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1. Preliminaries & Motivation

Graphoids have been introduced in the literature as a means for representing probabilistic
knowledge in graphical form [4]. Let U ={a, b, c,...} be a finite universe of random variables,
each variable with its own domain. Consider a (polynomial) set of triplets M ={(x,z,y)}
where x, z, y are mutually disjoint sets from U. A triplet (x, z,y) as above can be given the in-

terpretation:

"the random variables in x are independent on the random vari-

ables in y given any instantiation of the random variables in z".

If all the information we want to extract from a probabilistic distribution is concerned
with the interdependence of its random variables we might be able to represent that information
in the form of a relation M as above and then record that information in some compact graphi-

cal form.

With regard to the representation part, consider the axioms below, defined over any set

M of triplets.

(1) O(x,z,y)—>0@,z,x) Symmetry

2 (x,z,yw)—=&x,z,y)Aax,z,w) Decomposition
3 G,z yw)—>x,zy,w) Weak Union
4) x,z,y)A(x,zy,w) > (x,z,yw): Contraction
(5) x,zy,w)A(x,zw,y) = (x,z,yw): Intersection



Tt has been shown that any M relation induced by a PD (probabilistic distribution) with
strictly positive entries satisfies all the above 5 axioms, while if not all the entries of the PD are

strictly positive then the first 4 axioms are always satisfied [4].

Ideally we would be able to represent every independency relation, induced by a PD, as

the closure under the above set of axioms of some set of triplets M of polynomial size.

Unfortunately, this is not possible, and for 2 reasons: First, it has been shown lately that
PD s do satisfy additional axioms independent on the 5 axioms specified above so that the clo-
sure of M under the 5 mentioned axioms might not be enough [2]. Second, it has been shown by
combinational arguments that it is impossible to fully specify all the possible PD induced rela-

tions in polynomial space (in the size of the universe U) {6].

Still, it is reasonable to assume that many interesting PD induced relations can be fully
or approximately represented in the above form (the larger the ‘basis’ M, the better the approxi-
mation) where the approximation is defined in terms of /-mapness: (x,z,y) < closure M im-
plies that the independency (x, z,y) holds in the represented PD, but not necessarily the other

way around.

As far as the recording of a relation M in graphical form is concerned we can use the

following graphical model.

Let G ={G;, G,,...Gx} be a set of graphs whose vertices are elements from the set U of
. random variables. Let {<x |z |y>} be the set of all triplets such that there is a graph G; in G

whose vertex set contains the vertices in x,y, z and such that the set of vertices z is a cutset



between the vertices in x and the vertices in y in G;. If there is a 1 — 1 correspondence between
G and M then G perfectly represents M. We will say that G is closed under a given set of ax-

joms if the relation represented by G is closed under that set of axioms.

The use of graphs for recording purposes is motivated by the fact that graphs are easy to
record in computer memory and are very compact, in the sense that a single graph with n ver-

tices can represent exponentially many triplets of the form <x 1z |y >.

Consider the axioms below

6. x,z,y)> x,zw,y), wcU: Strong Union

7. x,z,y) > &, z,Vvz,y) Ye U: Transitivity

the following properties have been shown:

A relation M is closed under the first 3 axioms iff it can be perfect-

ly represented by a set of graphs [1].

A relation M is closed under axioms 1, 2, 3, 6, 7 iff it can be per-

fectly represented by a single graph [3].

If the relation M above is specified as the closure of a polynomial
set M’ under the corresponding set of axioms then polynomial de-
cision algorithms, for ascertaining whether a given triplet is in the

relation, are easy to construct for the above 2 cases.



The first of the above mentioned results is a particular case of a result proved in [2]:

A relation M is closed under the axioms 1, 2, 3 and 5 iff it can be represented in a set of
graphs which is closed under the ‘@’ graph operations (the @ operation will be defined in the

sequel).

It follows from [2] that even thought the closure of a polynomial set M under the axioms
1, 2, 3 and 5 may require exponentially many graphs for its full representation, still, a simple po-
lynomial algorithm for deciding whether a given triplet (x, z, y) is in the closure can be easily

constructed.

A relation M which is closed under the first 5 axioms was denoted in [4] by the term
Graphoid. The purpose of this paper is to extend the results in [2] to Graphoids. It will become
clear in the sequel that such an extension is far from trivial. We have therefore restricted our
goal to the case where the Graphoid is given as the closure under the first 5 axioms of a relation

M which is perfectly represented by 2 graphs only, to be called R (red) and B (blue).

2. Notations and Definitions

G;(V;)is a graph over V;.

If o, B, are elements of V; then ‘‘(0, B) is a nonedge of G;*’ means that (¢, B) is not in the edge

setof G;.

c
For VJ ;gvl'



define (o, P) as a nonedge of G; mod V; if o is not connected to B in G;(V;/V;) i.e., removing

the vertices V; and the incident edges from G;(V;) will render ¢ and 3 disconnected.

Given 2 graphs G;(V;) and G; (Vj) let V, =V, 0V, and assume V, # ¢. Define the

graph G (V) = G; © G; as follows:
1. Every edge of G; and G; over V} is an edge of G, (V)

2. Every pair (o, 8) over V; which is a nonedge of G; mod (V, —a— B) or is a nonedge of

G; mod (V, —a— B) is a nonedge of Gy

3. Every pair (o, ) to which 1 or 2 above does not apply is an edge of G

Example 1.
1
1
6
2 5 2
3 &4 3 4
G; G;
1
2
4
3
Gk =G£ @ GJ

G, is not implied by either G; nor G ;€8 (1,2,3,4), (1,2,3) and (1,2,4) represented in G, are not



represented in G; norin G;.

Example 2.
2 1 1
2
6
3 5
4
G, 4
G;
1
2
3
4
Gk = G,‘ @ Gj

In example 2, (1,4), (2,4), (3,4) are edges of G; by the first rule. (1,2) is an edge of G since
(1,2) is not a nonedge of G; mod {3,4} and a similar situation exists for (2,3) and (3,1). Here the
G, graph is complete and is therefore superfluous. The relations discussed in this paper are rela-
tions which can be perfectly represented by graphs. We will use, therefore, in the sequel, the no-
tation <xlzly > for both the independency statements in the relation (the (x, z, y) triplets) and

their corresponding graph cutset separation triplets.

It has been shown in [2] that the set of graphs {R,B,R ©® B is closed under the axioms
1,2, 3, 5. The vertices common to two graphs R and B will be denoted by Vgp. In the left hand
side of the contraction axiom there are two triplets: one of the form <X {YZIW > and the other

<X1Z|Y>. The first one will sometimes be referred to as the ‘big’ one, and the second one as



the ‘small’ one.

Let S be a set of graphs. We define
1. [S]is the set of triplets represented by the graphs in the set S.

2. CL:(S) is the set of all triplets in the closure under the 5 graphoid axioms of the triplets

represented by the graphsin §.

3. cont (R, B)is defined as cont R,B)=CL;({R,B,R, O B})-[{R,B,R,O B}].
Remark: We will say that ¢ is in § when the triplet 7 is represented in one of the graphs in the

set of graphs S.
Preliminary Lemmas

Lemma 3.1: Let R and B be two graphs, such that <X 1ZY1W>isinR, <X1Z1Y > isin B, and
in addition the set W is in V. Then the triplet t = <X 1ZI1YW >, which is implied by the previ-

ous two triplets by contraction, isinR @ B.

Proof: Since W is in Vj, it follows by strong union that <X(ZWIY > isin B. 1 is im-

plied by this triplet and <X |YZ|W >, which is in R, by intersection. Therefore ¢ is represented

inR®B=[(R,B,R®BJ}].O

Lemma 3.2: Let R and B be two graphs, such that their vertex sets are equal. Then

cont (R,B)=1.



Proof: For any two triplets, one in R and one in B, which imply a third triplet by con-

traction, Lemma 3.1 holds. Therefore CL;({R,B,R® B}1=[{(R,B,R® B}).0O

Define the symmetric contraction (notation: SC) axiom as below:

SC: <QIXZIYW> & <QXI1ZYIW> & <XI|Z1Y> - <QXIZIYW >,

Lemma 3.3: The contraction axiom and SC are equivalent modulo the decomposition axiom.

Proof: (I) Symmetric contraction implies contraction: assume that SC holds. Let Q be
the empty set. <@ IXZIWY > always holds. Thus: <X!ZYiIW> and <XI|Z!Y> imply
<X1Z1YW >. (I) contraction implies SC: assume that contraction holds. Given that the left

hand side of SC holds we have the following:

1. <QIXZIYW >

2. <QXIZYIW >

3. <XI|Z1Y >

4, <X |ZY W > follows from 2 by decomposition.

5. <X |Z|YW > follows from 3 and 4 by contraction.

6. <QX|Z|YW > follows from 1 and 5 by contraction. (J
Note: in order to get the right has side of the SC axiom one has to apply twice the contraction
axiom. This observation is valuable since in the development of a contraction algorithm (see

section 3 in the sequel) the use of the SC axiom instead of the contraction axiom may save time.



Similar to our previous notations, in SC the triplets <QXIZY|W > and <QIXZI1YW >
will be referred to as the big triplets, and the triplet <X |Z1Y > will be referred to as the small tri-

plet.

Let G =(V, E) be a graph, and V"’ a subset of V. Let C (V") be the complete graph over
the vertices V’. ® G (V") is defined to be the graph resulting from G and C (V") by the ® opera-

tion. We can prove now the following:

Lemma 3.4: (The restriction lemma): Let G =(V, E) be any graph, V' is a subset of V. Let
Gy-=® G (V). Then <X|Z|Y > is represented in Gy if and only if <X |Z|Y > is represented in
Gand X UY UZ cV’. (We call this lemma the restriction lemma because it shows that if we
have a graph G, representing a set of triplets, and we want to restrict our attention to a subset of
its vertices, namely to represent the subset of triplets over a certain subset of vertices, we can do

that by considering the restricted graph G—V:.)

Proof: The set of triplets over V’ represented in G satisfy axioms 1, 2, 3, 6 and 7.
Therefore they can be perfectly represented in a graph over V' (Section 1). It was shown in [3]
that such a set of triplets (and its corresponding graph) is completely determined by its subset of
triplets of the form <alV’—a —b1b>. It follows from the definitions that the nonedges of 5‘;'
are in a 1 - 1 correspondence with the triplets of the form <alV’—a — blb > represented in G
(a, b are vertices in V). (-}_V: is therefore the graph, perfectly representing the set of triplets

represented in G over V' 0.
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4. The Emptiness Problem

Given two graphs, R and B, it is sometimes desirable to know whether any triplets not
represented in the given graphs but implied by contraction (and not by intersection) from the
represented triplets exist. The algorithm provided in this section solves this problem polynomi-
ally. We will use this algorithm in the sequel as a stopping rule for a more complex algorithm.
Formally, the emptiness problem for two given graphs R and B is to decide whether

cont (R,B)= Q.

We need first a few lemmas. If cont (R, B) # J then there exist 3 triplets 1y, £, and ¢,
such that ¢, and ¢, are in different graphs of the set S ={R, B, R ® B and t3, which is implied

by contraction from T; and T, is notin §.

Lemma 4.1: If cont (R, B) # < then we may assume the following configuration w.l.0.g.

t,=<XIYZIW>,t,e R,1,¢B,t;¢ ROB
1,=<X|ZIY>,t,eB,t,¢ R
t3=<X1ZIYW>,13¢ §,S=(R,B,RO B}

Xlle CVBR!W QVB,W#@.

Proof: cont (R,B) = implies the existence of a triplet 13 € S as above. f; € s im-
plies that t; € R ® B. (Otherwise 7,, whose vertex set is a subset of the vertex set of 1y, must
also be represented in R @ B which would imply that £5 is in R © B). We will assume there-

fore that £, € R. (Otherwise exchange the names of R and B). If ¢, isinB thent,isinR ® B.

11



Ifz,isin R ®B and isnotin R then 15 isin B. Therefore we can assume that 7 isin B.

W is not a subset of V5 since otherwise the set of vertices of 13 would be a subset of Vg

implying that t; € §.

Lemma 4.2: Given that triplets t,, £, and t5 as in lemma 4.1 exist, another set of triplets ¢,", t,’,

15" can be found such that

t'\=<alVpggp —alW”>
t'y=<alVgp —a —blb>
t'3=<alVpp —a — |bBW’>

a, b are vertices; W' =W —Vpp 20

ffleR,I’léB,tﬁéR@B;t’zEB,IEQ R;t’3é S.

The proof of this lemma is lengthy and is omitted. The proof is based on the following argu-

ment:

Given that 7, = <X 1Z?Y > ¢ R there must be two vertices a €X and b €Y which are

connected in R according to one of the following 4 alternatives

1. (a,b)isanedge in R

2, a is connected to b in R via a path inside Vg — 2
3. a is connected to b in R via a path outside Vpp
4. a is connected to b in R via an alternating path, inside Vpp —Z and outside Vpp

12



For any of the above alternatives, triplets t”;, t’,, t'3 as required can be found - based on the
given triplets #,, 5, 3. Notice that since R @ B e §,t’; ¢ S implies that '3 is not implied by

the intersection of any two triplets in S.

We are now ready to present the algorithm.
Emptiness Algorithm, Empty (B, R).
Procedure check (B R)

1. Construct the two graphs: B=BO comp (Vgg) and R=R Bcomp (Vgg) where

comp (V) is the complete graph over V.

2. Check if R implies B (i.e., check whether all the independencies represented inn B are
represented in R, due to graph properties it is enough to check the independencies

represented by nonedges in B, <al Vg—a-—-blb>) If R implies B return “false’

3. Else -- collect all witnesses to that fact, namely all edges (a, b) in R which are nonedges
inB.
4, For each witness (a, b) check if there exists a nonempty set U < Vi — Vpp such that ei-

ther <alVpp ~alU> or <b1Vgp —bIU> holds in R. If this test succeeds for at least
one of the witnesses -- return true, otherwise return false.

End of procedure.

13



Set Empty (B ,R) = no iff Check (B, R) or Check (R.B)=1rue.

Lemma 4.3: The emptiness algorithm is polynomial (in the maximal number of vertices in R or

B).

Proof: The complexity of the algorithm equals the complexity of the procedure involved in it.

As to the procedure:

Step 1 is polynomial by definition of the ® operation.

Step 2 is polynomial (implication is determined by edges comparison, since both graphs have the

same set of vertices).

Step 3 is also polynomial since it depends on the number of edges and the procedure for each

edge is trivially polynomial.

Step 4 is polynomial as is easily seen.

Lemma 4.4: The emptiness algorithm is correct.

If cont (B, R) # & then, by lemma 4.2 a triplet of the form <a | Vg —e — b 1bW’> is im-
plied, and all such triplets will be found in step 4 of the procedure. Therefore if the algorithm
succeeds then cont (R, B) # &, while if the algorithm fails (in step 2 implying that all small tri-
plets in B are in R or in step 4 implying that the small triplets in B have no corresponding con-

traction - candidate triplets in R ) then cont (R, B)# <. 0



5. Contraction Algorithm

Unlike the intersection algorithm [2], the contraction algorithm involves some intrinsic
difficulties which must be taken into account. Specifically, consider the following example: Let
R and B be the graphs shown in Figure 5.1. Then <x |yz lw> is represented inR and <x Iz ly>

is represented in B. By contraction we get <x |z |yw> which is not represented in R norin B.

Figure 5.1

If we disconnect u from y or 4 from x in R (which are the only possibilities for representing the
new triplet in R) we will get a new graph, say the one in Figure 5.2, replacing R, in which
<x Iz |lyw> is represented. But also the triplet <ux |z |yw > is represented, and this triplet is not
implied (by the graphoid axioms) by the triplets represented in R and B, as one can check expli-

citly.

15



Figure 5.2

Therefore the only way out is to represent the new triplet <x |z |yw > in a new graph, the one in

Figure 5.3, and add this new graph to the set of graphs B and R

Z

Figure 5.3

To overcome the above mentioned difficulties, we will use the following construction.
We will split the algorithm into cycles and each cycle will have two stages: In the first stage we
will check (using the emptyness algorithm) for any pair of graphs in the set of graphs construct-
ed up to the previous stage whether there exists a new triplet implied by contraction from the tri-
plets represented in the two graphs in the pair. If the answer is yes then we will either modify
one of the graphs to account for the new triplet or construct a new graph which will represent

that triplet (given that the first alternative is not feasible).

16



It will follow from the construction that the algorithm is exponential in it’s input, but we
will show that this might be necessary in some cases. On the other hand we will show that the

algorithm is polynomial in its’ output.
The Algorithm:

Procedure Confront (current, done):

/* done and current are sets of graphs */
1. Initialize: next=;
/* next is a set of graphs */
2. Loop: while current # & do
Let G be a graph in current

2.1 Collect edges: inserttoasetS all (a,b) e Vp x Vp such that

1) a#b.
ii) (a,b)is a nonedge of P
iii) (a, b)is not a nonedge of G mod Vp—a—b.

2.2 Constructions: Foreach (a,b)e S find Vg (a, b) - the set of all vertices in G such
that discarding Vp—a from G will render them connected to a, and discarding

Vp—b from G will render them connect to b.

17



2.2.1 If Vp U V(4 )= Vi - ignore this edge and proceed to the next one.
222 fVg(a,b)=3 disconnect g fromb in G.

223 else - construct G, , =BG (V5 — Vi (a, b)) and disconnect a from & in

that graph. Add the new graph to the set next.
2.3 done = done U {G }; current = current —{G };

3. current = next;

End.

Contraction Algorithm

1. ConstructP =R O B
2. Initializations: Set current={R, B}; done =,

3. For each graph G in current if cont (G, P ) = & then set done = done U {G }; current =

current —{G J.
4. If current = & then done = done U {P }; Qutput (done); halt.
5. Confront (current, done);

6. Go to 3.

Lemma 5.1: The algorithm halts.

Claim: The Confront procedure ends.

18



Proof: The number of operations involved in steps 1 and 3 is finite. Step 2 is a loop.
The loop is carried out once for each graph in current. For every graph in current the number
of operations involved in step 2 is polynomial in the number of vertices in P. Therefore the con-

front procedure halts.

Proof (of the lemma): The number of operations involved in steps 1 and 2 of the algo-

rithm is polynomial in the size of Vp.

Step 3 has a loop, which is carried out once for each graph in current. The number of opera-

tions performed by step 3 for any particular graph is polynomial in the size of Vp.

The number of operations involved in step 4 is finite.

Step 5 is finite by the above claim.

The main loop of the algorithm is defined in steps 3 to 6. Let
n =max{ Vg I=1Vp |, IV |-1Vp |}. Asshown by the argument below, this loop is carried out

at most n times and therefore this loop is also finite.

Let C’ be the set of graphs resulting from the set C after an execution of the confront
procedure, where C is the set current input to the procedure. The vertex set of a graph in C'is
a proper subset of the vertex set of the graph in C from which the graphin C " originated. It fol-
lows from the definitions that Vp is a subset of the vertex set of any graph produced all through
the algorithm. Thus after at most n loops all the graphs in current have the property that their
vertex set coincides with Vp. By lemma 3.2, when this happens all the graphs in current will be

moved to done in step 3 of the algorithm and the algorithm will halt.
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Lemma 5.2: done cCL;(R, B).

Proof: By induction on the loops of the main part of the algorithm.

Basis: done is initiated to the empty set. After the first loop done ={R, B} and the triplets in R

and B are in the closure by definition.

Assume all triplets represented in the set of graphs current input to the confront pro-
cedure are in CL; (R, B). New triplets will perhaps be created by deleting edges from graphs.
If an edge (a, b) was deleted from a graph H then the condition enabling this operation held,
namely Vy (a, b)=. That is to say there is no path in H between @ and b outside Vp. The
set of vertices in H can be partitioned mod Vp~a-—b into two subsets U/, and U, such that U,
remains connected to @ but not to b, and U, remains connected to & and not to a when
Vp—a—b is removed. In other words, after deleting Vp—a—b from H, the remaining graph con-
sists of two components: one of U, and a, and the other of U, and b, which means that
t1=<U{|Vp=b1bU,> and ty=<Ua|Vp—atU,> were represented in H and
t3<a |Vp—a—-b |b> was in B. After the deletion of the edge (a,b) in H we will have
ty=<U,u{a}|Vp—a-b |{b} v U,> represented in the resulting graph H’, and this triplet is
implied from t,, t, and 74 by symmetric contraction. This implies, by weak union which holds
in graphs, that <a |Vy—a—b |b> is represented in H’. Now CLg (R, B) is closed under weak
union which implies that this new triplet is also in CLg (R, B). But <a |Vy—a-b!1b> is the
only triplet, involving all the vertices of H, which is in H#” and not in H. Therefore, by the in-
duction hypothesis, all the triplets of the form <x | Vy-x-y |y >; x,y vertices in Vy, which are

in H' are in the closure. We can use now an inductive argument, similar to the argument used in

20



the proof of Theorem 1 in [3] to show that all the triplets in H” are in the closure. If step 2.3 of
the confront procedure is applied then, by the restriction lemma (section 3) G, , is in
CL;(R,B) given that R and B are in CL; (R, B) and the same argument as above applies for
the removal of an edge from G, ;. The above argument holds for every edge deletion and
therefore the set of triplets in current after the execution of the confront procedure is also in

CLg(R,B).O

Lemma 5.3: After the algorithm halts, the set of triplets in done in closed under the 4 pseudo-

graphoid axioms.

Proof: Closure under symmetry, decomposition and weak union is trivial, since for
every triplet represented in a graph G, all triplets resulting by these axioms are in the same
graph. To show closure under intersection we prove that after the algorithm halts, for every two
graphs G 1, G, in done there is a graph G ;; is done such that G |, implies G, 8 G,. The details

of this part of the proof are omitted.
Lemma 5.4: When the contraction algorithm halts, CL; (R, B) c done.

Proof: Assume b.w.o.c. that the algorithm halted and CL; (R, B) @ done. Then there
exists a triplet 7 which is implied from triplets in R and B by a chain of derivations, and ¢ is not
represented in done. Let ¢, t5...t be this chain-of derivations. Let f; be the first triplet in the
chain which is not represented in done. By lemma 5.3, since the algorithm halted, done is
closed under the 4 pseudographoid axioms. Therefore #, is implied from two triplets ; and ¢; by

contraction, where i, j <k. To complete the proof we show that if #;, implied by contraction
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from ¢; and ¢, is not in done the algorithm will run forever contrary to lemma 5.1. The details

of this part of the proof are omitted.
Corollary 5.5: The algorithm is correct
Proof: Follows from lemmas 5.2 and 5.4.

Lemma 5.6: The time complexity of the algorithm is polynomial in its output (but may be ex-

ponential in its input).

Proof; A close examination of the algorithm shows that every processed graph will
eventually end up in the set done. Therefore if the output is polynomial (in the number of
variables-vertices over which the graphs are defined) then the set of graphs carried in memory by

the algorithm is polynomial all through its execution.

It is enough to show therefore that every iteration of the algorithm is polynomial and in-
volves an addition of at least one graph to the set done. Now, every iteration (except the last
one) involves one call of the procedure Confront, and, if no graph is added to the set done in step
3 then at least one graph is added to the set done in step 2.3 of the procedure. Straightforward
examination of the steps involved in one iteration of the algorithm will show that every step (in-
cluding the procedure confront) is polynomial in the number of graphs in the set current at the
time of its processing. The number of graphs in the set current, all through the execution of the

algorithm, is bounded by the number of graphs in the set done at output. [
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6. The Space Complexity of cont(R, B)

The algorithm presented in the previous section constructs a set of graphs representing
cont (R, B) for 2 given graphs R and B. Unfortunately, the number of graphs at output may be

exponential. The following set of counterexamples shows that this might be necessary.

Theorem 6.1: For any integer n 2 2 there are two graphs R and B over 2n + 1 vertices such

that cont (R, B) requires exponentially many graphs for its graphical representation.

Proof: LetX ={a,,...,a,},Y ={by,...b,}and V =(V,.,V,}. The graph B is defined

as follows: Vz =X Y u{z};

EB ={(a",2), (b;'! 2)9 (ahaj)(biabj):iij € {13---s ﬂ}l '-'tj.} .
The graph R is defined as follows: Vp =X OY U {2} U {v;:1<i <n};

ER ={(a",vi), (V‘-,bl'), (b",Z), (a;,aj), (bl,bj)l Sl,] <n,i ¢j} .

e.g., for the case n = 2 the graphs are:

ay bl aq bl

aj

Va

We proceed by proving two lemmas:

Lemma 6.2: All the 2" — 2 triplets of the form <a;q, ..., @y | @415 @in 2 1 YVipi15ees Vi > Where
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{i 10 i} and dp4 10000 £, }:0 <1 < is a partition of the set {1,...,n}-arein CL;(R,B).

Proof: Let {iy,.., i} and {iz,y,.... in} be a partition of {1,..,nJ. Then we claim that
&@;qyer By | Big 10 Gin YZ | Vigy1seens Vi > 15 TeprEsented in R. For every i the vertex v; has rank
2 being connected to the vertices a; and b;. If we discard g;, b; and z from R, then v; is isolat-
ed. Therefore we have that <a;y,..., G 1 Qi1 4150 @in YZ 1Vj3415.0 Vi > 1S represented in R - as

claimed.

Next we claim that <a;,..., @ |@j4q--s @2 | Y > is represented in B. This follows by
weak union from <X 1z 1Y >, which is in B, as is easily seen. The resulting triplet by contraction
iS €@ 100er By V@140 Bin 2 1Y Vg 4g5e0s Vi >, There are 27 — 2 partitions of (1,..., n} where nei-
ther {iy,..., i;} nor {i;,q,.... i, } is empty. For each such partition our construction holds, therefore

we have 2" — 2 different resulting triplets.

None of these resulting triplets is already represented in B,in R ® B or in R. Since no
‘v’ labeled vertex is in B, and in every resulting triplet there are ‘v’ labeled nodes, none of the
triplets is in B. B =B ® R therefore the triplets are not in B @ R either. In all resulting tri-
plets there are no ‘v’ labeled nodes in the middle part, so that if the set of vertices in the middle
part of any such triplet is discarded from R then all paths between a; and b;:j € {iy,..., 1} } are
still in R, therefore by definition none of the triplets is represented in R. This completes the

proof of the lemma. [J

For the next lemma we need the following definition:

A graph is two m -connected cliques of order n (tcc in short) if it
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consists of two cliques, with vertices indexed from 1 to n, it has
one additional vertex connected to all 2n vertices in the two
cliques, and it has a set V of m vertices 0<m sn Vi1,.... Vim and
{i1y .o im} ©{1,.,n}, such that v; is connected to the two ver-

tices indexed j in the two cliques, and to no other vertex in the

graph.

Notice that the graph R is ‘two n-connected cliques’ of order n, and the graph B is ‘two

0-connected cliques’ of order n.

Lemma 6.3: Let D be the set of graphs output by the contraction algorithm when applied to the

graphs R and B. Then every graph R”in D is mec for some m.

Proof: By induction on the order in which graphs enter the set done in the execution of

the algorithm.
Basis: The first two graphs to enter done are R which is ncc and B which is Occ.

Step: Let R’ be an mcc graph, confronted in the confront procedure with P, and as mentioned
in lemma 6.2, in this case P =B. The set of pairs of edges collected in step 2.1 in the procedure
is $ ={(a;, b;):v; € Vg}. Every pair of vertices (a;, b;}is a nonedge in B, and the pair 1s not a
nonedge in R’ modulo Vz—a;-b; if and only if the vertex v; is in the vertex set of the graph R".
All the pairs of vertices of the form (g;, b;) where i #j are nonedges in both B and R, and

clearly the vertex z cannot appear in any collected pair.
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Let (a;, b;) be a pair in S. The only vertex connected both to a; and to b; modulo V3 in
R’ is v;, therefore in step 2.2 of the procedure, Vg(a;, b;)={v;}. If R’ is lcc, then there is only
one pair in the set S, and it will be ignored. Thus the graph R ’ is ignored in this case, and no
non mcc graph is built. Otherwise, a subgraph R of R’ will be built, over the set of vertices
Ver—v; and the edge (a;, b;) will be disconnected in R ”. R” is (m-1)cc. This completes the

proof of this lemma.

We can now prove the theorem:

Assume b.w.o.c. that there exist a set D’ of graphs representing CL; (R, B) and there are less
then 2" — 2 graphs in D’. Then there is a graph H € D’ representing at least two triplets from
the set of triplets described in lemma 6.2. Let <a;y,.... @y | @415 Bin 2 1YV 15, Vi > and
<bjqaes A | G100 Ajin 2 1YVt 4100 Vjin> DE tWO different triplets represented in H, and let
F € {ijs1se in} = jks1ss Ju}. (If the difference is empty then reverse the order of the subtrac-
tion). Then, by transitivity, either )= <a;y,... @y !@js1sen @jp2zlv,> is in H, or
12= <V 1@y 2 1 Vjpy1ses Vig > I8 i H. If ¢, is in H then by decomposition the triplet
1’1 =<8, |@j 15 Bjpz 1v,> s in H, and therefore by the assumption that H is a part of a

representation of CLs (R, B), t’y € CLg(R,B). If t5 is in H then again by decomposition the

triplet £’y = <b, 1@4 415, @ju 2 |V, > is in H and therefore in CLg (R, B).

But, none of the two triplets ¢, and ¢’, can be represented in an mcc graph, since ¢’y re-
quires that no edge exists between a, and v,, and ¢”, requires that no edge exists between b, and
v,. Therefore no one of these two triplets is in the set of graphs D produced by the contraction

algorithm. By corollary 5.5 D =CLg (R, B) and therefore no one of the triplets t"y, ¢’y is in
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CL;(R,B) and that is a contradiction. Therefore there can be no representation of CL; (R, B)

for the graphs R and B defined here with less then 2" — 2 graph. The proof is now complete. [
7. Membership Algorithm

In this section we show that the question whether a given triplet <x iz [y > is in
cont (R, B) for 2 given graphs R and B is answerable in polynomial time. This result is some-
what surprising, given the fact that the graphical representation of cont (R, B) may necessarily

require exponential space.

Definition: The membership problem for 2-graph contraction is the following problem: Given 2

graphs R and B and a triplet z, decide whether t € cont (R, B).
Membership Algorithm for 2-graph Contraction

Let V, be the set of nodes represented in the triplet 7.

L. If V, ¢ Vg and V, & Vg - return no.
2. IfV, c Vg A Vp thenconstruct P =R ® B. 1 € CL;(R,B)ifandonlyifr isinP.

3. Else - assume V,  Vp (otherwise exchange the names of the graphs).
3.1 ConstructP =R ® B; V,p =V, U Vp < Vp then construct R, =8 R (V;p) (see lemma 3.4).
3.2 Collect all pairs (a, b) of vertices in P which are nonedges in P and edges in R ;.

3.3 For each pair (a, b) collected in step 3.2, find the set of vertices V(a, b) such that discard-
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ing Vp —a from R’, will render them connected to a, and discarding Vp — b from R’, will

render them connected to b. If V(a, b) = & then remove the edge (a, b) from R”,.

4. Let R, be the graph obtained from R, instep 3.3. t € CL;(R,B)ifand only if 7 is in R,.
Theorem 7.1: The membership algorithm is correct.

Proof: If V, « Vi and V, @ V then ¢ cannot be in CL; (R, B). This follows from the
fact that in all the graphoid axioms, all the nodes that appear on the right hand side of an axiom

appear on the left hand side of that axiom.,

If V, « Vg n Vp then it follows from lemma 3.2 that t € CL;(R, B) iff t isin P. Oth-

erwise assume V, c Vp and V, ¢ V.
The theorem follows, for this case, from the two lemmas below.
Lemma 7.2: If the triplet ¢ is in CL; (R, B) then 7 is in the graph R,.

Proof: By corollary 5.5, t € CL; (R, B) if and only if ¢ is represented in a graph R” in
the set of graphs done output by the contraction algorithm, when applied to the pair of graphs R
and B. By the restriction lemma, ¢ is in R if and only if ¢ is in @ R(Vp). To complete the
proof of the lemma we show that if ¢ is in the graph @ R’(V,p) then ¢ is in the graph R, by

showing that the graph R, implies the graph ® R’(V,p). The details are omitted.

Lemma 7.3: If the triplet ¢ is in the graph R, thent isin CL; (R, B).
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Proof: By the restriction lemma, the set of triplets in the graph R ’, is exactly the set of
triplets represented in the graph R over the set of vertices Vip. Therefore all the triplets in R/,

are in CLg (R, B).

To complete the proof we show that the transformation of R’; into R, involving the re-
moval of some edges (but no vertices) preserves the above property namely, the triplets in R, are

in CL; (R, B). Details are omitted.

The algorithm has no iterations and, as is easy to see, all its steps are polynomial, which

proves the following theorem.

Theorem 7.4: The membership problem for 2-graph contraction has polynomial time

complexity.

29 "



Bibliography

[1]

(2]

[3]

[4]

(5]

[6]

Geiger, D., "Towards the Formalization of Informational Dependencies,”
UCLA Cognitive Systems Laboratory, Technical Report 880053 (R-102),
(Based on the author’s MS thesis), December 1987.

Paz, A., "A Full Characterization of Pseudographoids in Terms of Families
of Undirected Graphs,” UCLA Cognitive Systems Laboratory, Technical Re-
port 870055 (R-95), September 1987.

Pearl, J., and Paz, A., "GRAPHOIDS: A Graph-Based Logic for Reasoning
about Relevance Relations,” UCLA Computer Science Department, Techni-
cal Report 850038 (R-53); In Advances in Artificial Intelligence-II, Edited
by B. Du Boulay et al. North-Holland Publishing Co. 1987.

Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan-Kaufmann, San Mateo, CA., 1988.

Studeny, M., "Attempts at Axiomatic Description of Conditional Indepen-
dence,” Workshop on Uncertainty in Expert Systems, Alsovice, Chechoslo-
vakia, June 20-23, 1988.

Verma, T., "Some Mathematical Properties of Dependency Models," UCLA

Cognitive Systems Laboratory, University of California, Los Angeles, in
preparation.

30



