Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

FUNCTIONAL LOGIC GRAMMAR: A NEW
SCHEME FOR LANGUAGE ANALYSIS

H. Lewis Chau December 1988
D. Stott Parker CSD-880097

Functional Lofc Grammar; A New Scheme for
anguage Analysis

H. Lewis Chau
D. Stott Parker

Co?uwr Science nt
niversity of California
Los Angeles, CA 90024-1596

ABSTRACT

We present a new kind of grammar. It combines concepts from logic pro-
gramming, rewriting, lazy evaluation, and logic grammar formalisms such as
Definite Clause Grammar (DCG). We call it Functional Logic Grammar.

A functional logic grammar is & finite set of rewrite rules, It is efficiently exe-
cutable, like most logic grammars. In fact, functional logic grammar rules can
be compiled to Prolog and executed by existing Prolog interpreters as generators
or acceptors. Unlike most logic grammars, functional logic grammar also per-
mits higher-order specification and modular composition.

DCG can be easily translated into functional logic grammar. Functional logic
grammar enjoys the advantages of DCG, as well as its first-order logic founda-
ton. At the same time, functional logic grammar ranks higher in aspects such as
expressiveness and modularity, and permits lazy evaluation.

Keywords: Logic Programming, Definite Clause Grammar, Logic Grammar,
Parsing,

This MhthmmeDmAMM!ﬂ-cm
qur«mn*hﬁsmuhmwmammhﬂm & chaules.ucla.edu
or stottlcs.ucla.edu

Functional Lofc Grammar: A New Scheme for
anguage Analysis

H. Lewis Chau
D. Stott Parker
Computer Science Deparment
University of Ca.l;Pomu
Los Angeles, CA 90024-1596

1. Introduction

Since the development of metamorphosis grammar (6], the first logic grammar formalism,
several variants of logic grammars have been proposed [1,7,8, 11, 14, 185, 18). Among these we
must mention Definite Clause Grammar (DCG), a successful and widely-used formalism for
language analysis in logic programming. We assume that the reader is familiar with DCG and
Prolog. Good introductions to DCG and Prolog can be found, for example, in [17, 19].

All logic grammar formalisms mentioned above are first-order. Specifically, a nonterminal sym-
bol in these formalisms cannot be passed as an argument to some other nonterminal symbol. For
example, DCG does not permit direct specification of grammar rules of the form

goal(X) --> X.

Wewindiscuulwin:hepaperwhythisismomthmjusunﬁnorproblem.asitaﬂ'ects the
convenience of use, extensibility, and modularity of grammars. Very recently Abramson (2] has
commented on the problem, and has addressed it by using a new construct, meta(X), to define
metarules that go beyond the limit of first-order logic grammar formalisms, We propose a
higher-order solution,

Functional logic grammar is a formalism for writing rules. It combines concepts from logic pro-
gramming, rewriting, lazy evaluation, and logic grammar formalisms such as DCG. The seman-
tics of functional logic grammar are defined by a term-rewriting system that is an extension of
Narain's Log(F) system [12). This approach gives both a compact formal definition of func-
tonal logic grammar, and an efficient logic pro. ing implementation. In this paper, we
point out a number of advantages of functional logic grammar for language analysis.

As a brief introductory exampie, let us show how easily regular expressions can be defined with
functional logic grammar. The regular expression pattern a+ b that marches sequences of one or
more copies of g followed by a b can be specified with the grammar rule

pattern => ([a)+, [b]).
where we also define the following grammar rules:

(X+) m> X,

(X+) => X, (X+).

({1,L) w» .

([X]L1],12) => [x|(L1,L2)].

Here ‘+/ is the postfix pattern operator defining the Kleene plus pattern, and the rules for +,-
define pattern concatenation, very much like the usual Prolog rules for append.

Functional logic grammar rules are used much like rewrite rules with ‘narrowing’ [12], but with
a special outermost term rewriting strategy described in the next section. With this strategy, one
possible rewriting of ([a]+, {b]) is as follows:

([a)+, (b))

(([a], [a]+), [D])
([al{(1, [al4)], [B])
(0l (([], {a]l+), [D))]
(ai((al+, (b])]

(ai ({a], [B])]

(a,ai (L), [B])]
(a,a,b]

In a similar way, all other lists matching the pattern a* b could be produced.

R R

Functional logic grammar has a theoretical foundation in first-order logic. All pure grammar
rules can be straightforwardly translated to pure Prolog clauses. This is advantageous since the
full power of unification is exploited, and it may be feasible for properties of a functional logic
grammar to be verified using first-order logic theorem proving technology. At the same time,
the higher-order specification and modularity of functional logic grammar enable some compiex

languages to be specified easily.

Beyond standard grammatical applications, functional logic grammar has potential in new areas
including the specification, analysis, and verification of properties of concurrent systems
(3,4,13]. One major application of functional logic grammar is the Sream Pattern Analyzer
(SPA) [3, 4] under development as part of the Tangram project at UCLA. SPA uses functional
logic grammar to specify pattern analysis for streams of data. Parallel execution events in a dis-
tributed system may be captured in an event stream for analysis. Given a set of functional logic
grammar rules, SPA can analyze arbitrarily complex behavior patterns in this stream. At the
same time a SPA grammar can act as a declarative specification of valid event histories.

Section 2 defines functional logic grammar and section 3 describes some of its interesting
features. Section 4 then goes on to compare functional logic grammar with the widely-used
DCG formalism in logic programming, showing how it offers several important advantages.
Section 5 gives one example illustrating the expressive power of functional logic grammar.
Finally we conclude the paper with some potential applications, along with avenues for future
work.

2. Functional Logic Grammar

Functional logic grammar is a clear and powerful formalism for describing languages. In this
section we define functional logic grammar, and give examples showing how patterns can be
specified with it.

2.1. Formalism of Functional Logic Grammar
Definition 2.1

A term is either a variable, or an expression of the form f (¢,,...4,) where f is a n-ary function
symbol, n 20, and each # is a term. A ground rerm is a term with no variables.

Definition 2.2
A functional logic grammar is a finite set of rules of the form:

LHS => RHS,
where LHS is any term except a variable, and »as is a term.

Definition 2.3
Functors that do not appear as any rule’s outermost Las functor are called construcror symbols.
Terms whose function symbol is & constructor symbol are said to be simplified. By convention

also, every variable is taken to be a simplified term. Note that no wus of any rule can be a
simplified term.

Definition 2.4

A stream is defined as a list of ground terms. By convention, we require the function symbols
for lists (namely, the empty list {] and cons 1_1_1, following Prolog syntax) to be constructor
symbols. Thus all streamns are simplified.

Definition 2.5

Let p, q be terms, where p is not a variable, and let s be a nonvariable subterm of p (which we
write p =r[s5]). If there exists a rule (LHS=>RHS), for which there is a most general unifier 6
of LHS and s, then we say p narrows 10 ¢ =r[RHS 0.

A narrowing is a sequence of terms p,, p», ..., p, such that for each i, when p; and p;., both
exist, p; narrows to p;). A narrowing is successfid if D» is simplified.

Generally speaking, & rewrite system will specify a mechanism for selecting a subterm s from a
given term p, to determine what to narrow. This mechanism is then used with successively the
actual rewriting mechanism to implement narrowing. For functional logic grammar, the selec-
ton strategy is given by the (nondeterminate) predicate select(p.s) defined below:

Definition 2.6
selact (P, 8) is defined by the following pseudo-Horn clauses:

selact (P,P) «
? 48 a nonvariabla,
thezre is a rule (LHS => RES),
and LES and P unify.
select (P,8) «
P is of the fom Z(Tl,...,Tg,...,T.),
therxe is a rule (EWLy,...,L,...,L) => RES) .,
T. and L; do not unity,
and select (T;,8),

Since we treat variables as simplified terms, select (P, 8) is undefined when P is a variable.

Definition 2.7: N-step

If select(p.s) and there exists a rule (LHS =>RHS). Let p=r(s], and g=r [RHS)0, where 0 is a
most general unifier of LHS with the subterm s of p. Then we say p narrows to ¢ inan N-step,
orp —=gq.

Definition 2.8: N-narrowing

A N-narrowing is a narrowing p |, ps,... such that for each i, when p; and p;, both exist, p; nar-
TOWS 10 p; 4 in a N-step.

These definitions mirror the definitions of reductions in Narain's Log(F) [12]. Analogously to
the completeness results of Narain, we have the following conjecture: '

Conjecture: Narrowing-completeness of functionai logic grammar for simplified forms.

Let pg be a term and pgpq,...0, be a successful narrowing. Then there is a successful N-
DATTOWINg P 0,q 1,+../gm » SUCh that gm = p,, where 2 is the reflexive transitive closure of —.

In Appendix 1 we describe how functional logic grammar ruies are translated to logic programs.
It turns out that SLD-resolution, the proof procedure commonly used in logic programming, can
serve as an interpreter for functional logic grammar. The translation, or compilation, process has
the property that when SLD-resolution interprets the logic program, it directly simulates lazy
rewriting (narrowing) using the grammar. For more discussion, see [5].

2.2. Specifying Patterns with Functional Logic Grammar

We illustrate how patterns can be developed in functional logic grammar with a sequence of
examples. '

Example 2.0
As we suggested earlier, regular expressions can be defined easily with grammar rules:

(X+) => x,

(X+) > X, (x+).

(x*) => (1,

(X*) => x, (x*).

(X;Y) =>» x,

(X;Y) => ¥,

((1,u) = g,

({X121],12) => [x)](L1,12)).
The regular expression operators “+/ and ‘# define the familiar Kleene plus and Kleene star
operators, respectively. ;- is a disjunctive patiern operator, while °, defines pattern concate-
nation,

Example 2.1

represented by the regular expression ([net failure)+, [cpu_failure]), and we can count

the number of its occurrences with the pattern
aumbar(([nat_failure]+, (cpu_failure]), Total)
where we include the following grammar for number:

numbar (Pattezrn, Total) => numbez (Pattasn, Total, 0) .

nunber (Pattern, Total, Total) =» fend of file).
nmb.:(!attnm,!otal,t:ount) => Pattern, number (Plttcrn,!otal,COuntﬂ).
oumber (Pattern, Total, Count) >), numbar (Pattern, Total, Count) .

Here Total is unified with the number of occurrences of Pattern in a stream that is matched
with the pattern aumber (Pattern, Total), and ‘[end_of file] is a special terminal symbol
that delimits the end of stream.

From the example above it is clear that the grammar rules have a functional flavor. Stream
operators are casily expressed using recursive functional programs. In addition, number is
higher-order because it takes an arbitrary pattern as an argument. The definitions for *+/ LoV
Yif, Y, ', etc., above are also higher-order in thar they have rules like

(X+) => X,
which rewrite terms to their arguments.

Example 2.2

Suppose we wish to count the number of occurrences of disk failures in addition to
([nat_failure]+, [cpu_failure]). That is, we want to count the occurrences of multiple

patterns in an event stream. We use the partern
number ({[net_failure]+, [cpu_failure]),NF) // aumber ([disk_failure),Dr)

where we include the following grammar for //:

-6-

([XIXs] // [X|¥8]) => [XIXs//Ys].
(/7 1 = 3.

The operator // takes two patterns as arguments, narrows them to (Xixs] and (X|¥s] respec-
tively and then ylelds (xixe//¥s}. Thus // is a parallel pattern matching primitive that
requires both argument patterns to match inputs of the same length. This example shows that
multiple overlapping pattemns in a stream can be simultaneously recognized easily with //.

Example 2.3
Consider the following grammar:

s => ab ¢ // a_be.

ab_¢ => xy(a,b), (elw,

a_be => [al]*, xy(b,c).

xy (X, X) => [],

xy(X, I} => [X], =xy(X,¥), [¥].

This grammar defines the non-context-free language {a®bnch) using only context-free-like
constructons. The first rule for s_abe imposes simultaneous (parailel) constraints on streams
generated by the grammar.

3. Interesting Aspects of Functional Logic Grammar
In this section we summarize several important features of functional logic grammar. Some of

these features are novel in the context of grammar formalisms, while others are not. The combi-
nadon of these features is certainly new and interesting, in any event.

3.1. Executability

The translation mentioned in Appendix 1 from functional logic grammar rules to logic programs
gives us a way to ‘execute’ these grammars. Previously, we have described how the grammar
rules operate as pattern generators or specifiers. In this section, we show that they can also
Operate as acceptors.

Our approach for pattern acceptance is to introduce a new pair of rules specifying pattern match-
ing. The entire definition is the following pair of rules for match:

match{(},8) => 8.
match({X|L), [X|8]) => match(L,8).

match can take a pattern as its first argument, and an input stream as its second argument. If the
pattern narrows to the empty list [], mateh simply succeeds. On the other hand, if the pattern
narrows 1o (Xil, then the second argument 1o match must also narrow to [x[8]. Intitively,
match can be thought of as gpplying a pattern (the first argument) to an input stream (the second
argument), in an attempt to find a prefix of the stream that the grammar defining the pattern can

generate,

-7-

Pattern analysis is signaled explicitly with maten. For example,
match(([net_failurel+, [cpu_failure]), file termms (' experimant .cutput’)).

matches the pattern ‘one or more copies of net_failure followed by 2 epu_failure’ against
the stream of terms produced by the file ‘experimant .output’,

Therr is a certain elegance to this; the rules of the grammar by themselves act as pattern genera-
tors, out when applied with matech they act like an acceptor, or parser, This
acceptance/generation duality is familiar to users of Definite Clause Grammar [14], and the abil-
ity to employ grammars both as acceptors and as generators has a number of uses (10].

As a simple example, consider the following derivation illustrating how mateh works:

match(([a]+, {b}), (a,a,b]))

match((([a], [a]+), (2]), [a,a,B])
match(((a) ({], (a]+)], (D)), (a,s,B))
match((a]|(((], (a]+), [D])], (a,a,b])
match([ai([a]l+, (D])], [a,a,b])
match(([a}+, [b]), (a,b])
aatch({[a], [b)), [a,D])

match([a] ([}, (Bl)], [a,b))
match (([], [B]), [D))

match([b], [b])

{]

L A A A A A |

3.2. The power of unification
Unification arises naturally in parsing. Functional logic grammar captures the power of
unification, permitting arguments of terms in rewrite rules o be used not only as inputs, but also

as grammar outputs [17]. Like most logic grammars, functional logic grammar allows arbitrary
strucrures to be built in the process of parsing.

3.3. Higher-order Specification, Extensibility, and Modularity

Functional logic grammar is higher-order. Specifically, functional logic grammar is higher order
in the sense that patterns can be passed as arguments to patterns, and patterns can yield patterns
as outputs.

For example, the enumeration pattern numbes(_,_) defined in example 2.1 is higher-order, as
its first argument is a pattern. The whole pattern ({nat_gailure]+, [cpu_failure]) can be
used as an argument, as in:

aumber(([nat_failure]+, [cpu_failure]), Total).

It is well known that a higher-order capability increases expressiveness of a langpage, since it
becomes easier to develop short generic functions that can be combined in a multitude of ways
[9]. As a consequence, functional logic grammar rules are highly reusable and can be predefined

-8-

in a library. In short, functional logic grammar is modular.

Functonal logic grammar is also extensible, since it permits definition of new grammatical con-
STructs, as the nusber and // examples showed earlier.

3.4. Lazy Evaluation

Lazy evaluation is basically a computation scheme in which an expression is evaluated only
when there is demand for its value. Functional logic grammar rules are compiled to Prolog narc-
row clauses in such a way that, when SLD-resolution interprets them, it directly simulates lazy
rewritng [5].

One specific advantage of lazy evaluation in parsing is the ability to simultaneous recognition of
multiple patterns in a stream. We illustrate this point with the now familiar operator, /7.

([X|Xe] // [Xi¥Ys]) => [X|Xs//Y¥s].
(L1 /7 [1) => [].

// takes two patterns as arguments. In one step, the first argument is narrowed to (x| xe]. Only
the head x is computed. The tail xs can then be further narrowed if this is necessary.
Demand-driven computation like this is referred to as lazy evaluation or delayed evaluation, and
is one of the important features of functional logic grammar.

An immediate advantage of lazy evaluation here is reduced computation. Essentially // nar-
rows its arguments to [X|Xs) and (x|¥Ys] and suspends evaluation of xs and ¥s. If lazy
evaluation is not performed, on the other hand, both arguments are completely evaluated before
pattern matching is applied. If the heads of both completely evaluated terms then do not unify,
many unnecessary narrowing steps have been performed to simpiify the tails of two arguments,
For other useful examples of lazy evaluation, see [12).

4. Comparison with Definite Clause Grammar

In this section we compare functional logic grammar with Definite Clause Grammar(DCG), a
widely-used formalism of logic grammar. We show how pure DCG can be translated into func-
tional logic grammar and how functional logic grammar and DCG differ. Due to length restric-
tions on the paper, we simply assume that the reader is familiar with DCG.

4.1. Equivalence between Functional Logic Grammar and Definite Clause Grammar

All pure functional logic grammar rules can be ultimately translated to pure Prolog clauses. As a
consequence, the benefits DCG offers over things like Augmented Transition Networks as in
[14] are also enjoyed by functional logic grammar.

We show how a DCG rule can be translated into a functional logic grammar rule dcsgri_bing the
same language. We also show that, while the reverse translation is possible, it is not trivial.

-9.-

How to Translate Definite Clause Grammar to Functional Logic Grammar

(1) Essentally, DOG rules can be translated to functional logic grammar rules by changing all
occurrences of --> to «> and by including functional logic grammar definition for °,* as
in section 2.2.

({1,L) => 1,
(Ixir1],12) => [X]|(L1,%2)].

(2) {curly braces} and ‘:’ of DCG have the same semantics as of functional logic grammar
but the latter are defined at the grammatical level.

(X;¥) => x,
(X:X) = Y.
{G} => if{success(G),[]).

Here success (6) is a special construct whose compilation produces code that invokes a
Prolog goal @ and correspondingly narrows to either true or false. Note that this
definition for (curly braces} does not work for cuts. However, it is not difficult to extend
the compilation algorithm to handle impure DCG constructs such as {t}.

(3) Metamorphosis grammar (6] permits rules of the form
X, Y --> RuS

where x is a nonterminal and ¥ is one or more terminals, We can capture the semantics of
this rule in functional grammar by defining a constructor replace(X,Y) and two more
rules for match as follows:

match ((X,Y),8) »> match(Y,match(X,$)).
match (replaca(X,¥),8) = appeand (Y match(X,8)).

and transform the metamorphosis grammear rule to
X => replace (RiS,Y). '
For example, the metamorphosis grammar rule
' is(¥), [not] -=> [aint].
is transformed to
18 () => replace([aint], {(not]).

The translation from functional logic grammar to DCG is not trivial. For example,

(X+) => X,
{(X+) => X, (X+).

are valid functional logic grammar rules but

(X+) -=-> X,
(X+) ==> X, (X+).

are not valid DCG rules because the right hand side of a DCG rule cannot be a variable.

-10-

4.2. DCG is First-order and is not fully modular

A DCG rule is no more than ‘syntactic sugar’ for a certain kind of (first-order) Prolog clause.
Each nonterminal is a Prolog predicate with Prolog terms as its arguments. Therefore, it is hard
to write DCG rules that behave like number given carlier. DCG rules do not permit arbitrary
patterns to be passed as arguments.

We conclude this section by emphasizing the following two points:

(1) Since DCG is not higher-order, it is not reasonable to pass DCG nonterminals as argu-
ments. This restricts the modularity of this kind of grammar,

(2) Some things seem very hard to do with DCG, but are easy to do with functional logic gram-
mar. One such thing that is quite useful is ‘and parallel’ pattern matching, //.

5. Case Study

We give one example, filler-gap dependencies, illustrating the expressive power of functional
logic grammar. The example shows that some problems are quite cumbersome to encode in
DCG but easy to encode in functional logic grammar.

5.1. Filler-Gap Dependencies

Filler-gap dependencies constitute a set of linguistic phenomena with a quite cumbersome
encoding in DCG. We take the definition of Filler-gap dependencies from [17] as follows:

A filler-gap dependency occurs in a natural-language sentence when a subpart of some
phrase (the gap) is missing from its normal location and another phrase (the filler), owtside
of the incomplete one, stands for the missing phrase. We have a dependency between the
8ap and the filler because the gap can only occur when the appropriate filler occurs.

For example, in the sentence _
Terry read evary book that Bartrand wrote.

there is a filler-gap dependency between the relative pronoun ‘that’ (the filler) and the missing
direct object of ‘wrote’ (the gap). In other words, this sentence intuitively contains the sub-
sentence ‘Bertrand wrote [the book]’, but English syntax permits ‘{the book]’ to be removed
(gapped) because the filler ‘that’ is used.

The obvious way of representing filler-gap dependency in DCG is to use a nonterminal argument
to indicate the presence or absence of & gap within the phrase covered by the nonterminal. If
there is a gap, we must also indicate the syntactic category (i.c., nonterminal) of the gap. How-
ever, the technique used for passing gap information among the nonterminals in grammar rules
has some probiems. In [17), the formalism of Filler-Gap DCQ is introduced. This kind of DCG
allows a simpler statement of filler-gap constraints, and an interpreter is presented for it. How-
ever, the interpreter must be modified for any new grammatical constructs.

Functional logic grammar allows a more direct approach to filler-gap dependencies. Instead of
writing an interpreter as in DCG, filler-gap dependencies problem can be expressed directly in

-11-.

functional logic grammar. As a simple example, we define the foliowing functional logic gram-
mar rules, adapted from {17]:

8 => np_island, wp.

ap => np_ island.

np_island => dat, n, optrel.
np_island => pn,

VP => dv, np, np.
P => tv, np.
vp => iv,

optrel => (],
optrel => (that], s without np.
optrel s> (that), wp.

dat => [every].
a => [book].

Pu => [bertrand).
Pa => [terzzy].

tv => [read].
tv => |[wrotae].

Thisgrammarisveryeasytomad.andweleave thereadutocompmitwiththegrammarin
{17]. Both np and ap_ieland are noun phrases but no gap can occur in the latter. The phrase
's without np’ means that there exists a gap apin o. With the above functional logic gram-
mar rules, we need to add the definition of without .

(A without A) => [].
((A,B) without A) => B,
([A|B] without C) => [A|B without c}.

Now we illustrate how the sentence
tearry read every boock that bertrand wrote

canbegenmted&omtheabovemmmunﬂesbygivinguequenoeofmmatcanbepro-
duced by narrowing of the grammar start symbol s:

-12.

[]

= np_island, wvp

~* po, vp

— [terry], p

— {terzy], tv, uap
[terry], [cwad], up
[tarry]. [read], ap_island
{terry), {read], dat, n, optrwl
[terry], (zead). {every]. (book]), (that], s witheut up
(terry), (read], [every], [book], [that], {sp_island, vp) without np
{tesry], {read), (every], (boek), (that), {pn, vp) without ap
(terry), [read], [every]), [book], (that], [bartrxand | vp ! without ap
{tarry], [read], {every]), (book], [that], [bestrand | ¥p without np)
[terry]), (wead]. [every], [book], (that], [bartrand], vp witheut op
[terry], (ymad), [every]. [bDook], [that], [bertrand), {tv,np) without np
[terry], (rwed]), [every]. (book], [that], [baxtrand], (vrots)], np witheut ap
— [tersry], [pead]. [every), (bock], [that), [bertrand], [wrote], [}

The point to be made herd'is that quite sophisticated grammars can be developed easily and con-
cisely with functional logic grammar. Syntactic features that are treated at the ‘meta level’ with
DCG rules can be handled By #e higher-order capabilities of functional logic grammar.

ol oe
In Extraposition Grammars [I6}i'Pereira uses ‘bracketing constraints’ to permit sentences such
as

I R A A A

[tha], [mouse], (thaglerltha], (cat], (that], {1ikes], (fish], (ﬂtﬂ]: (squeaks]
while ruling out sentences sucKvasr

4 %
(tha], (mouse], [that], [the], (cat], [that], [chased), (likes], [£ish], [squeaks] .

These constraints are also handled by the higher-order capabilities of functional logic grammar
(using the definition of without above),

L om

g
2 ne

6. Discussion and Conclusion v
In this paper, we have shown how functionat logic grammar, together with maten and select,
comprises a new formalism for language andlysis. Functional logic grammar combines concepts
from logic programming, rewriting, lazy evaluation, and logic grammar formalisms such as
DCG. All functional logic grammar ryles can be compiled to Prolog clauses in such a way that,
when SLD-resolution interprets them, it directly simulates lazy rewriting. As a consequence,
full advantage is taken of the very efficient implémentations of Prolog that are now available.

Both functional logic grammar and DCG have a theoretical foundation in first-order logic.
Therefore, the benefits DCG offers over things like Augmented Transition Network as in [14] are
enjoyed by functional logic grammar. We have shown how a pure DCG rule can be translated 10
a functional logic grammar rule; however, translation the other way is not trivial. We have also
illustrated by examples that some problems are difficult to express with DCG but are very easy

-13.

10 express with functional logic grammar. Filler-gap dependencies and ‘and parallel’ matching
of parterns are among these.

Functional logic grammar is modular, extensible and highly reusable, and can be predefined in a
library, We have extended the expressive power of first-order logic grammars w0 be higher-order,

by permitting patterns to be passed as arguments to the grammar rules. As‘a consequence, some
complex patterns can be specified more easily.

Beyond standard applications of grammar, functional logic grammar has potential in new areas
including specification, analysis, and verification of concurrent systems. Furthermore, it can be
used in ‘history-oriented’ or ‘object-orientad’ specification of concurrent systems. In (3] we
demonstrate this in more detail. Given a set of actors (automata, concurrent objects, etc.)
Aj,...A, we can produce functional logic grammars with starting patterns S ;,...,S, for these, and
then use §,//..//S, as a specification of valid histories for the entire system. To our
knowledge, this aspect of functional logic grammar is unique.

Once a specification mechanism becomes sufficiently powerful, its ‘expressive power’ is no
longer problematic, and other issues become i t: elegance, usefulness in specifying real
systems, tractability of inference problems used in verification, and 30 on. Functional logic
grammar is very interesting in its properties here. Since it is grammatically based, it can be used

-14 -

Appendix 1: Compilation of Functional Logic Grammar to Prolog narzow rules

Below we give the compilation procedure for functional logic grammar, and show by examples
how logic programs (here Prolog clauses for the narzow predicate) are produced from func-
tional logic grammar rules. When SLD-resolution (the proof procedure commonly used in logic
programming) interprets these programs, it simulates lazy rewriting using select.

The compilation algorithm consists of the following steps:

(1) For each n-ary constructor symbol e, n 20, and for distinct variables X1, .. X., generate
the clause:

naxrow (Q(xlm-x.l) r © (xl----XI) y.

(2) Let fLy,....La)=>RHS be a rule. Let AL,...,Am, Out be distinct Prolog variables not
occurring in the rule. If L; is a variable, iet Qi be A=l IfL is g(¥y.....Y)), and gisa
non-constructor symbol, let Q; be equal (4, gTun....11))y. Otherwise, let O, be
narxow(A,, g(¥.,... . h)).

(3) Letf(Li....La)=>RHS be a rule. For all variables x that occur multiple times in rLas and
also occur in Z,, let P, include equal(X;, x) . If there are no such variables, let P; be true.

(4) Generate the clause:
narrow((A1 ... Aa), Out) := Q.P,...,0nPu, sarrow (RHE, Out) .

In practice, if L, is a variable, Q; can be dropped, provided 4; is replaced byL inf(d,,....A).

This algorithm does not deal with “impure” features in functional grammar rules, such as cuts or
success (G), mentioned in the text. Obviously however the compilation can be extended to
include such features.

One of the interesting aspects of the compilation algorithm is that it permits the user to declare a
suitable ‘equality’ predicate. The predicate ecual(xX,Y¥) is to succeed whenever both x and v
can be narrowed (not necessarily N-narrowed) to a.common term. In many situations the gram-
mar will obey the restrictions of Log(F) [12], and this predicate will not be used. However in
general, such as for without in the filler-gap example above, an extended notion of equality is
necessary. The advantage of using equal is that, although full narrowing of both arguments is
necessary for the sake of completeness, in many situations (such as DCG-like parsing) a simple
approximation (such as unification) will suffice. Users can select a definition for equal that
meets their needs.

The table below lists some functional logic grammar rules together with the Prolog narrow
rules resulting from their compilation. It should be clear that narrow is similar to the transitive
closure of =», but it guarantees its result (the second argument) will be in simplified form. That
is, the function symbol of the result will be a constructor.

-15 -

-Fungctional ﬁu Grammar Rulas

l':ol}u:m Rulas

match((],8) =>» g8,

match{[X|L], [X]|8]) =>
match{L, 8).

(X+) => X%,

(X+) => X, (X+).

{{1,L) => L.
((XIL1],12) => [Xx)(L1,12)].

numbar (Pattern, Total) =>
numbar (Pattern, Total, 0) .

number (Pattern, Total, Total)
=> [and_of filae].

numbar (Pattexn, Total,Count)
=> Pattara,

nunber (Pattern, Total, Count)

numbarx (Pattern, Total, Count+l) ,

=[], aumbas (Fattezn, Total, Count) |

narzow(match(A,B),B) :-
narxow (A, []) .

narrow(match (A, »),C) :-
narrow({A, (D1{R]),
equal (D1,D),
narcrow (s, [D2{P]),
equal (D2,D),
narrow(match(R,F),Q).

onacrow(h +,B) :=-
nazrzow (A, D) .

oarrow(h +,8) :-
narrow((A, A +),B).

narrow((A,B),B8) :- narrow(a, [1y.
narrow({A,B), [C| (D,B)]) :-
narrow(A, [CID]).

narrow {number(A,B),C) :-
narrow(number(A,B,0),C).
narrow (numbar({A, 3, B), (end of file)).

narzow (number (A,B,C),D) :~
BRisC +1,
narrow((A,number (A, B, E)),D).
aarrow (number (A,B,C),D) :~
nazzow(((_],ousber(A,8,C)),D).

References

1.

Abramson, H., *‘Definite Clause Translation Grammars,’’

Symposium, pp. 233-240, IEEE Computer Society, Atlaatic City, 1984,

Abramson, H., ‘‘Metarules and an Approach to Conjunction in Definite Clause Translation
Grammars: Some Aspects of Grammatical Metaprogramming,"* Proc. Fifth International

Conference and Symposium on Logic Programming, pp. 233-248, MIT Press, 1988.

90024-1596, June 1988.

1988.

Chau, HL. and D.S. Parker, *‘Executable Temporal Specifications with Functional Gram-
mars,’’ Technical Report CSD-880046, UCLA Computer Science Dept., Los Angeles, CA

Chau, H.L. and D.S. Parker, *‘Functional Grammars: A New Formalism for Stream Pattern
Analysis,”” Draft, UCLA Computer Science Dept., Los Angeles,

Chau, HL. and D.S. Parker, ‘‘Functional Logic Grammar,”* Technical Report, UCLA

Computer Science Dept., Los Angeles, CA 90024-1596, December 1988.

Proc. First Logic Programming

CA 90024-1596, May

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

-16-

Colmerauer, A., ‘‘Metamorphosis Grammars,"* in Namral Language Communication with

Compusers, LNCS 63, Springer, 1978. '

Dahi, V., **More on Gapping Grammars,” Proc. Inti. Conf. on Fifth Generation Computer

Systems, Tokyo, 1984.

Dahl, V. and H. Abramson, ‘‘On Gapping Grammars,’* Proc. Second Inl. Logic Program-

ming Conf. , pp. 77-88, Uppsala, Sweden, 1984.

Darlington, I, AJ. Field, and H. Pull, ‘‘The Unification of Functional and Logic
Languages,”” Logic Programming: Funcrions, Relations, and Equations, Prentice-Hall,
1986.

Gorlick, M.D., C. Kesselman, D. Marota, and D.S. Parker, ‘‘Mockingbird: A Logical
Methodology for Testing,”’ Technical Report, The Aerospace Corporation, P.O. Box
92957, Los Angeles, CA 90009-2957, May 1987. To appear, Journal of Logic Program-
ming, 1988,

Hirschman, L. and K. Puder, ‘‘Restriction Grammars in Prolog,”” Proc. First Intnl. Conf. on
Logic Programming, pp. 85-90, Marseille, 1982.

Narain, §., “LOG(F): An Optima! Combination of Logic Programming, Rewrite Rules and
Lazy Evaluation,” Ph.D. Dissertation, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, 1988.

Parker, D.S., R.R. Muntz, and H.L. Chan, “‘The Tangram Stream Query Processing Sys-
tem,” Technical Report CSD-880025, UCLA Computer Science Dept., Los Angeles, CA
90024-1596, January 1988.

Pereira, F.C.N. and D.H.D. Warren, *‘Definite Clause Grammars for Language Analysis,”
Artificial Intelligence, vol. 13, pp. 231-278, 1980.

Pereira, F.C.N., ‘‘Extraposition Grammars,"’ American Jowrnal Jor Compusational Linguis-
tics, vol. 7, 1981,

Pereira, F.C.N., ‘‘Logic for Natural Language Analysis,”* Technical Note 275, SRI Interna-
tional, Menlo Park, California, 1983.

Percira, F.C.N. and S.M. Shieber, Prolog and Natural-Language Analysis, CSLI Stanford,
1987.

Stabler, EP., ‘‘Restricting Logic Grammars,”" Proc. Fifth National Conference on
Artificial Intelligence, pp. 1048-1052, Philadelphia, PA, 1986.

Sterling, L. and E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA, 1986.

