Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

SUPPORT FOR HIGH-PRIORITY TRAFFIC IN VLSI
COMMUNICATION SWITCHES

Yuval Tamir December 1988
Gregory L. Frazier CSD-880098

To be presented at the
oth Real-Time Systems Symposium
Huntsville, Alabama, December 1988.

SUPPORT FOR HIGH-PRIORITY TRAFFIC IN VLSI COMMUNICATION SWITCHES t

Yuval Tamir and Gregory L. Frazier

Computer Science Department
University of California
Los Angeles, California 90024
U.S.A.

Abstract

Both multistage interconnection networks used in
multiprocessors and direct networks used in
multicomputers are composed of small nxa switches.
The design of these switches is of critical importance for
achieving high-bandwidth low-latency intcrprocessor
communication. Interprocessor traffic gencrated by
devices that must meet real-time requirements as well as
certain other system activities, such as exception
handling, may require particularly low communication
latency. Special support for such high-priority traffic
may thus be necessary in many multiprocessor and
multicomputer systems. We discuss the design of nxn
switches that can be used to construct communication
networks which provide low latency communication for
high-priority traffic. We focus on the design of the
internal buffers, specifically on buffers that provide
non-FIFQ handling of messages. We evaluate
alternative designs and configurations in the context of a
multistage interconnection network. Qur simulations
show that a slightly modified version of the recently
introduced dynamically-atlocated multi-queue buffer can
provide superior support for high-priority traffic.

1. Introduction

High-bandwidth low-latency communication
between processors is critical to the ability of
multiprocessors and multicomputers 1o achieve high
performance by exploiting parallelism. The desirable
characteristics of communication nctworks used for
interprocessor communication include the maximum
possible throughput (bandwidth) of data through the
network and a minimum latency (delay) when sending
data between processors. For any given traffic paticrn,
the achievable throughput of the network is significantly
lower than the maximum possible network throughput
and the average latency for packets is higher than the
minimum possible latency through the nciwork.
Furthermore, not all packets are transmitted through the
network with the same latency; in a large network some

+ This research is supported by Rockwell International and the
State of California MICRO program.

packets may require sevcral times the average latency to
reach their destination.

Multiprocessor and multicomputer systems which
are connected to input/output devices that interact with
the outside world occasionally require particularly fast
communication with different parts of the system. The
broadcasting of certain types of system-wide events,
such as the initiation of global system rollback, may also
require preferential handling by the network. Real-time
rcquirements due to interaction with /O devices and
system-wide exception handling thus lead to the need to
support special-purpose high-priority traffic whose
maximum latency is significantly lower than the
maximum latency for general traffic.

Multiprocessors with a large number of nodes (e.g.
greater than 64) use multistage interconnection networks
composed of a large number of small nxn switches
(typically, 2<n<10) for communication{l,3].
Similarly, communications through point-to-point
dedicated links in multicomputers [7,10} rely on
communication coprocessors with a small number of
ports [2, 8] that basically function as small nxn swilches
with n-1 ports connected to other nodes, and one
bidirectional port connected to the local application
processor. The design of high-performance small nxa
switches is thus of critical importance to the success of
multiprocessor and multicomputer systems. Since many
of these nxn switches are necded in a large system, there
is strong motivalion 10 implement each switch as a single
VLSI chip.

This paper dcals with the design and
implementation of small nxn VLSl communication
switches with special support for high-priority traffic.
Each switch takes packets arriving at its input ports and
routes them 1o its output ports. As long as only one
packet at a time arrives for a given output port, there are
no conflicts, and the packets are routed with the
minimum latency. As the throughput goes up, so does
the probability of conflict. When two packets destined
for the same output port arrive at different input ports of
a switch at approximately the same time, they cannot
both be forwarded immediatcly. Only one packet can be

transmitted through an output port at a time, and hence
one of the two packets must be stored at the node for
later transmission, If some packets are marked as
*“high-priority,” the switch can arbitrate conflicts in
favor of these packets. The requirements f{rom the
switch are thus to minimize the latency for high-priority
packets while maximizing total switch throughput.

The results reported in this paper were produced as
part of the UCLA ComCoBB project. The goal of the
ComCoBB (Communication Coprocessor Building-
Block) project is to design and implement a single-chip
high-performance communication coprocessor for use in
VLSI multicomputer systems. The ComCoBB chip is, in
part, a small nxn switch, and the problem of designing
an efficient buffering scheme for it with support for
high-priority traffic had to be faced early on in the
project. We have developed a new type of buffer for
small naxn switches, called a dynamically-atlocated
multi-queue (DAMQ) buffer [9], which provides for
significantly higher throughput than alternative bulffer
designs. In this paper we show that the DAMQ buffer
can be easily enhanced to support high-priority traffic
and provide low-latency transmission for the high-
priority packets despite heavy network traffic. While the
DAMQ buffer was originally developed for use in a
multicomputer communication coprocessor, it is equally
useful for multistage networks and it is in that context (of
a multistage network) that the buffer will be evaluated.

In the next section we discuss some of the issucs in
designing nxn switchs for interconnection nctworks.
We include a brief description of the DAMQ buffer and
its use for normal waffic. We then show the need for
hardware support for high-priority traffic. In Section III
we present several approaches to providing support for
high-priority traffic and focus on the use of a slightly
modified DAMQ buffer. The use of the DAMQ buffer is
evaluated using event-driven simulation to compare its
performance with that of several alternative bufler
configurations in the context of a multisiage
interconnection network.

II. The Design of Switches for Packet-Switching

In an axn swilch, packets that cannot be
immediately forwarded to an output port nced to be
buffered within the switch. The buffers must be able to
accept simultancous arrival of packets from all of the
input ports, while at the same time transmilting packets
through all of the output ports. The buffers should be
organized in such a way that if there is an available
output port and there is a packet destined for that port,
that packet will be transmitted without having to wait for
packets that need to be sent through other ports.
Communication cfficiency can be significantly incrcased

if virtual cut-through(4} is supported so that the switch
does not wait for a complete packet to arrive before
beginning to forward it. In order to minimize waste of
the avaitable communication bandwidth, variable-length
packets must be supported. Efficient buffer storage
utilization requires the ability to allocate storage for
variable-length packets while minimizing internal and
extemal fragmentation [9].

In order to provide low-latency communication for
high-priority traffic, every packet must be marked as
either normal or high prioriry. Ideally, if there is a high-
priority packet and a normal packet destined for the same
output port, the high-priority packet will always be
ransmitted first. If this requirement is met and the
buffers are infinite, a high-priority packet will be delayed
by a normal packet only if when the high-priority packet
arrives at the switch, transmission of the normal packet
destined w0 the same output port is already underway.
Under these conditions, if the maximum size of packets
is relatively small, it is expected that normatl traffic load
(normal packets) will have minimal effect on network
performance for high-priority traffic,

A. Packet Buffer Design for Normal Traffic

In a previous paper (9] we discussed alternative
designs for the packet buffers in small nxn switches.
The goals were to maximize network throughput and
minimize average latency while providing efficient
support for virtual cut-through and minimizing the total
size of the packet buffers, The main design decisions
include: (1) the location of the buffers — a centralized
buffer pool, buffers at the input ports, or buffers at the
cutput pors, and (2) the organization of the buffers —
convenlional FIFO buffers versus various types of non-
FIFO buffers.

The implementation of a centralized buffer pool is
difficult since all the input and output ports may need to
access the buffer simultancously. Furthermore, the
control must be capable of rapidly (within one or two
clock cycles) allocating memory for variable size packets
while minimizing internal and external fragmentation [9].
Output buffering is undesirable for similar reasons — the
need 1o slore mulliple packets which arrive
simultaneously and are destined for the same output port
as well as the problem of efficient storage allocation for
variable-length packets [9].

With input port buffering [2, 6] onty one write port
is necded since only on¢ packet at a time arrives at the
input port. If the buffer is managed as a FIFO (first-in-
first-out) queue [2,6], variable length packets are easily
handled, thus avoiding the complex memory allocation
problems mentioned above. The problem with FIFO

N —

Crossbar

buffer

v v L J r

ports
a) FIFO

N4 —

Crossbar

Iports

‘Oports
c) SAMQ

N4y i, axl
=——=z=c=Eale
o
Iports
==)
buffer T
r L v l
Oports
b) SAFC
=N —
B I W W . Crossbar
fports
T 1
e] el
T/
=0
i L 1
buffer
Oport.
d) DAMQ

Figure 1: Switches with the Four Buffer Types

buffers at the input ports is that only the packet at the
head of the queue can be read from the buffer and
transmitted. Thus, if two buffers on a switch have
packets at their heads destined for the same output port,
one of them will be idle while the other transmits. When
such output port contention occurs, a packet at the head
of a buffer can block all other packets in that buffer from
being transmitted, even if the destination output ports of
the blocked packets are idle. Since there are the same
number of input ports as output ports, whenever two or
more packets contend for the same output port, one or
more of the output ports is idle until the packets are
transmitted. Thus, output port contention can severcly
degrade the maximum throughput and average latency of
packets through a network.

The deficiencies of FIFO buffers motivate the
design of buffers which allow handling of packets in
non-FIFO order. With such buffers and appropriale
interconnection between input and output ports, packets
destined for an idle output port are not blocked by

packets that have arrived earlier at the same input port
and are wailing for an output port that is temporarily
busy. We have considered three possible designs of
buffers that support non-FIFO packet handling:
dynamically allocated multi-queue (DAMQ) buffers,
statically allocated multi-queue (SAMQ) buffers, and
statically allocated, fully connected (SAFC) buffers (sce
Figure 1)[9].

In both the SAMQ and the SAFC buiffers the
storage of each input port buffer of an nxa switch is
statically partitioned into n FIFO queues, one for each
output port. The first packet in any one of the n queues
can be accessed regardless of the number of packets in
the other queucs. Thus, if a packet that is supposed to be
sent from a particular input port is blocked, it may be
possible to send another packet from the same input port
destined to a different output port. While only one
packct at a time may be sent from a SAMQ buffer, the
SAFC buffer allows multiple packets, destined to
different output ports, to be sent simultaneously. The

Header Register

!
-

Length Registers

1 |

2 - L™ t—=om
RWlen=r—"1 Now Header : _:h Degode
G e
2
B i i s i3 N I
rF-=-="71°1°)
I ” B \ Po !
% R, 1 '
} T2 I
' Rt l'Tl_ te Oport
! i
| 1
! |
| 1
I; "\'ea:d Oport
| S L [
Start B tor
t‘“_"t;g? From £
T 1T | — 4 < I) Read Shl_ﬁ Rtgl.-!“r
From | [\ {\ Read Bus é -
Lm‘“iynchranizej o o / Z. géﬁ:ﬁ;
L I I I T = Vrite Shift Register
Write Bus
|
wffer Decode) u
Tmp

Figure 2: A block diagram of the DAMQ bulfer.

cost of the increased capability of the SAFC buffer is a
more complex switch which includes four 4x1 swilches
instead of the single 4x4 crossbar switch used with the
other buffer types.

The DAMQ buffer is a new type of input buffer
that we have recently developed [9]. In this buffer the
available storage is dynamically partitioned between n
FIFO queues, one for each output port. One of the main
advantages of the DAMQ buffer relative to the SAMQ
{(and SAFC) buffer is the fact that the dynamic
partitioning allows more effective use of the available
storage for variable size packets and for handling
variations in traffic pauterns that may temporarily
‘“‘skew”” the required buffering capacity for different
output ports.

A detailed discussion of the advantages of the
DAMQ buffer over FIFO, SAMQ, and SAFC buflers,

based on implementation considerations as well as
performance for normal traffic, has been presented
elsewhere [9]. A block diagram of the DAMQ buffer, in
the context of the ComCoBB chip, is shown in Figure 2.
Muitiple queucs of packets are maintained within a
DAMQ buffer in linked lists. In order to manage linked
lists of variable size packets, the buffer is partitioned into
cight-byte blocks. Each packet occupies from one to
four blocks (the set of blocks which hold a packet is
referred 1o as that packet’s slot within the buffer). For
cach buffer block there is a pointer register, which points
o the next block in the list {Pointer Registers, in
Figure 2). The pointers for the linked list are stored in a
scparate storage array so that they can be accessed
simultaneously with accessing the *‘data’ in the buffer.
For an naxa swilkch, there are n+1 linked lists in each
buffer: a list of packets destined for each output port and
a list of free (currently unused) buffer blocks.

When a packet arrives at an input port, a block is
removed from the free list and used to store the first eight
bytes of the packet. The block is then linked to the rear
of the list for the output port to which the packet is
routed. When a packet is transmitted through the
crossbar switch from the input buffer to an output port,
the blocks it occupies are retumed to the free list so that
they can be used again. To manage the linked lists, each
buffer has n+1 head and tail registers, as is shown in
Figure 2. The head register points to the first block of
the first packet of its linked list, and the tail register
points to the last block of the last packet in the list. All
the hardware required to implement dynamic buffer
allocation and multiple queues as described above,
except for the buffer storage array and the control finite
state machine, is contained within the box marked ‘B’ in
Figure 2. The functional blocks within ‘A’ are necessary
for low latency handling of the ComCoBB's message
transport mechanism (virtual circuits) and variable length
packets. The hardware in ‘A’ is independent of the
DAMQ buffer, and would accompany any other buffer
configuration.

100 —

Lat

50

80

Figure 3: Average latency vs. throughput. Blocking
switches. Four packet slots per bulfer. Uniform
normal traffic.

The performance of the four buffer types
(Figure 1) has been evaluated using an event-driven
simulation of a 64x64 Omega network 5] composed of
three stages of 4x4 switches[9]. The network transmits
the packets synchronously, with a delay of twelve Uime
units through each stage, so the minimum network delay
is thirty-six time unis. The delay of each packet is
measured from the time at which its sender creates it, as

opposed to the time at which it enters the network. The
sender creates a packet, waits until the network accepts
the packet (which may be immediately), and then waits a
ime intcrval which varies exponentially before
generating the next packet. Some of the advantages of
the DAMGQ bulfer are demonstrated by the results shown
in Figure 3. This graph shows the average latency versus
throughput of networks composed of the four buffer
types with four packet slots per buffer and uniform
traffic (i.e. each packet’s destination is selected from a
uoiform distribution of all of the possible
destinations) [9]. All four networks were simulated with
a wide range of throughputs: from lightly loaded
(< 20%) to saturation — the maximum throughput
achievable with each network (note that the average
latency in the SAMQ and SAFC networks could not be
“pushed’” beyond the values shown in the figure). The
network composed of DAMQ switches was able to
handle significantly higher throughput at lower average
latency compared to networks composed of the three
other types of switches.

B. The Need for Special Support for High-Priority

The “‘performance’’ of a network is often
characterized by the maximum throughput it can support
as well as the average packet latency. As mentioned
carlier, real-time requirements due to interaction with /O
devices and system-wide exception handling may require
that a certain percentage of the traffic be guaranteed
faster ‘‘service’’ than normal traffic. Thus, in many
systems a third important characteristic of the
communication network is the maximum latency through
the network. In our investigation of support for high-
priority traffic we have focused on a 64x64 Omega
nctwork composed of three stages of 4x4 switches.
However, the nced for supporting high-priority traffic
cxists in many other types of systems (such as
multicomputers) and we expect that the solutions we
present are applicable to a wide variety of systems which
use small nxn switches as the building blocks of their
communication network.

The problem of very high worst-case latency
through a network is demonstrated by the results of
simulations of an Omega network composed of switches
with FIFO input port buffers. Each buffer can hold a
maximum of four packets. As shown in Figure 4, the
maximum latency through the network may be many
times larger than the average latency. In order to
consider a measure of *‘worst case’” performance that is
less susceptible to statistical anomalics of the simulation,
we have also measurcd the ‘99 percentile latency’’
which is the minimum of the latencies of the 1% of the
packets that received the poorest ‘‘service’” (longest

400 —

Lat.

200 —

0.6
Thpt.

Figure 4: Maximum, 99" percentile, and average
packet latency vs. mnetwork throughput. FIFO
buffers. Four packet slots per buffer.

latencies) from the network. As shown in Figure 4, this
99% percentile latency may be more than twice the
average latency, implying that 1% of the wraffic will be
delayed by more than twice the average network latency
(even when the network is not in saturation).

Buffer Throughput
Type | 18% | 30% | 4i1% | 350%
fro 721120 84 1156]144] 288 288|588
39.49 | 4383 | 54.13 | 93.48
>
0] 96 | 84 | 144] 96 [192]132]42
2| [Damq|e0l 96 1 84 [192]132]420
ola 3931 | 4296 | 48.14 | 5670
%|x [samQ 721132]108] 2641 144] 264] 216] 420
avg 40.82 | 4681 | 5671 | 77.45
——
SAFC 72| 144] 96 |180{120]240| 1681336
4047 | 4488 | 51.86 | 6240

Table I: The 99 percentile, maximum, and average
latencies vs. throughput. Four slots per buffer.
Normal uniform traffic.

As system load (throughput) increases, Lthe average
packet latency increases. This effect is much morc
pronounced with respect to maximum {and 99
percentile) packet laencies (see Figure4). While
network performance in terms of average packet latency
begins to significantly dcteriorate only when the
throughput is increased beyond 45%, performance as
measured by maximum (or 99™ perceniile) latency
begins to deteriorate with just 25% or 30% throughput.

We have previously shown[9] that networks
composed of DAMQ, SAMQ, or SAFC switches
perform significandy beuer than networks composed of
FIFO switches (see Figure 3). As shown in Table 1,
although all three of these switch types perform beter
than FIFO switches in terms of worst-case packet latency
under heavy load (throughput}, the maximum (and 99"
percentile) latencies for all three of these buffer types is
quite poor. Hence, using the original buffer types
without special support for high-priority wraffic does not
solve the problem.

HI. Hardware Support for High-Priority Traffic

As discussed above, the provision of non-FIFQ
packet handling is not sufficient to significantly reduce
the ratio of worst-case to average latencies. In order to
obtain better worst-case performance for critical high-
priority traffic, such traffic must be so identified, thus
allowing the communication hardware to give it priority
over normal tralfic. We assume that the sender of a
packet can mark it *‘high-priority’” by setting a dedicated
bit in the packet’s header byte. The goal of the system
will thus be to continue to provide low average latency
for att traffic while also providing relatively low worst-
case latencies to a small percentage of high-priority
packets. In our simulations a small percentage (1%, 5%,
or 10%) of the packets are ‘‘randomly’’ marked as ‘‘high
priority”” packets.

Buffer Throughput
Type [18% | 30% | 41% | 50%
FIFo 48 | 72 | 108 | 288
16.58|38.15(43.99|88.59
DaMQ48 | 48 | 60 | 84
599% 16.24]36.57137.76(39.62
avg |samgq |50 | 72 108 | 180
17.29|38.98/43.61(56.08
0 | 72 | 84 | 132
SAFC
37.32|38.79|41.66 48.05

Table 2: The 99% percentile and average latencies of
the high-priority traffic vs. total network
throughput. Four stots per buffer. 5% high-prionity
packets. The only support for high-priority traffic is
in the crossbar arbiter (there are no separate queues
for high-priority packets).

One approach to providing support for high-
priorily packets is to modify the crossbar arbiter — the
controller that determines which input buffer is
connected to which output port. The arbiter can be
modificd so that when determining the crossbar
configuration for each cycle it gives priority to those

queues where the head of the queue contains a high-
priority packet. Specifically, at each cycle, queues with
normal packets have a chance to transmit a packet only
after an attempt is made to route all high-priority packets
at the heads of all the queues.

Table 2 shows the 99% percentile and average
latencies of high-priority packets versus total network
throughput for a system in which 5% of all of the packets
generated are high-priority. The results in Table 2
indicate that, especially for networks with non-FIFO
buffers, these modifications significantly improve high-
priority performance over a system with no special
support (see Table 1). However, the 99" percentile
latencies are still much worse than the average latencies.
This is a consequence of the fact that the high-priority
packets spend time in queues behind low-prionity packets
and receive preferential treatment for only the brief time
they spend at the heads of queues.

300 FIFO

DAMQ oo

$SAMQ
a00_| SAFC

Lat,
100 —
| [[T | | T
02 04 0.6 0.8
Thpt.

Figure 5: The 99" percentile latencies of high-
priority packets vs. throughput. Swiiches with five
slots per input port. 1% of the packets high-priority.
Priority queue implementation.

A. Separate High-Priority Queues

The DAMQ, SAMQ and SAFC switches all
achieve low latency by employing separate qucucs 1o
avoid having packets which are destined for different
output ports block each other. A possible exicnsion of
this idea is to use an additional qucue at cach input port
dedicated to high-priority packets. This should allow
high-priority packets to be routed through the switch as
soon as they arrive in preference to any normal packets
waiting to be transmitted out of the same output port.

This idea cannot be applied to a FIFO buffer since it has
only a single queue. In our simulation studies we
compared the performance of networks of DAMQ,
SAMQ, and SAFC switches with dedicated high-priority
queucs 1o the performance of networks with FIFO
switches that use the priority arbitration scheme
discussed above.

300 Fro
DAMQ e
SAMQ
200 | SAFC
Lat.
100 -

04
Thpt.

Figure 6: The 99" percentile latencies of high-
priority packets vs. throughput. Switches with five
slots per input port. 5% of the packets high-priority.
Priority queue implementation.

Implementing a dedicated queue for high-priority
packets in the SAMQ and SAFC buffers involves adding
additionat storage (at least one packet slot) as well as a
slight incrcase in the compiexity of the arbitration
circuitry. Since each queue in a SAMQ or SAFC buffer
has at least one packet slot, the minimum size SAMQ or
SAFC buffer in a 4x4 switch with support for high-
priorily traffic has five packet slots, On the other hand,
adding the dedicated qucue to the DAMQ buffer does nat
require any additional buffer storage — the available
storage is dynamically shared between queues. A few
{two or three) more control registers may be needed to
manage an additional linked list. For a DAMQ buffer as
used in the ComCoBB chip, two additional bits per
buffer block (a total of sixteen bits for a buffer of eight
cight-byte blocks) may be needed to store the destination
output port number for each packet in the high-priority
queue. In order to present a fair comparison of the
performance of networks with the four buffer types,
many of the results presenied in this paper were obtained
for five slot buffers for all four types.

The 99¥ percentile latencies of the four buffer

)
DAMGQ e k
300 4 samq -~ - :
SAFC —— :
200 —
Lat.
100 < -
- T
| | | | [I |
02 04 0.6 0.8
Thpt.

Figure 7: The 99% percentile latencies of high-
priority packets vs. throughput. Swiches with five
slots per input port. 10% of the packets high-
priority. Priority queue implementation.

types with 1%, S% and 10% high-priority traffic are
shown in Figures 5, 6, and 7, respectively. As we have
previously discovered with respect to average
latencies {9], switches with DAMQ buffers outperform
the competition. It appears that the DAMQ bulfer is
better at handling high-priority packets for the same
reason it provides lower average latency for normal
traffic — while only a fraction of the buffer space of the
SAMQ and SAFC buffers are available to any single
packet arriving at an input port (one fifth, in this
implementation), the entire buffer is available to packets
arriving at the DAMQ switch. Thus, the DAMQ switch
utilizes the available space better, blocks incoming
packets less often, is capable of handling higher
throughputs, and delivers packets with lower latencies.

The advantages of the DAMQ buffer are further
demonstrated by the results shown in Figure 8. In this
figure the 99™ percentile latencies of DAMQ switches
with two, three, and four slots are compared with thosc
of FIFO. SAMQ, and SAFC switches with five slots.
The DAMQ switch with only two slots significantly
outperforms the FIFO switch with five slots. The
DAMQ switch with three slots outperforms the SAMQ
and SAFC switches with five buffer slots.

Figure 9 shows the 99% percentile latency of high-
priority packets in a DAMQ network with high-priority
queues, with priority arbitration, and with no support for
high-priority traffic. The average latency in a DAMQ
network with no high-priority support is also shown. In

FIFO:Sslow - —
SAMQ: 5 sl] . |
300 | SAPC: Sslow 1
DAMQ: 4 3lota :
DAMQ:3slos - - - "
DAMQ: 2aiats «oeeee '
200 — /
1
Lat. ;
100 -

0.4
Thpt.

Figure 8: The 99 percentile high-priority latency vs.
throughput. FIFO buffer with five packet slots per
input port, DAMQ buffers with two, three and four
packet slots per input port, SAMQ and SAFC
buffers with five packet slots per input port. 5%
high-priority traffic. Priority queue implementation.

all cases the buffers have five packet slots and 5% of the
packets are high priority. These measurements show that
with the DAMQ buffer with a high-priority queue the
99™ pereenule latency for high-priority traffic is stable
for a wide range of throughputs, and actually becomes
less than the average latency for normal traffic at
medium and high throughputs. An interconnection
network with switches using DAMQ buffers with a
high-priority queue can thus provide very low worst-case
latencies for high priority packets even under network
loads approaching saturation,

B. Multiple Buffers

A design option that might be considered for
supporting high-priority traffic is to use two independent
bulfers at cach input port — one for normal packets and
one for high-priority packets. Possible examples of such
a scheme would be the use of an n slot DAMQ buffer for
normal packets logether with an m slot FIFO buffer for
high-priority packets, or an n slot DAMQ buffer for
normal packets with an m slot DAMQ buffer for high-
priority packets. The motivation for such a scheme
would be to completely isolatc the high-prionty
buffcring from the normal packet buffering to prevent a
situation where a high-priority packet cannot be
forwarded along its path due to the buffer in the next
stage being full with normal packets.

We considered using input ports with DAMQ

300

>99% priority arb.

0.4
Thpt.

Figure 9: The 99" percentile high-priority latency
with pricrity queues, the 99 percentile high-
priority latency with priority arbitration, the 99%
percentile high-priority latency with no high-priority
support, and the average latency vs. throughput.
DAMQ buffers. Five slots per input port. 5%
high-priority traffic.

buffers for normal packets and a singie-slot FIFO buffer
for high-priority packets. In such a scheme the high-
priority traffic will behave as though it were in a
completely separate network. As discussed above, the
high-priority traffic will not have to contend with the
low-priority traffic for buffer space. Furthermore, the
high-priority traffic does not compete for link bandwidth
with the low-priority traffic since whenever there is a
conflict, it is always given priority over the low-priority
traffic. Thus, in order to evaluate this mechanism we can
examine the results of running 100% normal traffic
through a FIFO network with buffers of length one, and
compare the 99" percentile latency to that of the high-
priority packets in a DAMQ network,

Throughput
005 | 010 | 014 | 018 | 0.24
>99% lat. 60 84 108 132 | 264
Table 3: 99" percentile laency vs.

throughput. FIFO network with one slot
per buffer. 100% normal traffic.

Table 3 shows the 99™ percentile latency of a
FIFO network with buffers of lengih one and throughput
from 5% to 24% (saturation). Table 4 shows the 99™
percentile latency of the high-priority traffic of a DAMQ
network with buffers of length four, total throughput of

% Packels
High Priority | 1 |10]20{30(40|50
>99% Lat. 36|48|60|60{72|84

Table 4: High-priority waffic 99" percentile latency
versus the percentage of traffic which is high-
priority. This was done on a DAMQ network with
four slots per buffer whose throughput was at 30%.

50%, and a percentage of high-priority packets that
varies from 1% to 50%. Note that with 10% of the total
rraffic being high-priority packets, the absolute high-
priority throughput is 5%. As can be seen from the
tables, the DAMQ buffer alone delivers high-priority
packets with a lower 99" percentile latency than if it
were paired with a high-priority single-slot FIFO buffer.
These results, and similar related results that we have
obtained, indicate that a single DAMQ buffer at each
input port performs better than the combination DAMQ
and a FIFO buffer,

Another possible design would be to partition the
input buffer intro two DAMQ buffers: one for normal
packets and one for high-priority packets. Instead of
using a single four-stot DAMQ buffer at each input port,
we consider using two two-slot DAMQ buffers. As
shown in Table 5, one still derives considerable benefit
from using DAMQ buffers instead of FIFO when there
are only two buffer slots, Once again, the high-priority
traffic behaves as though the low-priority raffic were not
there. Thus we can ¢valuate the performance of this
implementation by examining a DAMQ network with
two buffer slots per input port transmitting normal
traffic.

Thpt >99% Latency
FIFO | DAMQ
0.18 72 60
0.26 84 72
034 120 96
0.43 204 144
0.48 Sat. 192

Table 5: 99*" percentile latency versus throughput for
the FIFQO and DAMQ switches with two slots per
buffer, 100% normal traffic.

We compared the 99" percentile latency in a
network of switches with two-slot DAMQ buffers (Table
5) 10 the 99" percentile latency of the high-priority
packets in a network of switches with four-slot DAMQ
buffers supporting 50% total traffic with varying
percentages of high-priority packets (Table 4). This
comparison shows that the configuration with separate
DAMQ buffers yields slightly better performance than
the single large DAMQ buffer configuration. However,

two two-slot DAMGQ buffers require twice the chip area
for control compared to the single four-slot DAMQ
buffer configuration. The two buffers configuration also
requires that twice the amount of flow-control
information be passed between switches. In addition, the
two buffers scheme is less likely to adapt well 10 a
variety of conditions (such as very high throughput with
no high-priority packets) due to the static partitioning of
the available storage (note that the DAMQ buffer with
two buffer slots saturates at a throughput of less than
50%, while the switches with four slots saturate at over
70%). Once again, we conclude that a single DAMQ
buffer with a dedicated high-priority queue is the best
choice.

IV, Summary and Conclusions

The potential of large multiprocessors and
multicomputers to be used for real-time applications
depends on the ability to guarantee, with a high degree of
confidence, that high-priority wraffic can be transmitted
through the network with very low, specified, latency.
Interconnection networks used to connect the nodes in
multiprocessors and multicomputers have the property
that the worst-case latency of traffic through the network
can increase dramatically as the load on the network
increases. This may prevent the use of these
interconnection networks for critical real-time
applications or force their use with very low uiilization
(and thus high cost/performance ratio) in order to
guarantee low maximum latency.

We have developed a method for supporting high-
priority traffic in the large set of interconncction
networks composed of small nxn switches. Our scheme
is based on a small modification of the dyrnamically
allocated multi-queue (DAMQ) buffer that we have
recently developed [9). This buffer provides efficient
handling of variable-length packets and forwarding of
packets in non-FIFO order. The DAMQ buffer is
amenable to efficient VLSI implementation and provides
higher saturation throughput and lower average latencics
than several common buffer organizations. Our
modifications to the DAMQ buffer involve a few
additional control registers and somewhat more complex
arbitration of the crossbar switch. Overall these
modifications are expected to rcquire only a small
percentage increase in total buffer area.

We have explored several alternative approaches
to providing support for high-priority packets in nxn
switches. We have evaluated the solution based on the
modified DAMQ buffer by comparing its performance
with that of three alternative buffers and several possible
configurations in the context of a mullistage
interconnection network transmitting packets with two

-10 -

levels of priority, Qur simulations show that the DAMQ
buffer results in significantly lower latencies and higher
maximal threughput than other designs with the same
total buffer storage capacity. In addition, the DAMQ
mainiains a relatively constant 99* percentile high-
priority packet latency for a given percentage of high-
priority packets, even when the total network throughput
is approaching saturation, In our simulations we have
not considered variable length packets for which the
DAMQ buffer is specifically designed. We believe that
the DAMQ buifer will outperform its competition by an
even wider margin for the more realistic case of variable
length packets which arrive at the inputs of the switch
asynchronously.

Acknowledgements

Discussions with T. Lang throughout this project
have been extremely helpful. The SIMON simulator was
provided by R. Fujimoto. Our simulation studies using
SIMON were possibie due 0 the work of T. Frazier, M.
Huguet, and L. Kurisaki.

References

1. W. Crowther, J. Goodhue, R. Gurwitz, R. Rettberg, and R,
Thomas, ‘‘The Buuterfly Parallel Processor,’” [EEE Computer
Architecture Newsletter, pp. 18-45 (Sepiember/December 1985).
W, I. Dally and C. L. Scitz, "*The Torus Routing Chip,"”
Distributed Computing 1(4), pp. 187-196 (October 1986).
A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph,
and M, Snir, *'The NYU Ultracomputer - Designing an MIMD
Shared Memory Parallel Computer,' IEEE Transactions on
Compulers C-32(2), pp. 175-189 (February 1983).
P. Kermani and L. Kleinrock, *Virtual Cut Through: A New
Computer Communication Switching Technique,”” Computer
Networks 3(4), pp. 267-286 (September 1979).
D. H. Lawrie, "Access and Alignment of Data in an Amay
Processor,”" [EEE Transactions on Computers C-24(12),
pp. 1145-1155 (December 1975).
Y. Rimoni, L Zisman, R. Ginosar, and U, Weiser,
“*Communication Element for the Versatile MultiComputer,™
15th IEEE Conference in [srael (April 1987).
C. L. Scitz, “*The Cosmic Cube,”” Communications of the ACM
28(1}, pp. 22-33 (January 1985).
K. S. Stevens, S. V. Robinson, and A. L. Davis, “*The Post Office
Communication Support for Disiributed Ensemble
Architectures,”’ The Gth International Conference on Disiributed
Computing Systems, Cambridge, MA, pp. 160-166 (May 1986).
Y. Tamir and G. L. Frazier, *'High-Performance Mului-Queue
Buffers for VLSI Communication Switches,”" [5th Annual
International Symposium on Computer Architeciure, Honolulu,
Hawaii, pp. 343-354 (May 1983).
C. Whitby-Strevens, **The Transputer,’’ 12th Annual Symposium
on Computer Architecture, pp. 292-300 (June 1985).

10.

