the human with the possession agent-patient-modif vase dog doll
14 The human hit the thing with a hitter. agent-patient-instr object bat ball hatchet hamnar
15 The hitter kit the thing. instr-patient paperwt rock vase plate
16 The human moved. ) agent-patient window fork spoon pasta
i'sf %o huqmlmovcddth. object. agent-patient gt‘:;'ao?i‘-g:;g.g;rr“
e animal movaed, agent-patient ; : :
19 The obiect moved. pgtion thing husan anizmal object
Table 1: Sentence generators Table 2: Noun categories

The generators are presented as sentence frames, with one to three noun slots. Each slot can be filled with any of the
nouns in the specified category, and each slot has a predetermined case role. For instance, The human ate the food
generates 4 x 4 different sentences, all with the case role assignment human = agent, food = patient.

Current: Epoch: 20 Input: The boy hit ithe girl with the rock

Input:

Input
aights

Hidden:

Output
Heights

SuUtpLT

Teach:

rechk

PATIENT INSTRIMENT MODIF IER

Figure 5: Snapshot of the simulation.

The header line displays the current input sentence. The input and output layers of the network are divided into
assemblies, each of which holds one concept representation at a time. Each unit in an input assembly is set to the activity
value determined by the corresponding component in the lexicon entry. The weights on the connections are displayed as
square matrices between the layers. After the network has successfully learned the task, each cutput assembly produces
an activity pattern which is identical to the lexicon representation of the concept that fills that role. The correct role
assignment is shown at the bottom row of the display. This pattern forms the teaching input to the network. Gray scale
values from white to black are used in the figure to code the unit activities in the range [0, 1] and the weight values within
the interval [-1, 1).



Figure 6: Representations have converged to reflect the categories.

ing algorithm [Kohonen, 1982] on the representations,
the optimal clusters turn out to be quite similar to the
noun categories (figure 7).

To look at the spatial relations of the representa-
tions, we first have to map the 12-dimensional repre-
sentation vectors into a 2-dimensional space. One way
to do this is Kohonen’s self-organizing feature map-
ping [Kohonen, 1984]. This method is known to map
clusters in the input space to clusters in the output
space. The map is topological, i.e. the distances in
the map are not comparable (more dense regions are
magnified), but the topological relations of the input
space are preserved.

The feature map shows the same clusters that were
used in generating the input (figure 8). Note that the
ambiguous nouns chicken and bat are mapped be-
tween their two poesible categories animal and food
and animal and hitter.

Inspection of the representations in figure 6 suggests
that a single unit does not play a crucial role in the
classification of concepts. The fact that a concept be-
longs to a certain category is indicated by the activity
profile as a whole, instead of particular units being on
or off. The representations are also extremely Aolo-
graphic. The whole categorization is clearly visible
even in the values of a single unit (figure 9), and even
more so in the space spanned by two units (figure 10).

It is very hard to point out what features the in-
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Figure 7: Merge clustering the representations.

At each time step, the clusters with the shortest euclidian
single linkage distance are merged.
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Figure 8: 2-D Kohonen-map of the representations.
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Figure 10: Categorization by units 3 and 9.

dividual units are actually coding. In [Hinton, 1986]
Hinton was able to give interpretation for some of the
units in the hidden layer representation, although he
points out that the system develops its own microfea-
tures, which may or may not correspond to ones that
humans would use to characterize data. Our results
suggest that the microfeatures in the resulling repre-
sentation in general are not identifiable.

4.2 Performance with the learned
representations

The performance in the role assignment task after 50
epochs was tested with two test sets: the first one
consisted of two randomly chosen sentences from each
generator which had been used in the training, and
the second one consisted of the test sentences which
the network had not seen before. The robustness of
the representations was tested by removing the last
n% of the units from each input assembly. Tables 3
and 4 present results for each sentence,

The system learned the correct assignment of most
sentences. Difficulties arise in ambiguous cases, where
the system develops an intermediate output between
the two possible interpretations, indicating a degree of
confidence in the choices. One such case is presented in
the snapshot of figure 5. Rock can be either the instru-
ment of hit or a possession of girl. In most similar
occasions it is the instrument, and the network devel-
ops a much stronger representation in the instrument
assembly than in the modifier assembly. The system
also performs poorly with the animal meaning of bat.
Because a vast majority of the occurrences of bat are
hitters, its pattern becomes more representative of
the hitters than animals.

Strikingly, there seems to be very little difference in
performance between the familiar and unfamiliar test
sentenices. The generalization capabilities of the sys-
tem are ercellent. This is a result of the system’s ten-
dency to develop similar representations to similarly
behaving concepts. In a precoded, fixed microfeature
-based system, such as McClelland and Kawamoto’s,
even though two concepts are equivalent in the input
set, their representations remain different. With the
FGREP approach, the representations become more
similar, which means that generalization is necessarily
stronger. Damage resisiance is also very good. Even
with half the input units removed, the system gets
65% of the output within 15% of the correct value.
This is partly due to the general robustness of hidden-
layer networks but also partly due to the fact that the
representation is not coded into specific microfeature-
units, but is distributed over all units in a holographic
fashion.

Quantitative comparison of performance to McClel-
land and Kawamoto’s system is hard because of the
different architectures and goals. Percentage of cor-
rect units is not a very good performance measure
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4 Boy ate chicken fork 93.375.0 53.3
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6 lion ate chicken B1.7 61.7 56.9

6 lion ate  sheep 83.365.058.3

7 woman Dbroks window 90.0 71.7 8.2

7 boy broke plate 90.0 78,3 66.7

8 man broke window bat 91.7 66.7 6€8.3

8 boy broke plate hatchet B88.3 68.3 65,0

9 paper broke vase 88.3 83.378.3

2 rock broke window 88.3 78.3 63.3
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17 woman moved plate 98.3 73.370.0

17 girl moved pasta 98.3 83.3 70.0

718 chicken moved 71.7 61.7 71.7
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19 doll moved 9.0 80.0 71.7
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woman broke plate 88,
man broke vass ball 99,
irl broke vase hatchet 96.
9 hammer broke vase 23,

8 ball broke vase 5

710 bat broke vase 7
10 dog breke plate 7
11 plate broke 8
11 plate broks 8
12 boy hit girl 9 .

12 girl hit carrot 10 .

713 man hit bey hamner 8 . .
13 boy hit woman doll 9 . .
14 girl hit curtain bail 10 . .
14 girl hit spoon rock 98, .
16 paperwt hit chicken .
16 Tock hit plate 95. .
16 boy xoved 85, .
16 girl moved 8 .

17 man noved window 100, .
17 girl moved hammer 10
18 wolt moved 7 .
18 shes moved '? .
9
8

Table 3: Performance, familiar sentences

Table 4: Performance, unfamiliar sentences

The leftmost entry in each row identifies the generator which produced the sentence (referring to table 1). The degrees
of damage were 0, 25 and 50 percent, meaning that 0, 3 and 6 units were removed from each input assembly. The figures
indicate the percentage of cutput units whose values were within 15 percent of the correct output value. Ambiguous

sentences are indicated with “?”.

for their system since in all cases most of the output
units should be off. Also, to learn the representations
properly the training set should be as large as possi-
ble, whereas if the representations are predetermined,
smaller training sets can be used. Generalization capa-
bilities of the FGREP system as a function of training
set size have not been tested.

4.3 Coding expectations about possible
contexts

Representation is determined by all the contexts where
the concept has been encountered. Consequently, it is
also a representation of all these contezts. The more
frequent the context, the stronger is its trace in the
representation. When a concept is encountered and
its representation activated, a large number of expec-
tations about the context are immediately active with
different degrees of confidence (figure 11). As more
concepts are input, the expectations are amalgamated
and the set of possible interpretations narrows down.
The expectations emerge automatically and continu-
ously from the input concept representations, which
should turn out to be useful in building larger lan-

guage understanding systems. These distributed ex-
pectations could replace the symbolic expectations tra-
ditionally used in natural language conceptual analyz-
ers, e.g. [Dyer, 1983].

The FGREP approach is an implementation of the
philosophy that concepts are defined by the way they
are used. Learning a language is learning the usage of
the language elements: language is @ skill. The mean-
ing of a concept is encoded in its representation. This
is defined by all the contexts where the concept has
been encountered, and it determines how the concept
behaves in different contexts. The representation as
well as the meaning evolves continuously as more ex-
perience is gained.

5 Future work

The prime direction of further work is to use the
FGREP system as a building block in more complex
cognitive systems. A major disadvantage is that the
representations are task and network specific. Expec-
tations and other knowledge embedded in them is di-
rectly available (without interpreters) only in the net-
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Figure 11: Expectations embedded in the word ate.

The bottom layer shows the lexicon entry which is closest to the output generated by the network (euclidian distance of
normalized vectors). The representations and the network have captured the fact that a likely agent for ate is human,
patient is food, instrument is a utensil, and that food can be eaten with other food.
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Figure 12: Two networks developing the same repre-
sentations.

work where the representations were developed. How-
ever, the representations do reflect the similarities in
usage of the concepts, which is often useful informa-
tion.

An FGREP network can serve as an input filter,
self-organizing the input representations. Other sys-
tems can use these representations and add their own
information on top of them. Alternatively, different
subnetworks can develop the representations in the
same lexicon simultaneously, as an extension of reac-

Surface structure (words) Sequence of acts
F T N ) 3

Word Act
Lexicon Laxicon

Shallow semantics (cases) Causal etc. relations

Figure 13: Hierarchical interaction through reduced
descriptions.

tive training environment (figure 12). The final rep-
resentations reflect the regularities in all subtasks and
can be directly used by each subnetwork.

Hierarchical interaction of FGREP networks is pos-
sible through reduced descriptions (figure 13). A lower
level network develops a reduced description of the
whole input layer pattern in its hidden layer. These
representations form the lexicon of another FGREP
network which is learning higher level relations be-
tween the input patterns. Modifications by the higher



level network to its input representations are propa-
gated back to the lower level network by forming an
error signal at the hidden layer, and changing the in-
put weights and representations accordingly.

6 Conclusion

The FGREP method provides an alternative to seman-
tic microfeature encoding and hidden layer learning
of input/output representations. With backward er-
ror propagation extended to the input layer. meaning-
ful global representations are developed automatically
while the system is learning a processing task. Back-
propagation operates in a reactive training environ-
ment, i.e. the required input/output mappings change
as the I1/O representations change.

There are no identifiable microfeatures nor discrete
categories in the resulting representations. All aspects
of an input item are distributed over the whole set of
units in a holographic fashion, making the system par-
ticularly robust against damage. Each representation
also carries expectations about its possible contexts.

The representations evolve to improve the system’s
performance in the processing task and therefore ef-
ficiently code the underlying relations relevant to the
task. 'This results in very good association and gen-
eralization capabilities, Using the learned represen-
tations in the case role assignment task, the system
was able to assign case roles correctly, indicate degree
of confidence when the sentence was ambiguous, and
generalize correctly for unfamiliar sentences.
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