Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

FAULT-TOLERANCE FOR HIGH-PERFORMANCE MULTI-MODULE
VLSI SYSTEMS USING MICRO ROLLBACK

Marc Tremblay December 1988
Yuval Tamir CSD-880099

Fault-Tolerance for High-Performance Multi-Module VLSI Systems
Using Micro Rollback

Marc Tremblay and Yuval Tamir

Computer Science Department
4731 Boelter Hall
University of California
Los Angeles, California 90024-1596
US.A.
Phone: (213)825-4033 E-mail; tamir@cs.ucla edu

Abstract

In order to achieve fault tolerance, highly reliable systems often require hardware-
supported concurrent error detection for all system components, Checkers are connected in
the communication paths from each module to the rest of the system, reducing system
performance by requiring either longer clock cycles or additional pipeline stages. The
performance penalty of concurrent error detection can be minimized by performing the
checks in paraliel with the ransmission of information between modules, thus removing the
delay for detection from the critical path. Erroneous information may thus reach a module
several clock cycles before an error indication. Operations based on this erroneocus
information are *‘undone’’ using micro rollback — a hardware mechanism for rapid rollback
of a few cycles. In this paper we show how micro rollback can be efficiently implemented
in complex VLSI systems consisting of multiple modules which interact asynchronously.
The implementation of key building blocks in CMOS VLSI is described and evaluated.

1. Introduction

The ability to detect errors as soon as they occur and prevent the spread of erroneous information
throughout the system is a key requirement in many fault-tolerant systems. In some environments (e.g.
with high levels of radiation) a high rate of transient faults is expected and system components must be
able to recover from (correct) the majority of the resulting errors without resorting to expensive
software-driven rollback and reconfiguration. In order to meet these requirements, checkers, error-
correction circuitry, and/or isolation circuits are usually connected in the communication paths between
each module and the rest of the system, Information transfers between modules in the system are delayed
by the need to wait for checks or possible correction to complete. This results in lower system
performance due to increased clock cycle time or additional pipeline stages.

The delays due to concurrent error detection and/or correction can be minimized if these operations
are performed in parallel with the transmission of information between modules. Each module processes
its inputs immediately when they become available ‘‘assuming’’ that they are correct. If the data is
erroneous, it is followed, after a delay of a few cycles, by an error indication or the corrected data.1? 1f

November 1988

-2.

the data processed by the receiver is later flagged as erroneous, any changes to the state of the system due
to this information must be undone. Hence, it is necessary to back up processing to the state that existed
just before the error first occurred. This returns the system to an error-free state where the offending
operation can be retried (or correction may be attempted by other means such as restoring information
from a redundant module or initiating higher level rollback). We call the process of backing up a system
several cycles in response to a delayed error signal micro rollback.!?

Micro rollback requires each module in the system to store the information necessary 10 undo state
changes that have occurred within the last few cycles. Efficient implementation of micro rollback in
simple synchronous VLSI modules has been described in detail elsewhere.!%3 These results are
summarized in Section 2. As described in [12], micro rollback differs from single-instruction retry! in
that it occurs at a lower level — on the basis of clock cycles rather than instructions. Since the system
undoes cycles rather than instructions, it can be done at the logic level without keeping track of
microprogram-level instruction semantics and instruction pipeline conditions. As a result, the micro
rollback capability can be independently implemented in each module of a synchronous system by
following simple specifications.

Current VLSI computer systems consist of many complex chips in addition to a CPU chip — for
example, floating point coprocessors, memory management units, communication coprocessors, etc. In
this paper we show how micro rollback can be implemented in such complex heterogeneous systems
consisting of a variety of modules which may interact asynchronously. In some of the modules state
changes may occur at a lower rate than once per cycle. For these modules, the fact that there are no state
changes in major components at every cycle can be used to reduce the amount of information kept for
micro rollback. Specifically, if a module must be capable of a rollback of up to N cycles but it is known
that there are no more than M state changes (M < N) during N cycles, there is no need to keep N copies
of the state (or a log of N state changes). Instead, the amount of information maintained can be
proportional to M. This requires a mechanism to map a “‘request’’ to roll back a specified number of
cycles to an operation on the corresponding state changes. In Section 3 we discuss new techniques for
handling such modules, thus further reducing the hardware and performance overheads for micro rollback
compared to previously published schemes.12-3

Previously published techniques for micro rollback are based on system-wide rollback of a specified
number of cycles. In a synchronous system, when one module rolls back, other connected modules roll
back the same number of cycles in order to maintain a consistent state.!>? In a system with several
modules which operate with different clocks and interact using an asynchronous protocol, (for example,
the processor and coprocessors in a system based on the Motorola 680208), maintaining a consistent state
is not as simple. Specifically, once one module rolls back, the number of cycles that other modules
should roll back depends on recent interactions between the modules. This is a special case of the general
problem of recovery in distributed systems? except for the requirement that the entire operation should be
performed by hardware in only one or two cycles. In Section 4 we present techniques for meetings these
requiremenis. These techniques are based on using inter-module interactions as synchronization points
for coordinating roll back of multiple modules to a consistent global state. This is accomplished with
special-purpose circuits that translate between inter-module interactions and intemal clock cycles of each
module. We present the design of these circuits and their evaluation based on VLSI layouts and extensive
sirulation.

2. Micro Rollback

A micro rollback of a module (e.g. a CPU or a coprocessor) consists of bringing the module back a
few cycles to a state reached in the past. In order to be able to perform such an operation it is necessary
to save the state of the subsystem (checkpoint) at each cycle boundary.3 The state of a module
(subsystem) is the contents of all storage elements which carry useful information across cycle
boundaries. For example the state of a processor is composed of the program counter, the program status
word, the instruction register, and the register file. It also includes the contents of some pipeline latches
and registers in the state machine which can be changed during the execution of a multicycle instruction.

Checkpointing is the equivalent of taking a ‘‘snapshot’’ of the state of the subsystem every cycle,
while micro rollback restores the state of a subsystem by overwriting the current state with & *‘snapshot™
taken in the past (see Figure 1).

Micro Rollback

cycle 11

v 1 v v + v

snapshot snapshot snapshot snapshot snapshot snapshot

[* time
Figure 1: Micro Rollback of a Module by Restoring a Previous Srapshot

2.1. Application of Micro Rollback in YLSI Systems

As discussed in Section 1, micro rollback is used to allow each module in the system 1o accept
inputs and begin processing them without waiting for detection and correction circuits to operate on the
data. Error detection is thus performed in parallel with the transmission and ‘‘consumption’” of data by
modules throughout the system. This removes the checkers from the critical path of the system and
permits the use of checkers that are area efficient but relatively slow, without sacrificing system
perforrnanc:e.12 With micro rollback it is also possible to exploit error detection techniques in which the
hardware used to compute a result may then be used to verify the validity of the result and, potentially,
produce an error indication a few cycles later.10.11

A common situation where parallel error checks may be useful is at the interface between memory
and processors or coprocessors in the system (Figure 2). Minimizing the access time to memory (or
cache) is often critical to achieving high performance. With micro roliback the checkers (or correction
circuitry) can be removed from this critical path.

Subsystem 1 Subsystem 2

|Me E|

mo
EDC [EDC]
Qan®
omparator,
P P
b)

(a) ¢

Figure 2: Concurrent vs Parallel EDC Figure 3: Subsystems in duplex mode

Another important use of parallel checks is in duplex systems where ermor detection is a
accomplished by running two identical subsystems in parallel and comparing their outputs (Figure 3).
With this technique, which is supported by some current commercial chips,2 the two subsystems may be
on different chips and there is thus a significant delay in getting both outputs to the comparator (off chip
communication) and obtaining the results of the comparison. With micro rollback, the receiver of data
from the duplex subsystem can begin to process it before the output of the comparator can be used to
determine of the data is valid. A system based on triplication and voting (TMR) can benefit in a similar
way from micro rollback.

2.2. Implementing Micro Rollback in a Simple Synchronous System

As discussed above, parallel error checks require the receiver to be able to roll back its state to undo
state changes that are due to data which has turned out to be erroneous. Special circuits must be added to
the module for preserving the state information and for executing micro rollback. We present two general
techniques for rolling back the state of a typical synchronous system: the first one is used for the state in a
collection of registers that are physically grouped together (¢.g. register files), the second one apptlies to
individual registers which are distributed across the chip (e.g. various status registers).12

All interactions between modules capable of micro rollback can be completed without waiting for
error checks. Interactions with modules that are not capable of micro rollback (e.g. various peripherals,
interrupts) can be handled using special-purpose interfaces between each module capable of micro
rollback, M ;, and one that is not, M,. Specifically, the interface must buffer (delay) data from M to M,
for N cycles — the maximum *‘distance’’ that M ; may roll back. This ensures that the data is released to
M, only when it is committed.® Similarly, data from M, to M, is buffered for N cycles after its receipt
so that it can be retransmitted to M, by the interface unit if M, decides to roll back.

2.2.1. Micro Rollback of a Large Register File

The state of a large register file can be preserved for N cycles by simply replicating the storage ¥
times and copying the current values to the *‘oldest’’ replica every cycle. This method can be very costly
in terms of area. For example, the area of one copy of the register file in the Berkeley RISC II processor
takes up 33% of the total chip area. We have previously proposed’? an altemative technique that takes

-5-

advantage of the fact that only one register out of the set can be modified every cycle. An example of this
technique is shown in Figure 4.

Every time a write is performed, the data and its full register address are stored in a FIFO buffer.
Depending on the maximum latency (N) of errors signals, the write into the ‘‘real’’ register file is delayed
for N cycles. During a read, the FIFO buffer is scanned in parallel with the register file in order to
provide the most recent update of a register. At each cycle, all the data in the FIFO buffer is shifted one
position to the left. A valid value in the left-most cell is written into the conventional register file. When
a micro rollback of C cycles is required, we simply invalidate the last C entries in the Delayed Write
Buffer (DWB). By invalidating the last C writes performed, the state of the register file is brought back
to the state it had C cycles ago.12

We implemented this method for a 32-bit VLSI RISC processor based on the RISC II developed at
Berkeley. According to simulations based on layout extractions of the datapath, the penalty paid for
adding micro rollback is only 5% (for the processor cycle) for a register file of 64 registers with an etror
signal latency of 4 cycles.

DWB
Register File : FIFO ‘
— Bus 1
="
e WrilE
L Bus 2
=

11

— Priority Circuit

TTT1

Decoder

jpme Write

Register Addresses CAM

Figure 4: Micro Rollback of the Register File

2.2.2. Micro Rollback of Individual Registers

Individual registers spread throughout the chip cannot take advantage of method described above.
Instead the *‘replication’’ method is used. The contents of each individual register are saved into a small
‘““backup register set'’ (see Figure 5). A pointer keeps track of the location in the RAM used for each
backup. During a roliback, the pointer is moved appropriately and the contents of the state register is
restored with the correct ‘‘old’’ value. The use of a RAM allows a micro rollback to be achieved in one
cycle (compared with up to N cycles for a stack).

internal bus

P I active register J

parity generator

I

latch

poipter
ress

shadow
registers

| | w| o

Figure 5: Micro Rollback of a Single State Register

3. A Delayed-Write Buffer for Infrequently Modified Registers

The method used to roll back the register file, described in section 2, is based on the fact that writes
into the register file can occur every cycle. For example many RISC processors complete an instruction
every cycle.»5 Because it is possible to have N writes during N cycles, a Delayed-Write Buffer of depth
N is necessary. For other modules executing complex instructions with long latencies and limited
overlapping, writes do not occur every cycle.

For example in the Motorola 68881 most instructions take at least 30 cycles to execute.” During
the execution of an instruction, the register file is modified only once to store the result of the operation.
It is then unnecessary to dedicate a DWB of N registers if it is known that at most one write can be
present at any time in the FIFO. In other words, if a rollback of N cycles can “‘undo’’ at most M writes,
only M registers should be used to delay the writes. Considering that floating-point registers are 80-bit
wide, the gain in area can be considerable.

In Figure 6 we present the circuitry necessary for a rollback of the Delayed Write Buffer for N =5
and M = 3. This means that at most 3 writes can occur during 5 consecutive cycles. The part containing
the data and the register addresses is similar to the full DWB, except that it now contains M registers
instead of N. On the other hand the control section is significantly more complex. It includes three major
new componenis: a Write Monitor (WM), an Invalidate Write Counter (IWC), an Invalidate Write

W(ite into
register file

[I 1
CAM []register addresses
|

L Control
-——{ opyiing | Section
Valid Bit =t
Register L#,i,]
WM

7 T T

Moylise % wc

Number of cycles
to rollgmck

Figure 6: DWB for Infrequently Modified Registers

Mapper (TWM), and some logic for the shifting of the FIFO buffer.

The Write Monitor keeps track of all the writes executed by the module; a one is shifted in
whenever a write is executed, while a zero is shifted in otherwise. The number of bits in the Write
Monitor is the maximum number of cycles that the register file may have to roll back. The number of
ones in the Write Monitor should never exceed M (in this case M =3). If it does, an error will be
signaled.

The Invalid Write Counter (see Figure 7) determines how many writes have been executed in the
past C cycles (C <N) based on the contents of the WM. The inputs to the circuit use negative logic.
Internally, the lines carrying the number of cycles to roll back are precharged to GND in phase one and
then, in the second phase, all but one are disconnected from the inputs. The output of the circuit indicates
that W writes are to be invalidated. In order to simplify the rest of the control circuitry, the circuit also
indicates that W~1, W=2,1 writes should be invalidated. An error indication is signaled if the inputs
result in a request to invalidate more than M writes. The basic ceil for the IWC is a simple demultiplexer
implemented with full transmission gates (see Figure 8). Its input is connected to output 1 when
select =1 and output O when select =0. In Figure 7 we have shown a path created when the contents of
the Write Monitor is [X0110] and a rollback of 4 cycles is requested. As shown on the figure, 2 writes
(and 1 write) must be invalidated. The fifth entry in the Write Monitor does not modify the output
because it occurred more than 4 cycles ago.

The Invalid Write Mapper is used to identify which locations in the Valid Bit Register must be
invalidated. The input is the number of writes to undo, while the outputs are clear/set signal to individual

- error 1 error 2 3 writes 2 writes 1 write
0 ‘g- . ﬁl ‘“i} gl g
r| ¢ 1
i =
1 338 s o
i i
o BT
ey)
A S
X E —f]| sV
WM 5 al ;
SV V 5v 5V 5V

FL_.h rL am PE——} F’a—*x FL_} precharge

f 1 - 1 T +
5 cycles 4 cycles 3 cycles 2 cycles 1 cycle to GND

number of cycles to roll back

Figure 7: Invalid-Write Counter WC)

outp“ur 1 ouqiu: 0
ol
select + j 1--+ select
select f f + select

input
Figure 8: Basic cell for Invalidate Writes Counter

Valid Bit Cells.

Details of the way the shifting of DWB is implemented are shown in Figure 10. The leftmost
register is shifted out to the register file only if the leftmost bit in the shift register monitoring the writes
is one. The other registers shift to the left only if there is room for it, otherwise they remain idle.

We have produced a layout of a complete generalized Delayed Write Buffer similar as the one
shown in Figure 6 (N =5 and M = 3) using the MOSIS SCMOS (A = 1micron) design rules. The area of
the circuit including both the control and the FIFQ, is 778640A2 which represents 20% of the area of a
dual-port register file with 64 32-bit registers. The control part accounts for 13% of the total area for the

clear clear clear
valid[3) valid[2] valid(1}

error 3 ! _gn-l

L— 2 valid (3]
error 2 1 r§1 _'E..‘

I valid (2]
error 1 =N 1 - ‘_jn-l

b £ W L. ey valid[1]

I T I

3writes 2writes 1 writes

Figure 9: Invalid-Write Mapper (IWM)

Shift into Shift into Shift into
Shift out FIFO [3] FIFO[2) FIFO 1]
Write instr.
r
Shift
Signal
| Valid Bit,
Write monitor 5 Valid Bit, Valid Bit,

Figure 10: Control circuitry for shifting the DWB

DWB. We have calculate the area of a DWB for a number of cycles to roll back varying from 4 to 16,
and for a maximum number of writes varying from 2 to 4 (see Table 1). The table indicates (in percent)
the ratio of the area of a generalized DWB over the area of a full version with M =N . For example if a
module operates in such a way that its register file is never modified more than once every 4 cycles and
the module may have to roll back up to 8 cycles, the table indicates that for N =8 and M =2 the
generalized DWB takes only 35% of the area taken by a full DWB with 8 registers.

We performed SPICE simulations for the DWB. The critical path goes through the decoder, the
IWC, the IWM and the Valid Bit register in approximately 13ns. This fast operation will allow single
cycle roliback.

-10-

Delayed Write Buffer Area (A2)
Generalized DWB Full

L _ M=2 M=3 | M=4 M=N

527380 758030 988680 900200
(58%) (84%) (110%) (100%)

N (Maximum | 547040 778640 | 1010240 | 1125250

number (49%) (69%) 90%) | (100%)
of cycles to g 617420 | 851870 | 1086320 | 1800400
rollback) (34%) 47%) (60%) | (100%)

888700 | 1130750 | 1372800 | 3600800

16 (25%) (31%) (38%) (100%)

Table 1: Area Saved With Optimized DWB Over Full DWB (for several M and N)

4. Synchronization of the Rollback Signal

In a multi-module system, a rollback signal initiated by a module may affect other modules
connected to it. Following a rollback of one of the modules, its state may be inconsistent with the state of
the other modules. If at time T module M is rolled back t time units, its (new) state is consistent with the
state of another module M , if, and only if one of the following conditions is met:

(a) there were no interactions between M, and M, in the interval [T-t,T], or
(b) M, is rolled back to its state prior to any interactions with M, during the interval [T-t,T}.

In case (a) there is no need to roll back module M,. Since M, has not interacted with M, since time
T —1t, if the states of the two modules were consistent before M, was rolled back, they remain consistent
following the rollback without requiring further action by M;. In case (b) both M| and M, must be rolled
back. To determine which case applies as well as the ‘‘distance’’ that M, may have to roll back,
interactions between modules must be monitored. An interaction or a transaction is any transfer of
information between two modules, such as data transfer, control signals, etc. In this section we describe
how we monitor transactions and how we maintain consistency throughout the sysiem when a rollback
occurs.

In a synchronous system all inter-module interactions are synchronous with a common clock. If one
module M, rolls back C cycles, the simplest solution for maintaining consistency for the system is to roll
back all other modules by C cycles. This implies that some modules unnecessarily roll back even if they
have not interacted with module M ; in the past C cycles. In some cases, performance can be improved if
modules are rolled back selectively depending on their recent interaction with M. This method will be
described in the context of asynchronous systems.

Many systems consist of modules that operate with different clocks and interact asynchronously.
For example the Motorola 68020 processor can operate at 25MHz together with a Motorola 68881
floating-point unit operating with a 16.7MHz clock. Since there is no common clock, rollback in an
asynchronous system cannot be coordinated based on the number of cycles to roll back. If two modules
M, and M, each roll back C cycles of their intemnal clock, their state following rollbacks may not be

-11-

consistent. 1f module M, rolls back €| cycles internally and during the last C, cycles it has participated
in T transactions with another module M 5, then module M, must roll back to the state it had prior to the
last T transactions with M. For M,, T transactions may correspond to a different number of intemal
cycles, C,.

In order to coordinate roliback that will result in consistent states, a module that initiates rollback of
a specified number of internal cycles must be able to translate that number to the number of transactions
that have occurred during that time with other modules and send this number of transactions to the other
modules. In order to participate in a rollback initiated by other modules, each module must be able to
receive the number of transactions to rollback and translate them to intemnal cycles. We have designed a
circuit for performing the mapping between internal cycles and transactions. We call this circuit a
transactions-to-cycles/cycles-to-transactions transducer (see Figure 11). A module connected to several
different modules through dedicated communication ports and links requires a transducer for each
connection (see Figure 12).

_ Modulel

Processor J
internal 1 - internal
cycies L cycles

ELLEEEEEE T

Figure 11: Synchronization Through Transducers

4.1. Cycles-to-Transactions and Transactions-to-Cycles Transducer

For a module M, a transducer performs three functions (see Figure 13):
(1) It keeps track of transactions with another module M .
(2) When a rollback signal is generated intemnally, indicating that M, must roll back T cycles, the
transducer determines how many transactions M ; has performed with M ,, and sends that number to M,
(3) Upon receiving a rollback signal from M, the transducer converts the incoming number of
transactions to an intemal number of cycles. The number of cycles is then spread through the chip and a
micro rollback is initiated.

A shift register, called a Transaction Monitor, is used to keep track of transactions with another
module. During each cycle, a 1 is shifted in if a transaction occurs, a 0 is shifted in otherwise (no
transaction). When a rollback of C internal cycles is performed for a module, the first C entries in the
Transaction Monitor are cleared.

Two special circuits, a **Cycles-to-Transactions Unit™" (CTU) and a *‘Transactions-to-Cycles Unit’’

-12-

main processor
Rollback

of 4 cycles

T = Transducer
T\\T\|\|\T
11tn V , transactions
3 transactions
T T T
coprocessor 1 coprocessor 2 coprocessor 3

Rollback Rollback Rollback
of 2 cycles of 6 cycles of 3 cycles

Figure 12: Transducers in an Asynchronous Multi-Module System

(TCU), are used in a transducer to perform the necessary translations. A CTU which converts a number
of cycles ranging from 1 to five to a number of transactions ranging from 1 to 4, is shown in Figure 14.
This circuit is similar to the Invalidate Write Counter described in Section 3 (see Figure 7). Instead of
monitoring writes, it monitors transactions. The inputs are i) the number of cycles to roll back and ii) the
contents of the shift register monitoring transactions. The output is the number of transactions to
“undo’’. The thick line represents the connection established when a rollback of 5 cycles occurs when 2
transactions are stored in the Transaction Monitor. An error is signaled if the CTU determines that more
than 4 transactions have to be undone. The maximum number of transactions possible for a given number
of cycles depends on the module itself and on the protocol used to communicate with other modules.

A TCU dual to the CTU explained above, is show in Figure 15. The inputs are i) the number of
transactions to roll back and ii) the contents of the transactions monitor. The output is the number of
cycles to moll back. In the figure, the thick line represents a rollback of 2 transactions requiring a rollback
of 4 cycles internally. In the case where the requested number of transactions to roll back is larger than
the sum of the transactions contained in the Transaction Monitor, an error signal is sent to the control
unit.

The transducer represents a small addition in terms of area for a complete chip. We have laid out the
complete circuitry for the transducer shown in Figure 13 and it measures 16400042, which represents 4%
of a dual-port register file with 64 32-bit registers, or 22% of a simple ALU. The time required to convert
cycles to transactions (and vice versa) is about 10ns. This delay added with the delay required to roll
back a larger register file (13ns) makes a single-cycle rollback possible even for very fast modules.

-13-

number cles
ta ro ba?;c
3
Transaction 1
Encoder ; Decoder
Monito
RARN 22T T
+
Transactions [+ Cycles to
to Cycles Transactions
Unit Unit
(TCU) " CTU)
+

[B

./
Used when sendi

ending
Iback signal

N/
Used when receiving 3
arol

a rollback sig

number of transactions
to rollback

Figure 13: Transducer

4.2. Synchronization of the Rollback Signal in Bus-Connected Systems

Periodic checkpointing of process states and roll back to a previous state when an error is detected is
a common technique for error recovery in distributed systems.? If each process is checkpointed
independently, rolling back one process may require rolling back a second process further in time which,
in turn, may cause a third process to roll back, etc. leading to an uncontrolled domino effect) In the
worst case this can result in all processes in the system rolling back to their state when the system is
initialized.

In the systems discussed so far the modules are interconnected in a tree topology, where there is a
unique path between every pair of nodes (Figure 11, Figure 12). In the context of micro rollback, which
is done at the level of hardware modules, the domino effect cannot occur in such system. However, if the

precharge

5 cycles
5V

4 cycles
SVJr

-14 -

3

ch(les

to GND *

| 1

£,

rhy

5

o
| oo

ok

|

) &

£
E:

I

_lﬂ

E

.

%) A

— 8 —h —H
§ s

|

4

o

-

4 transactions 3 transactions

b

2 transactions

1 transaction

Figure 14: Circuit Converting Cycles to Transactions

5 cycles

error 4 —4—

L]

s,

A

4 cycles

3 cycles

2 cycles

1 cycle

g
0 transaction

'L

error 3

it

error 2

o

ﬁa..

error 1

L

o
a2

+

ol

0t |

N

1 1 o

-

I

L
R

r.L

F 2 |

e

1

W &

L Y

tr

I}

-

—r

l

L

|

4 fransactions 3 transactions 2 transactions 1 transaction

Figure 15: Circuit Converting Transactions to Cycles

-15-

modules are connected in an arbitrary topology, where there are several independent communication
paths between pairs of modules, the domino effect could, potentially, occur. Since the range of rollback
is severely limited (a few cycles), this can make recovery impossible,

9P

Figure 16: Bus-Based Multi-Module System

At first glance, it appears that the domino effect can be a problem when micro rollback is used in
common bus-connected systems® 2 (Figure 16). For example for the system shown in Figure 16 we could
have the following situation:

- a rollback signal is initiated in the main processor which rolls back C cycles.

- the main processor sends a number of transactions to roll back to the FPU.

- the FPU rolls back and its transducer determines that the MMU must also roll back because it
interacted with the FPU during the last few cycles.

- the MMU rolls back, and its transducer sends a number of transactions to roll back to the main
processor, which, in turn, is now required to roll back more than C cycles.

In a system where all modules are interconnected via a common bus, this problem can be solved by
using bus transactions as a common logical clock.® Bus transactions can be monitored by all the
modules in the system and use for synchronization. There are two possible techniques for using bus
transactions to achieve a consistent state following rollback:

1) Each module has one transducer which monitors generic bus transactions, Whenever a module detects
an internal roilback signal, it converts it to a number of bus transactions, and puts it on the bus. All the
other modules read this number of bus transactions, convert it to an internal number of cycles, and roll
back. The disadvantage of this method is that it generates unnecessary rollbacks. Modules may roil back
a certain number of system bus transactions even if they haven’t had any interactions with the rest of the
system. :
2) Each module has two transducers similar as the one described in Figure 13. The shift register (monitor)
in the first transducer, shifts every time a bus transaction is executed. A one is shifted in if the bus
transaction belongs to the module (private bus transaction). The shift register in the other transducer
shifts every cycle and also shifts in a one if a private bus transaction is monitored. If a rollback signal is
detected the following conversion occurs:

Generic Bus Transaction --> Private Bus Transaction --> Internal Number of cycles
In this way modules roll back only if necessary, but require twice the amount of hardware. The delays are
also doubled which may make the implementation more critical for modules operating at high
frequencies.

-16-

5. Summary and Conclusions

The use of concurrent error detection and/or correction in fault-tolerant systems usually results in
substantial performance degradation. This performance penalty may be due to delays caused by
dedicated checkers in the communication paths between each module and the rest of the system or the
need to wait for the hardware to perform redundant operations that verify the validity of the “‘recent’’
results.!® Micro rollback is a powerful technique that facilitates the implementation of high-performance
VLSI systems which are also highly fault-tolerant. It allows a variety of concurrent error detection and
correction techniques to be used with minimal performance penaity. With micro roilback, it is feasible to
operate systems in hostile environments, where there is a high rate of transient faults, due to the ability of
individual modules to initiate rollback and retry which can complete in a few cycles without resorting to
expensive system-wide rollbacks.

The implementation of micro rollback in simple synchronous systems involves replication of small
isolated registers and the use of full delayed-write buffers (DWBs) for storing recent state changes to
large register files.12 If the state of a large register file does not change every cycle, it is wasteful 1 use
a full DWB with N registers in order to be able to roll back up to N cycle. The large DWB is never fully
utilized in such a module so chip area is wasted and access to the register file is delayed due to buses that
are longer than necessary. We have shown that this potential inefficiency in supporting micro rollback
can be overcome. Specifically, we have presented a delayed-write buffer where only one bit of storage is
used for cycles in which there are no state modifications to the register file. A full DWB cell is only used
for cycles in which there is a write to the register file. Using a simple circuits, rollbacks of a specified
number of cycles are quickly mapped into the specific register in the DWB that should be invalidated.
We have produced CMOS VLSI layouts of the DWB and its control circuits and demonstrated that in
some realistic situations are new design can result in savings of more than fifty percent of chip area
compared to the previously used ‘‘full’”’ DWB.

In a synchronous system, where all modules share a common clock and communicate via
synchronous links, maintaining consistency following rotlback is simple: all modules roll back the same
number of cycles. In this paper we have shown that micro rollback can also be implemented in
heterogeneous asynchronous systems were different modules operate with different clocks and
communicate over asynchronous links. The key to implementing micro rollback in this type of system is
a simple circuit, similar to that used for the generalized DWB, that can be used 10 map between the
number of local cycles to roll back and the number of inter-module transactions. We present details of
the implementation of this circuit as well as techniques for applying a variation of it in bus-connected
systems composed of a processor and several asynchronous cOprocessors.

In this work, we show that parallel error checks in conjunction with micro rollback can be used to
support fault tolerance in complex multi-module high-performance VLSI systems. We have produced
CMOS VLSI layouts of key modules, evaluated their performance and area, and demonstrated that micro
roliback can be supported with relatively low overhead. We are currently in the process of implementing
a complete VLSI processor with support for parallel checks and micro rollback. We expect these
techniques to be applied in many future systems operating in hostile environments that demand high
performance and high reliability.

-17 -

Acknowledgements

This research is supported by Hughes Aircraft Company and the State of California MICRO

program.

References

1.

10.

11.

12.

M. L. Ciacelli, “‘Fault Handling on the IBM 4341 Processor,’’ 11th Fault-Tolerant Computing
Symposium, Portland, Maine, pp. 9-12 (June 1981).

Advanced Micro Devices, Am29000 Streamlined Instruction Processor User’s Manual, 1987.

W. W. Hwu and Y. N, Patt, *‘Checkpoint Repair for Out-of-order Execution Machines,’” I4th
Annual Symposium on Computer Architecture, Pittsburgh, PA, pp. 18-26 (June 1987).

G. Kane, MIPS R2000 Risc Architecture, Prentice Hall (1987).

M. G. H. Katevenis, ‘‘Reduced Instruction Set Computer Architectures for VLSL,” CS Division
Report No, UCB/CSD 83/141, University of California, Berkeley, CA (October 1983).

L. Lamponi, “Time, Clocks, and the Ordering of Events in a Distributed System,"”
Communications of the ACM 21(T), pp. 558-565 (July 1978).

Motorola, MC68881 Floating-Point Coprocessor User’s Manual, 1985.

Motorola, MC68020 32-Bit Microprocessor User's Manual, Prentice-Hall, Englewood Cliffs, NJ
(1985).

B. Randell, P. A. Lee, and P. C. Treleaven, ‘Reliability Issues in Computing System Design,"’
Computing Surveys 10(2), pp. 123-165 (June 1978).

D. Reynolds and G. Metze, “‘Fault Detection Capabilities of Alternating Logic,’” 6th Fault-
Tolerant Computing Symposium, Pittsburgh, PA, pp. 157-162 (June 1976).

K. Takeda and Y. Tohma, ‘‘Logic Design of Fault-Tolerant Arithmetic Units Based on the Data
Complementation Strategy,'’ 10th Fault-Tolerant Computing Symposium, Kyoto, Japan, pp. 348-
350 (October 1980).

Y. Tamir, M. Tremblay, and D. A. Rennels, ‘‘The Implementation and Application of Micro
Rollback in Fault-Tolerant VLSI Systems,’” 18th Fault-Tolerant Computing Symposium, Tokyo,
Japan, pp. 234-239 (June 1988).

