Computer Science Department Technical Report
Cognitive Systems Laboratory
University of California
Los Angeles, CA 90024-1596

CONSTRAINT-DIRECTED APPROACH TO DIAGNOSIS

Rina Dechter November 1988
Judea Pearl CSD-880093

TECHNICAL REPORT
R-72-1
September 1988

CONSTRAINT-DIRECTED APPROACH TO DIAGNOSIS*

Rina Dechter** and Judea Pearl
Cognitive Systems Laboratory
UCLA Computer Science Department
Los Angeles, California 90024
dechter@oahu.cs.ucla.edu, judea@lanai.cs.ucla.edu
Phone: (213) 825-3243

ABSTRACT

The paper presents a constraint-satisfaction framework for formulating diagnosis problems and
an algorithm for identifying the minimal sets of faulty components that explain an observed
behavior. The algorithm runs in linear time whenever the constraint graph is singly connected.
In general, the complexity is exponential in the clique-size of any chordal graph in which the
constraint graph can be embedded. Examples of circuit diagnosis problems are worked out and
illustrated.

Topic: Principles, diaghosis
Status: research
Domain: circuit diagnosis

* This work was supported in part by the National Scicnce Foundation, Grant #DCR 85-01234 and Air
Force, Grant #AFOSR 88-0177.

s Current address: Computer Science Department, Technion, Haifa, Israel

1. INTRODUCTION

The behavior of a physical system (e.g., electronic circuit) is usually specified in terms of
an assembly of interconnected components, each complying with some local, input-output con-
straint. For example, a circuit can be modeled by the following system of constraints: measur-
able quantities, including intermediate (unseen by the user) inputs and outputs, are real vari-
ables, and the status of each component is represented by a binary-valued variable. The value
0" to a component-variable indicates that it is functioning properly, while a value "1" indicates
a faulty component. A constraint is an i-ary relation between a component and its input and out-

put variables.

To illustrate this formulation, consider the example of Figure 1, treated in [De Kleer and
Williams 86} [Davis 84] and [Genesereth 84). M, M, and M5 are multipliers, while A and 4,
are adders. The inputs appear on the left, the outputs on the right. The numbers in brackets are
the expected values at all potentially-observed points. The problem is, given the digital circuit
depicted in Figure 1, to find the set of malfunctioning components which most likely would have
caused the observed behavior.

A=3 X[6]

— M F= 10
Al
B=_ [12]
C=2 _I- Y[6]
|
Y D.‘.‘.a—
A2 | G1=2 12
E=3 |—{ m3 [12]
Z(6]
Figure 1.

Figure 2.

1 12
L ‘ . mapped to
M
X = {11,12)
Figure 3.

The constraint network corresponding to this circuit is shown in Figure 2. Constraints
are represented by a dark circle over the associated arcs (see Figure 3). The arcs can be directed
or undirected. In the present example the arcs are directed indicating the functional dependence
between inputs and outputs. The constraint representing multiplier M) is given by the following
table: '

)
(=)

[\®]
p—t
0

where e stands for "any value".

Initially, when no observation is available, the "expected values" of the output variables
are determined by a solution consistent with the assumption that all components are functioning
properly. Typically, there is only one solution to the initial problem, and this which determines
an unique set of "expected values" for all variables. The diagnostic task is initiated when one of
the expected values differs from the observed value, and the task is to find a new solution con-
sistent with the observed value. In the example above, the expected value 12 of F differs from
the observed value 10. A new consistent solution will have one or more of the component-
variables with value "1", indicating a set of malfunctioning components which constitutes a pos-
sible diagnosis of the problem.

We are normally not interested in all diagnoses, but with those that are minimal, i.e.,
solutions for which no subset of component-variables can switch their values from "1" to 0" and
still be consistent. More ambitiously, we may wish to identify a diagnosis with minimal number
of fanlty components, i.e., a consistent solution with minimal number of "1"s for component-
variables. ‘

Constraint Satisfaction Problems (CSPs) are, in general, NP-hard, so the diagnosis prob-
lem may, in the worst case, require exponential complexity. However, in cases where the con-
straint graph is sparse, efficient techniques are available, based on tree-decomposition [Dechter
and Pearl, 1987, 1988], which find a consistent solution in a reasonable time.

In this paper we extend these techniques to the task of finding minimal solutions. We
first demonstrate the method on Tree-CSPs, i.e., CSPs having constraint graphs in the form of a
tree of binary constraints, then extend the method to non-binary constraints. The extension to
general CSPs is straightforward [e.g., Dechter and Pearl, 1988] and involves clustering com-
pound variables to form a tree-structure (called a join-tree), then running the tree algorithm on
the join-tree. The complexity of this method is exponential with the size of the largest cluster
formed, namely, the size of the largest clique of the chordal graph in which we choose to embed
the given constraint graph.

2. THE DIAGNOSIS PROCESS

We next provide a scheme for finding a solution with minimal numbers of "1"s on a
Tree-CSP. The scheme bears many similarities to that developed by probabilistic considerations
[e.g., Geffner and Pearl, 1987; Pearl, 1988], but casting it in constraint-based formalism facili-
tates the use of many techniques and languages developed for constraint processing.

2.1 Finding minimal-number-of-1's solutions in a tree-CSP

Given a Tree-CSP, select a root and direct the arcs from leaves to root. Associate with
each value of each variable a weight w, defines as follows. Let V be a variable with a value v (v
can be "0" or "1"). The weight w(v) measures the minimal number of "1"s in a partial con-
sistent solution of the subtree rooted at V, when the value of V is v. The weight of a "0" leaf
values is "0" and the weight of a "1" leaf values is “1".

The weights of the rest of the values can be computed recursively from leaves to the root
as follows: Given a variable V with value v and a set of child-nodes C,, C5, C5 as in Figure 4,
for each child node, C, compute the minimal weight among all its values-weights that are con-
sistent with v in V. The sum of these minimal weights over all the child nodes is the weight of
v. Each value also keeps pointers to all its children values that correspond to these minimum
weights.

v v
min{w1,w3}
3
c1 c2 c3 ci
w(v) = v+§ min{w(cij) | (v,cij) consistent}
Ci
Figure 4.

Clearly, the minimum weight associated with root node values is the desired minimal
number of "1"s in a complete solution. Such a solution (or all such solutions) can be found by
tracing the marked pointers going from the root back to the leaves. The complexity of marking
the weights is O (nk?) when n is the number of variables and & is the number of values. The

process of walking along the pointers to retrieve a solution with minimal number of "1’s" is
O (nk).

When only a subset of variables (i.e., component-variables) are of interest, we want to
find a solution with minimal number of "1"s in these designated variables. The scheme requires
only a minor modification, ensuring that non-component variables will not add their own value
to the weight calculation.

2.2 Handling Non-Binary Constraints

To handle non-binary constraints we assume that the underlying graph generated by all
the constraints is a tree (as is the case in our example). We generate a different graphical
representation of the problem in which nodes are either single nodes (as before) or compound
nodes, containing a subset of single nodes. Arcs will be directed from a single or a compound
node into a single node. Figures 5 and 6 and 7 show steps of this process:

1. Considering first only the tree-representation, induce direction on the tree to generate a
directed tree. If the graph is directed already change a minimum number of directions to
result in a rooted tree. (Compare figures 5 and 2, arrows point from children to parents).

2. For each circled subset of variables there is one variable which is an ancestor of all the
rest in the directed tree generated at step 1. Make all the children nodes one compound
variable (indicated by a circle) and make this circled node a child node of the ancestor
variable.

In Figure 5, for the circled subset fA{ X F Y}, Y is an ancestor of X F and A | and there-
fore, its new graphic representation is given in Figure 6 and 7.

change of
directidn

Figure 5. Redirecting arcs to generate a rooted tree.

Figure 6.

Figure 7.

In the new graph representation, arcs represent binary constraints between compound
variables. In this specific example the constraints are between compound and single variables.
The constraints themselves can be easily derived from the initial specifications, recalling that the
set of values for a compound variable are all the possible tuples of the single variables’ values
that appear in the initial constraint. For instance, the set of values of the compound variable
(M, A,C) are {(0, 2, 3), (1, 2, 3)} and the constraint with variable X will permit the value
X = 6 with the value (0, 2, 3) and the value e with the value (1, 2, 3).

The weight computation is now defined as for binary trees, using summation to compute
the weight of a tuple from the weights of its single values.

3. ADETAILED EXAMPLE

We give a step by step calculation of the weights of the root node G .

1. Calculating Weights of Leafs: Figure 7 shows the weights of all leaf nodes’ values. For
example the weights of the compound variable M, A, C) are computed as follows:
wiM=0,A=2,B=3) =wM=0)+w@A =2)+w(B =3). Only M, is a device
variable and its value is O, therefore: w(M;=0)=0 since A, and B are not device vari-
ables we have: w(A =2)=0, w(C =3)=0, and therefore w(0, 2, 3)=1. Similarly we
get: wiM=1,A=2,C=3)=1.

M1,A,C M2,B,D M3,C,E

Figure 8

Computing the Weights of X: The possible values of X are {6, e}. The constraint
between (M1, A, C) and X are given in Figure 8 where the lines connecting values indi-
cate consistent pairs of values. Since X has only one child node its weights are comput-
ed based on it alone and are given in the figure together with the pointers to be traced

back later.

w(6)=0 w(e)=1

|
(1!3!2) (0:3:2)

(1,3,2) (0,3,2)
w=1 w=0

M1,A,C M1,A,C

Figure 9.

Computing the Weights of Y: Figure 10 presents the details of weights calculation for
each value of y separately. Y has two children nodes (F, A, X) and (M,, B, D), the
first has 4 compound values while the second has just two.

w(10,0,6)=0
w(10,1,6)=1
w(10,0,e)=1

(M2,B,D)
(F,A1,X)

w(10,0,6)=
W(10,1,6)=
w(10,0,e)=
w(10,1,e)=

(F,A1,X) (M2,B,D)

w(10,0,6)=0
w(10,1,6)=1
w(10,0,e)=1
w(10,1,e)=2

(F,A1,X) (M2,8,D)
Figure 10.

The final step is to compute the weights associated with G based on the weights associat-
ed with Y, A,, and Z. The possible values and the weights of the compound variable (Y, A,, Z)
and the constraint with variable G are given in Figure 11. Notice that the compound variable
has 12 values since ¥ has three possible values while Z and A 5 have two values each. The vari-

able G has only one value, e.g., the observed value 12.

10

(4,0,

w(4,0,

w(12)=1 w(4,1,
(4,1,
-Ppw(6,0,
w(6,0,
G (12 min w(6,1,
w(6,1,
w(e,O0,
w(e,0,
w(e,1,
w(e,1,e

i (LI | O |
PO LUNWOMNON QR ONNa

u

DO A0 ADDPHO D O
n

(Y,A2,Z)

Figure 11.

Tracing back along the pointers, starting from variable G, we obtain two solutions each
weighing 1, i.e., each representing one faulty component. One points to A, as the faulty com-
ponent, the other points to M ;. In the case of several solutions we can prefer the one that partici-
pates in a higher number extensions.

In a similar way we can derive many other quantities of interest for diagnosis. For exam-

ple,

1. For each component, find in how many consistent extensions it is faulty
2. Find all minimal diagnoses

3. Among all minimal diagnoses, find those with the highest likelihood.

11

4. FINDING ALL MINIMAL DIAGNOSES

If we need to identify all minimal diagnoses, the propagation process is different. Going
back to the simplest case where all constraints are binary and all variables are component vari-
ables, a minimal diagnosis corresponds to & consisteat solution in which no subset of "1"-values
could be replaced by "0" and still preserve consistency. Considering a tree of binary constraints,
each value, v, of a variable, V, is associated with all the minimal solutions consistent with it
restricted to the subtree rooted in V. This association is implemented by attaching to each value
a set pointer-subsets to all its neighbors’ values from which these minimal partial solutions can
be retrieved by following the pointers. We will illustrate the procedure on the simple example of
Figure 12. In this example, the variable V' has two child nodes with the constraints described ex-

plicitly in the graph.

In the first step of the algorithm, each value is assigned the set of all partial solutions
among its neighbors, called neighbor-solutions, that is consistent with it. Let S(V, v) stand for
these set of tuples (see Figure 12), and assume the order of values in the tuples is according to
the alphabetical order of variables.

S(X,1)={ 00,01,11, 10 }
S(X,0)={ (Y=1}2Z=0) }= { 10}

S(Y,0) ={ 1 } s(z0)=1{1, 0}
| S(Y!1) ={1, 0} S(Z,1)= {1}

Figure 12.

12

s(X,1)={ 00,01,11 }
S(X,0)=((Y=1)(Z=0) }= { 10}

Y Z
S(Y,0) ={ 1} S(z0)={1, 0}
s(Y,1) = { 0} s(z,1)= {}
Figure 13.

If for a certain variable the value 1" has the same neighbor-solution as the value "0" this
solution could not possibly be extended to a minimal solution and should be eliminated. The
second step, therefore, modify the subsets S(V, 1) accordingly (see Figure 13):

SV, De SV, H-S(V,0

These two steps, regarded as the first phase, can be performed distributedly without any
particular order control, and in any network of constraints, not necessarily in a tree. Upon its
completion, each value is associated with all minimal neighbor-solutions.

We can now define a criterion indicating when the neighbor-solutions of two adjacent
variables are consistent with each other. Namely, we can view the remaining problem as a new
Binary CSP in which each value, v, of V will correspond to a variable, §(V, v), and its values
are the set of neighbor-solutions. The constraint between variable S(V, v) and variable S(U, u)
is called handshaking constraints and is defined as follows: IF subset S(V, v) has the value u
of U in one of its neighbor-solution in which the value of V' is v, then the variable S (V,v) has
to have at least one neighbor-solution in which the value of V is v. Otherwise, we may elim-
inate the corresponding neighbor-solution from S{V,v}. Such local elimination of neighbor-
solutions can be regarded as making the constraints of the new problem arc-consistent. The con-
straint from S (V,v) to S(U, u) is arc-consistent if for any of its neighbor-solutions of S (V, v)
that contain the value u of U/, there exists in S (U, 1) a neighbor-solution with the value v of V.,

13

In Figure 14, the constraints associated with X are made consistent w.r.t. ¥ and Z. We
see that the only neighbor solution of S(X, 0) should not be eliminated since it contains the
value ¥ =1 and indeed, S(Y, 1) contains the value O for X, also its value for Z is 0 and §(Z, 0)
has the value O for X. In the case of S(X, 1) two of its neighbor-solutions : 01, and 11 were el-
iminated since they contain the value "1" for Z while § (Z, 1) is empty.

S(X,1)={ 00 }
S(X,0)={ 10}

Y Y 4
S(Y,0) =(1} $(2,0) ={ 1, 0}
s{Y,1) = { 0} S$(Z,1)= {}
Figure 14.

The second phase of the algorithm performs this local consistency on the directed tree by
eliminating neighbor-solutions from the variables while going from the leaves to the roots. At
the end of this phase all variables S (V, v) will be locally consistent w.r.t. their child variables.

In the third phase all the minimal solutions are generated by following the pointers creat-
ed in the previous phases starting at the root node. In the above example only two minimal solu-
tions exist: {X =0,Y=1,Z=0),X =1,Y =0,Z =0)} which in this case are also the
minimum-1’s solutions. In Figures 15 and 16 we illustrated a more complex example of the al-
gorithm. Figure 15 displays a CSP problem that has 5 binary-valued variables
X1, X3, X4, X4, X5 their constraints, and their S (X, x) variables after the completion of the first
phase of the algorithm. Figure 16 shows the remaining neighbor-solutions after phase 2.

14

S(X$,0)e{ 10} kg
S(X5,1)={00,01,11)

S(X3,0)a{101}
$(X3,1)={000,100,010,001
110,011,111} x3

S(X4,0)={0,1}
S(X4.1)=)

S(X1,0)a{t $(X2,0)={0,1}
S(XT.'I)-{{O}} $(X2,1)a(}
Figure 15,

S(XS,0)={ 10}
S(X5,1)={00}

S(X3,0)=({101}
$(X3,1)={000,001}

S(X4,0)={0,1}
S(X4,1)=(}

$(X2,0)={0,1}
85(X2,1)={}

$(X1,0)={1
S$(X1,1}={0

St g

Figure 16.

The two minimal solutions generated in the last forward phase are:

As in the previous section, the above procedure could be modified to work on non-binary
constraints and on solutions in which only the subset of component variables are considered for
the minimality criterion.

15

REFERENCES

[Davis, 1984] Davis, R., "Diagnostic Reasoning Based on Structure and Behavior," Artificial In-
telligence, Vol. 24, 1984, pp. 347-410.

[de Kleer and Williams, 1986] de Kleer, J., and Williams, B. C., "Reasoning about Multiple-
Faults," Proc. 5th Natl. Conf. on AI (AAAI-86), Philadelphia, 1986, pp. 132-
39.

[Dechter and Pearl, 1987] Dechter, R., and Pearl, J., “Network—Based Heuristics for Constraint-
Satisfaction Problems,” Artificial Intelligence, Vol. 34, No. 1, 1987, pp. 1-
38.

[Dechter and Pearl, 1988] Dechter, R., and Pearl, J., "Tree Clustering Schemes for Constraint-
Processing," Proceedings, AAAI-88, Minneapolis, St. Paul, August 1988,
pp. 150-154. To appear in Artificial Intelligence.

[Geffner and Pearl, 1987] Geffner, H., and Pear], J., "A Distributed Approach to Diagnosis,”
Technical Report R-66, Cognitive Systems Laboratory, Unviersity of Cali-
fornia, Los Angeles, Short version in Proc. 3rd IEEE Conf. on Al Applica-
tions, Orlando, FL., 1987, pp. 156-62.

[Genesereth, 1984] Genesereth, M. R., "The Use of Design Descriptions in Automated Diag-
nosis,"” Artificial Intelligence, Vol. 24, No. 1, 1984, pp. 411-36.

[Pearl, 1988] Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan-Kaufmann:San Mateo, CA., 1988.

16

