Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

OPTIMIZATION BY NON-DETERMINISTIC,
LAZY REWRITING

Sanjai Narain November 1988
CSD-880092

Optimization by non-deterministic, lazy rewriting

Sanjai Narain
Computer Science Department
University of California
Los Angeles, CA 90024
narain@cs.ucla.edu

ABSTRACT

Given a set S and a condition C we address the problem of determining which members of S satisfy
C. One useful approach is to set up the generation of S as a tree, where each node represents a sub-
set of S, If from the information available at a node, we can determine that no members of the sub-
set it represents satisfy C, then the subtree rooted at it can be pruned, or not generated. Thus, large
subsets of S can be quickly eliminated from consideration. We show how such a tree can be simu-
lated by interpretation of non-deterministic rewrite rules, and its pruning simulated by lazy evalua-
tion.

1.0 INTRODUCTION

Given a condition C, and a set S, the problem is to compute those members of S which satisfy C.
The obvious way of solving it is to simply generate all members of S, and test which of these satisfy
C. However, a much more effective approach can be the following: set up the generation of § as a
tree, each node in which represents a subset of S. The subset represented by an internal node is the
union of the subsets represented by each of its immediate descendants. External, or leaf nodes
represent either empty sets, or singleton sets consisting of individual members of S. From the infor-
mation available at a node N, check if any members of the set represented by N satisfy C. If not,
prune, i.e. do not generate, the subtree rooted at N. Thus, large numbers of members in S can
quickly be eliminated from consideration, particularly if trees are deep and pruning occurs near the
root.

For example, S could be the set of all lists of the form [X1,..,.Xm], where each Xi is in {0,1,..9}. C
could be the condition that the sum of all numbers in a list be equal to some fixed number K. We
could set up the generation of S as a tree where each node is of the form [A1,A2,..,Ak], O=<k=<m,
each Ai in {0,..,9], and its immediate descendants are the nodes of the form [Al,..,Ak,Ak+1], Ak+1
in {0,..,9). The subset of § it represents is all lists whose first k elements are, respectively, AL,..,Ak.
Clearly, if it can be determined that the sum of Al,.,,Ak is greater than K, then the tree rooted at
[Al,..,Ak] need not be generated. In particular, none of the 10**(m-k) subsets that [Al,..,AK]
represents, need be gencrated.

A convenient way to generate sets is via non-deterministic algorithms [Kowalski 1979, Sterling &
Shapiro 1986). A non-deterministic algorithm SA for generating S is, typically, a definition of what
it means for an object to belong to . From it, an interpreter for SA can automatically compute all
members of S. Interpretation of SA can usually be laid out in the form of a tree. Nodes in this tree

Work supported in part by the Tangram project, DARPA contract F29601-87-C-0072.

-2

represent unfinished computations. Information available at these is that gathered in the computa-
tion along the branch from the root to these,

Now, we can try to write SA in such a way that the tree resulting from its interpretation is similar in
structure, and information content at nodes, to the original tree for gencrating S. For the purpose of
tree-pruning we can try to use this tree in place of the original one. To ensure that whenever a new
node is created in this tree, the condition C is evaluated, if possible, using the information available
at this node, we need to suitably interleave steps in SA with those of CA, the algorithm implement-
ing C.

For example, the set of all lists of the form [X1,..,Xm], each Xi in (0...,9}, can be generated by the
following non-deterministic Prolog program:

wple([X1,X2,.., Xm]):-d(X1),d(X2),...d(Xm).

&0).
().
a(2).
d3).
().
d(s).
4(6).
(7).
d(8).
d(o).

Now the query tuple([Y 1,..,Ym]), Y1,..,¥m variables, will halt with each instantiation of Y1,.,.Ym
to members of {0,1,...9). Moreover, it can be easily seen that the structure of the SLD-search tree
for this query, and information available at its nodes (in the form of partial answer substitutions
[Lloyd 19841), are similar to those with the tree defined in the second paragraph above.

A Prolog program for checking whether the sum of all members of a list is equal to K is:

sum([1,S,S).
sum({UV],5,K):-A is U+S,A=<K,sum(V,A K).

Now, the query sum(L,0,K) will succeed if the sum of members of L is equal to K, otherwise it will
fail. The second rule says that the sum of members of [UIV], given S, is K provided U+S=<K, and
the sum of members of V, given U+S, is K. Thus, if U+S>K, no further members of V need be con-
sidered.

Tree-pruning would occur if we could suitably interleave steps in these two programs. In particular,
we need to ensure that whenever the tuple program instantiated a new variable in [X1,..,Xm], the
variables already instantiated are immediately tested by sum, and moreover, that sum never instan-
tiates any variables. Of course, it is clear that pruning would not occur with the simple-minded Pro-

log query:

tuple(X),sum(X,0,K).
as tuple would generate an entire tuple of m digits, before passing it on to sum.

There are three possible approaches for interleaving steps in SA with those in CA. First, we can
combine SA and CA into a single algorithm, in particular, by explicitly programming the appropriate
interleaving. However, from a software engineering point of view, it is highly desirable to keep SA
and CA separate, i.e. think about them, and develop them independently of each other. If not, the
combined algorithm can become quite complex, especially if SA and CA are complex.

Second, we can keep SA and CA separate but interleave their steps by connecting them via a facility
for coroutining. For example, one can use the variable annotations (?,”) of IC-Prolog [Clark &
McCabe 1979]. However, if SA and CA are complex, connecting them together may not be simple,
as intricate knowledge of their execution may be required. Also, there do not seem to be efficient
enough implementations of languages such as IC-Prolog, in which one can write non-deterministic
programs such as tuple above, and also do coroutining.

Third, we can develop SA and CA separately, but in such a way that the interleaving is accom-
plished transparently, in the natural course of interpreting SA and CA, without our having to pro-
gram it. This seems possible in languages such as LEAF [Barbuti et al. 1986], or FUNLOG
[Subrahmanyam & You 1984] which combine logic programming with lazy rewriting. A similar
possibility also exists in Prologs which perform intelligent backiracking [Kumar & Lin 1988,
Bruynooghe & Percira 1984, Chang & Despain 1984]. However, implementations of these
languages, efficient enough for practical programming, seem to be still under development.

We propose a realization of the third approach within the framework of rewriting. Specifically, we
propose F*, a first-order, lazy non-deterministic rewrite rule system [Narain 1988]. We show how
SA and CA can be developed independently of each other in F*, yet steps in them interleaved by
non-deterministic, lazy rewriting in such a way that tree-pruning is accomplished.

F* programs can be compiled into Horn clauses in such a way that when SLD-resolution interprets
these it directly simulates the behavior of the lazy F* interpreter. In particular, the non-determinism
of F* is mapped on to the non-determinism of Hom clauses, Due to the nature of the clauses
obtained by compilation, outlined in APPENDIX, we effectively obtain a lazy interpreter which
operates at roughly the same speed as does Prolog. For problems in which lazy evaluation does not
reduce lengths of computation, F* is somewhat slower than Prolog. Otherwise, F* is faster than
Prolog by unbounded, even infinite amounts. Thus, F* seems to be efficient enough for practical
programming.

Intuitively, tree-pruning is achieved in F* as follows: Let E be a ground term. In F*, as with other
rewrite rule systems, there can be more than one reduction starting at E. However, in F* there can
also be more than one lazy reduction starting at E. Due to non-determinism, E can possess more
than one normal form. A reduction-completeness theorem states that each of these normal forms
can be computed by generating all the lazy reductions starting at E. These can all be laid out in the
form of a lazy reduction-tree. This tree is analogous to an SL.D-search tree [Lloyd 1984], while the
lazy reduction strategy is analogous to SLD-resolution.

-4 -

Given the set S, we can define a non-deterministic algorithm in F* such that some ground term E
possesses as normal forms, all the members of S. Moreover, we define this algorithm in such a way
that the lazy reduction-tree rooted at E is similar to that we have in mind for generating S, and upon
which we wish to perform the pruning.

Now, for conditions such as C, we take the point of view that when they hold for objects, they
return, not the truth-value true, but the objects themselves. Furthermore, if they do not hold, they do
not return anything, but simply fail. Thus, where CA is the function symbol defining condition C in
F* with this point of view, the normal forms of the term CA(E) represent the members of S which
satisfy C.

Given CA(E), the F* interpreter generates the lazy reduction-tree rooted at CA(E). Due (o laziness,
reduction of E is interleaved with evaluation of CA. In particular, whenever new information about
E becomes available, an attempt is automatically made to evaluate CA. If at a node it is discovered
that CA does not hold, no further descendants of it are generated. Thus, the tree-pruning we seek is
automatically achieved. In particular, the lazy reduction tree rooted at CA(E) is, usually, much
smaller than that rooted at E.

This paper discussess solutions to five problems illustrating the above idea. These have all been
implemented and tested in the LOG(F) system, which is simply a logic programming system aug-
mented with an F* compiler. Performance figures obtained for these seem to compare favorably
with those obtained by languages such as CHIP [Dincbas et al. 1988, van Hentenryck & Dincbas
1987], which contain specialized capabilities for solving combinatorial problems.

F* can be viewed as a way of bringing to rewriting, one of the most powerful features of logic pro-
gramming: the ability to develop non-deterministic algorithms. In this it is similar to EqL [Jayara-
man & Gupta 1987]. Due to the compilation of F* in Prolog, it can also be viewed as a means of
doing lazy evaluation in Prolog. Before we discuss the problems solved by our approach, we first
define the F* system,

2,0 DEFINITION OF F*

F* is intended mainly for lazy reduction of ground terms. Nevertheless, it forms a sufficient basis for
functional programming.

Function symbols are partitioned, in advance, into constructors and non-constructors. Thus, we do
not adopt the convention e.g. [van Emden 1987] that any function symbol not defined by a program
is a constructor symbol, For example, 0, 1, 2, 3.1415,..., true, false, [] are O-ary constructor symbols
and | a 2-ary constructor symbol,

A term is either a variable, or an expression of the form f(t1,..tn) where f is an n-ary function sym-
bol, and each ti is a term. A ground term E is said to match another term F, with substitution o, if
E=Fa. A reduction rule is of the form LHS=>RHS, where LHS and RHS are terms, satisfying the
following restrictions:

(@) LHS is of the form f(L1,..,.Lm), f an m-ary non-constructor function symbol, and each
Li either a variable, or a term of the form ¢(X1,..,Xn), ¢ an n-ary constructor symbol, and

each Xi a variable.
(b) A variable occurs at most once in LHS,
{c) All variables of RHS occur in LHS.

Note that reduction rules with left-hand-sides of arbitrary depth can easily be expressed in terms of
rules with left-hand-sides of depth at most two, as required by (a). For example,
fib(s(sCON=>plus(fib(X),fib(s(X))) can be expressed as fib(s(A))=>g(A),
g(s(X))=>plus(fib(X),fib(s(X)). An F* program is a set of reduction rules. Some examples of F*
programs are:

append([],X)=>X
append([UIV],W)=>[Ulappend(V,W)]

int(N)=>[Nlint(s(N))1.
merge([AIB],[CID])=>if(lesseq(A,C),[Almerge(B,[C!D]),[Clmerge([AIB],D)]).

if(true, X, Y)=>X.
if(false, X, Y)=>Y.

Note that there is no restriction that F* programs be Noetherian, or even confluent. Thus infinite
structures can be freely defined and manipulated in F*. Also, terms can be simplified in more than
one way, a fact which we exploit for implementing tree-pruning.

Let P be an F* program and E and E1 be ground terms. We say E=>PE1 if there is a rule
LHS=>RHS in P such that E matches LHS with substitution & and E1 is RHSo. Where EF,GH, are
ground terms, let F be the result of replacing an occurrence of G in E by H. Then we say
F=E[G/H]. Let P be an F* program and E a ground term. Let G be a subterm of E such that
G=>PH. Let E1=E[G/H]. Then we say that E->PE1. -*>P is the reflexive-transitive closure of >p-
The subscript P is dropped if clear from context.

A ground term is said to be in simplified form, or simplified, if it is of the form ¢(t1,..,tn) where ¢ is
an n-ary constructor symbol, n>=0, and each ti is a ground term. F is called a simplified form of E if
E-*>F and Fis in simplified form. Simplified forms can be used to represent finite approximations
to infinite structures. For example, [Olint(s(0))] is a simplified form, and is a finite approximation to
[0,5(0),5(s(0)),..].

A ground term is said to be in normal form if each function symbol in it is a constructor symbol. F
is called a normal form of E if E-*>F and F is in normal form. Note that this notion of normal form
is different from the usual one which has to do with non-reducibility. This does not lead to any loss
of generality, at least for programming purposes. Moreover, it allows us to define the notion of
failure form below, which is useful for tree-pruning.

Let P be an F* program. A reduction in P is a, possibly infinite, sequence E1,E2,E3... such that for
each i, Ei—>PEi+l. A successful reduction in P is a reduction EO0,...En, n>=0, in P, such that En is

simplified.

Let P be an F* program. We now define a reduction strategy, selectp, for P. Informally, given a
ground term E it will select that subterm of E whose reduction is necessary in order that some =>
rule in P apply to the whole of E. In this, is implicit its laziness. The relation selectP, whose second
argument is the subterm selected from E, is defined by the following pseudo-Hom clauses:

selectP(E,E) if E=>PX.
selectP(E,X) if
E=f(T1,..,Ti,..,Tn), and
there is a rule f(L1,..Li,..Ln)=>RHS in P, and
Ti does not match Li, and
selectP(Ti,X).

The first rule states that if E is the given ground term, and there exists another term X such that
E=>X, then E itself can be sclected from E.

In the second rule, E=f(T1,..,Tn), and there is some rule f(L1,...Ln)=>RHS, such that for some i, Ti
in T1,...,Tn does not match Li in L1,...Ln. In order to reduce E by this rule, it is necessary to reduce
Ti. Thus, a term in Ti must be recursively selected for reduction. This rule is a schema, so that an
instance of it is assumed written for each 1=<i=<n, and each non-constructor function symbol f. For
example, where P is the set of reduction rules which appear above, we have the following:

select{merge(int(1),int(2)),int(1}).
select(merge(int(1),int(2}),int(2)}.
select(merge([1,3],int(2)),int(2)).
select(merge([1,21,[3,41),merge([1,2],3,41)).

If E=[1lmerge(int(1),int(2))] then select is undefined for E.

Note that select is non-deterministic, in that given E, there can be more than one F, such that
select(E,F). Thus, starting at E, there can be more than one reduction computed by select, Also,
select is more general than a leftmost-outermost strategy. For example, from the rules:

(X, 0)=>11.
a=>a,
b=>[].

the only leftmost-outermost reduction of f(a,b) is f(a,b),f(a,b),f(a,b),.. However, repeated applica-
tion of select yields only the finite reduction f(a,b),f(a,[]).[].

Let P be an F* program and E,G,H be ground terms. Suppose selcctP(E,G) and G=>PH. LetElbe
the result of replacing G by H in E. Then we say that E reduces to E1 in an N-step in P. The prefix
N in N-step is intended to connote normal order. Let P be an F* program. An N-reduction in Pisa
reduction E1,E2,.... in P such that for each i, Ei reduces to Ei+1 in an N-step in P. We now have:

Theorem 1. Reduction-completeness of F* for simplified forms. Let P be an F* program and DO
a ground term, Let DO,D1,...Dn be a successful reduction in P. Then there is a successful N-

-7-

reduction DO.E1,...Em in P, such that Em-*>Dn.

Its proof can be found in [Narain 1988). It states that to reduce a ground term to a simplified form it
is sufficient to generate only the N-reductions starting at it.

Note that if a term E is already simplified, e.g. E=[1lappend([1.[])], then select is undefined for E.
Thus, an N-reduction ending at E cannot be extended further. If we wish to compute normal forms
of E, we need a reduction strategy more general than select. It turns out that this can be based upon
repeated application of select. Specifically, where P is an F* program, we define a reduction stra-
tegy select-rp, where r stands for repeated or recursive, by the following pseudo-Horn clauses:

select-rP(E,F) if sclectP(E,F).
select—rp(c(T 1,...Ti,..,Tm)F) if
¢ is a constructor symbol, and
select-rP(Ti,F).

‘Thus, select-r is like select except that if a ground term is in simplified form, it recursively calls
select on one of the arguments of the outermost constructor symbol. So, its repeated use can yield
normal-forms of ground terms. Again, the second rule is a schema so that an instance of it is
assumed written for each 1=<i=<m, and each constructor symbol c,

Let P be an F* program and E,G,H be ground terms. Suppose select-rP(E,G) and G=>pH. Let El
be the result of replacing G by H in E. Then we say that E reduces to E1 in an NR-step in P. NR is
intended to connote normal-repeated.

Let P be an F* program, An NR.reduction in P is a reduction E1LE2,.... in P such that for each i, Ei
reduces to Ei+1 in an NR-step in P. We now have:

Theorem 2. Reduction-completeness of F* for normal forms. Let P be an F* program and D0 a
ground term. Let DO,D1,...Dn be a reduction in P, where Dn is in normal form. Then there is an
NR-reduction DO,E1,...Em=Dn, in P.

Again, its proof can be found in [Narain 1988]. It states that to compute normal forms of a term, it
is sufficient to generate only the NR-reductions starting at it. Of course, not all N- or NR-reductions
are finite, even when normal forms exist. For example, with the program:

a=>a,
a=>[].
([D==>(].

There is an infinite N-reduction f(a),f(a).f(a)..... However, there is also a finite N-reduction
f(a).f([1,[1. Thus, some searching among alternative N- or NR-reductions may be required to com-
pute simplified, or normal forms. However, laziness ensures that search paths are cutoff as soon as
possible. In {Narain 1988] is studied D(eterministic)F*, a restriction of F*, in which simplified, or
normal forms may be computed without any search. However, in DF*, every term has at most one
normal form, and so it is not relevant to this paper.

-8-

Let P be an F* program, and E a ground term, An NR-tree rooted at E is constructed as follows: E
is the root node. The immediate descendants of any node Q in the tree are Q0,Q1,..,.Qk, where Q
reduces to each Qi in an NR-step. NR-trees are also called lazy reduction-trees.

Let P be an F* program and E a ground term. E is said to be a failure form if E is not a normal
form, and E cannot be reduced to another term in an NR-step in P, Note that E may still be reduci-
ble. Failure forms are analogous to failure nodes in SLD-search trees [Lloyd 1984}, while normal
forms are analogous to success nodes (or empty goals). If while generating a lazy reduction-tree, a
failure form is encountered, the interpreter backs up and generates other parts of the tree. It is for
this reason that normal forms are not defined in terms of non-reducibility.

3.0 TUPLE SUM

We now show how the example in Section 1.0 can be programmed in F* to achieve the type of tree-
pruning we desire. An F* program to compute the set S of all lists [X1,..,.Xm], each Xi in {0,...9}
can be:

tuple=>[d ,d d...,d].

d=>c(0).
d=>c(1).
d=>c(2).
d=>c(3).
d=>c(4).
d=>c(5).
d=>c{6).
d=>c(7).
d=>c(8).
d=>¢(9).

Here ¢, |, [1, and 0,1,..,9 are constructor symbols, while d and tuple are non-constructor symbols.
Now, the term tuple, whose right hand side contains m ds, possesses 10**m normal forms, each of
the form [e(X1),¢(X2),..,c(Xm}], Xi in {0,..,9}. Each normal form can be taken to represent a
member of S. Assuming that m=2, a subtree of the lazy reduction-tre¢ rooted at tuple is:

tuple
|
|
fa,d]
VA
L

[e(0),d]...[c(9),d]
PN I N A
AR A
/ I \
[c(0),c(0)] ... [c(0),c(9]

.9-

Each internal node, except the root, has ten descendants, Each tip is of the form [c(X1),c(X2)], Xi
in {0,...9}. This tree can be seen to be similar to that defined in the second paragraph of Section 1.0.

We now define the condition that the sum of all members of a list be equal to K. Again, we do this in
such a way that when it hold for a list, it returns, not true, but the list itself. If it does not hold, it
does not return anything, but simply fails. A satisfactory definition is:

sum_eq({],¢(8),c(K))=>cond(equal(S,K).[1.
sum_eq({c(U)IV1,c(S),c(K)=>cond((U+S)=<K,[c(U)lsum_eq(V.c(S+U).c(K)1).

cond(true, X)=>X.

These rules exactly parallel the two Prolog clauses for sum, in Section 1.0. Here, true is a construc-
tor symbol (along with [], |, and ¢), and sum_eq, cond, equal, +, and =< are non-constructor symbols.
The last three are F* primitives and are evaluated eagerly. Now, where m=2, the term
sum_eq(tuple) possesses as the only normal form, the term [c(0),c(0)]. Effectively, sum_eq is
evaluated as soon as enough information becomes available about its first argument. If it does not
hold, then the rest of the argument is not evaluated further, In particular, one branch in the lazy
reduction-tree rooted at sum_eq(tuple,c(0),c(0)) is:

sum_eqg({tuple,c{0),c(0))
I
sum_eqlld,dl,c(0),c(0))
sum__;q([C(O) (dl,c(0),c(0))
cond:0-<0, {c(0) isum eq([d]l,c(0),c{C))])
I
cond(true, [c(0) |sum eq([d]),c(0),c(0))])
[0(0}!l |sum_eq({dl,c(0),c(0))]
|
{c{0) |[cond {0=<0, [c(0) Isum_eq([},c(0),c(0))]}]
I
[c(0) lcond{true, [c(0) [sum eq([),c(0),c(0))])]
[c(OJI,c(O) Isum eq([],c(0),c(0))]
ICKO)I,c(O) feond (0=0, [1)]
IC(O)I,C(O) lcond{true, [])]
[c(O)l,C(O)]

Some, minor steps involving + have been omitted. However, all other branches in this tree rapidly
reach failure forms. For example:

-10 -

sum_eq{tuple,c(0),c(0))

sum_;q([d,d]1,¢{0),c(0))

sum_e!q([c{l),d]l,c{0),c(0})

cond:l=<0, {c(1) |sum_eq([d],c(0),c(0))])
cond:false, [c(l) |sun_eqg([d],c(0),c(0})])

Thus, the lazy reduction tree T2 rooted at sum_eq(tuple,c(0),c(0)) is much smaller than the tree T1,
rooted at tuple, as was our objective. In particular, while T1 had 100 leaves, T2 has only 19. The
gap widens as larger tuples are considered (for the same value of K).

Moreover, we are also able to define the generation algorithm, tuple independently of the testing
algorithm, sum_eq. The interleaving between these two is naturally accomplished in the process of
generating the lazy reduction-tree.

A similar program has been developed for computing all the ways in which a dollar can be changed
using half-dollars, quarters, dimes, nickels, and pennies [Polya 1973].

4.0 SUBSET SUM

Subset sum is problem SP13 in Appendix: A list of NP-complete problems, [Garey & Johnson
1979]. Given a finite set A, and size s(a) € 7% foreachae A,and a positive integer K, the problem
is to determine whether there is a subset A1 ¢ A such that the sum of the sizes of the elements in Al
is exactly K. We consider a special case of this problem where A is a list of positive integers, and s
is the identity function. Sets arc represented as lists, Subsets can be computed non-deterministically
by the following F* program:

subset([])==[].
subset([UIV])=>[Ulsubset{V)].
subset{[UIV])=>subset(V).

Now the term subset([c(1),c(2),c(3)]) possesses as normal forms each of the eight subsets of
[e(1),¢(2),c(3)]. Each node Q in the lazy reduction-tree rooted at subset([al,a2,..,am]) is of the form
[U1,..,Unlsubset([Al,..,Ap])], where each Ui and Ajisin {al,...am}, O=<n,p=<m. The number of
normal forms appearing at the leaves of the subtree rooted at Q is 2**p. The program to test
whether sum of numbers in a subset is equal to K, is exactly the same as in the previous section.

In the lazy reduction-tree for sum_eq(subset([al,a2,...am]},c(0),c(K)), subset([al,..,am]) is reduced
to [Ul,..,Unlsubset([Al,..,ApD], and whenever the sum of Ul,..,Un is greater than K, none of the
2**p subsets of the form [U1,..,UnlX] are generated,

5.0 N-QUEENS

The problem is to place N queens on an NxN chess board so that no two queens attack each other. It

-11-

is casily seen that each queen must be in a distinct row and column, so that candidates for solutions
can be represented by permutations of the list [1,2,.. N]. The position of the ith queen in a permuta-
tion p is [i,q] where q is is the ith element of p. The problem now reduces to generating all permuta-
tions of [1,2,..,N] and testing whether they are safe, or represent a solution. Permutations can be
generated by the following F* program:

perm({[1)=>(1.
perm([UIV])=>insert(U,perm(V)).

insert(U,X)=>[UIX].
insert(U,[AIB])=>[Alinsert(U,B)].

In the lazy reduction-tree rooted at perm{[1,..NJ} if there is a node Q of the form [U1,..,UplZ],
p>=1, each Ui in {1,..,N}, and Z unsimplified, then the subtree rooted at Q contains (N-p)! leaves,
each representing a permutation of the form [U1,..,Upi_]. If at Q it is determined that [U1,..,Up]
already form an unsafe configuration, then none of these (N-p)! permutations need be generated.

The condition safe, as usual, is defined in such a way that if it holds for a list, it returns that list itself:

safe((1)=>[1.
safe([UIV])=>{Utsafe(nodiagonal(U,V,1))].

nodiagonal(U,[1,N)=>{].
nodiagonal(U,[AIB],N)=>cond(noattack(U,A,N),[AInodiagonal(U,B,N+1}1).

noattack(U,A N)=>neg(equal(abs(U-A),N)).
cond(true, X)=>X,

Here neg, equal, and abs are F* primitives computing, respectively, logical inversion, syntactic
equality, and real number modulus. Finally, queens can be computed by:

queens(X)=>safe(perm(X)).
In particular, queens([1,2,3,4]) yields [2,4,1,3], and [3,1,4,2].
6.0 SEND+MORE=MONEY

The problem is to assign the variables S, EN,D,M,O,R,Y to distinct values in {0,1,..,.9} so that
SEND+MORE=MONEY is a correct equation, where for example, SEND is interpreted as
1000*S+100*E+10*N+D. Clearly, there are 10p8 assignments,

The main challenge here is designing an appropriate condition which, given an assignment A to the
first k variables, can determine that A cannot be part of any correct assignment to all 8 variables. If
the condition is simply to find the values of SEND, MORE, and MONEY, and check the addition,
then it requires complete assignment before evaluation. This degenerates to checking each of the
10p8 assignments, and there is no tree-pruning.

-12-

A suitable condition is based upon checking the addition from right to left, the way a child would do
it. In particular, given an assignment, check whether the list [D,E,Y,N,R E,E,O.N,5,M,0,0,0.M]
represents a correct sum, in that D+E yields Y as sum and the carry+N+R yields E as sum, and so
on. Now, for example, all assignments with D=0,E=1,Y=2 can be discarded, and substantial pruning
can take place. The following four F* rules construct the above list:

form_1{[c(D),¢(E),c(VIZ])=>[DE,Ylform_2(D.E,Y 7).

form_2(D,E,Y ,[c(N),c(R)Z])=>[N,R,Elform_3(D,E,Y N,R,Z}].

form_3(D,E,Y N.R,[c(O}Z))=>[E,O Niform_4(D.E,Y N.R,0,Z)].

form_4(D.E,Y N.R,0O,[c(S),c(M)IZ])=>[S.M,0,0,0,M].
Function admit below, takes as input, an initial carry of 0, and the above list, checks whether they
represent a correct sum, and if so, return the list as output. Functions sum and carry ar¢ F* primi-

tives yielding the obvious results:

admit(_,[N==>[1.
admit(C,[A,B,DIZ)=>cond(equal(sum(C,A,B),D),[A,B,Dladmit(carry(C,A,B),Z)]).

cond(true, X)=>X.
The program below computes permutations of a list of L items, taken N at a time, such that each
item in a permutation is distinct. If N is zero, there is a single permutation []. Otherwise, some cle-
ment from L is removed, and put at the front of a permutation of the resulting list of items, taken N-1

at a time. Note that the conditional function, if, is 3-ary, in contrast to cond, which was binary. The
symbol pair is a binary constructor.

npr(L N)=>if{equal(N,0),[],npr_aux{remove(L),N)).
npr_aux(pair(U, V), N)=>[Ulnpr(V.N-1}],

remove([UIV)=>pair(U,V).
remove((UIV])=>remove_aux(U.remove(V)).

remove_aux(U,pair(A,B))=>pair(A,[UIB]).

if(true, X, Y)=>X.
if{false, X,Y)=>Y.

Finally, instantiations of [D,E,Y N,R.E,E,ON,5,M,0,0,0,M] such that it is a correct sum are
obtained by computing normal forms of soln:

soln=>admit(0,form_1(npr(digits,8))).

digits=>[c(0),¢(1),¢(2).¢(3).c(4),¢(5).c(6).c(7).c(8).c(9)].

-13-

7.0 ZEBRA PUZZLE

This is a well known problem, but we have taken it from [Dincbas et al. 1987], and our formulation
of it for computer solution is essentially theirs. Of course, we use lazy rewriting, whereas they use
logic programming augmented with a technique called forward checking. There are five houses in a
row. With each house is associated a distinct color, nationality, profession, animal, and drink. The
question is, who owns the zebra. More generally, it is to find the associations given the following
constraints:

The Englishman lives in a red house,

The Spaniard owns a dog.

The Japanese is a painter.

The Italian drinks tea.

The Norwegian lives in the first house on the left.
The owner of the green house drinks coffee.

The green house is on the right of the white one,
The sculptor breeds snails,

The diplomat lives in the yellow house.

Milk is drunk in the middle house.

The Norwegian’s house is next to the blue one.
The violinist drinks fruit juice.

The fox is in the house next to that of the doctor,
The horse is in the house next to that of the diplomat,

We draw the following 5x5 table:

Zebra Variables
1 2 3 4 5
N ation England | Spain Japan Ttaly Norway
Color green red yellow blue white

P rofession | painter diplomat | violinist | doctor | sculptor

A nimal dog zebra fox snails | horse

D rink juice water tea coffee | milk

There are 25 variables, N1,...N5, C1,..,CS, P1,..,P5, Al,..,A5, D1,..,D5, each standing for one of the
25 entries in the table. Eachranges over {1....5}. For example if N5=k, then Norwegian has house
number k. Similarly, if C3=j, the color yellow is associated with house number j. Now, for
example, the fact that the Englishman lives in a red house can be expressed as N1=C2, The above
fourteen constraints can now be expressed as follows:

N1=C2,N2=A1,N3=P1 N4=D3 N5=1,D5=3,P3=D1,C1=D4,P5=A4 P2=C3,plusc(C1,C5,1),
plusorminus(A3,P4,1),plusorminus(A5,P2,1},plusorminus(NS,C4,1).

where plusc(X,Y,C) means X is Y+C, and plusorminus(X,Y,C) means either X is Y-C, or X is Y+C.

-14 -

In F*, we can represent the above table by a list of 5 lists, each containing five numbers,
representing values of the 25 variables. To refer to any of these we can write the following five
selector functions:

n(N,[Ns,Cs,Ds,Ps,As])=>nth(N,Ns).
¢(N,[Ns,Cs,Ds,Ps,As])=>nth(N,Cs).
p(N,[Ns,Cs,Ds,Ps,As])=>nth(N,Ps).
d(N,[Ns,Cs,Ds,Ps,Asl)=>nth(N,Ds).
a{N,[Ns,Cs,Ds,Ps,As])=>nth(N,As).

nth(N,[XIY]=>if(equal(N,1),t(X},nth(N-1,Y)).

if(true, X, Y)=>X.
if(false, X, Y)=>Y.

As usual, we will express constraints in such a way that if they hold, they return the table itself,
instead of truth, Where CL is the above 5x5 table, and true, false, t, and ¢ are constructor symbols,
the last four constraints can be written as:

¢_1(CL)=>cond{plusc(c{1,CL),c(5,CL),t(1)},CL)}.

¢_2(CL)=>cond(plus_or_minus(a(3,CL),p(4,CL),t(1)),CL).
¢_3(CL)=>cond(plus_or_minus{a(5,CL),p(2,CL)t(1)),CL).
¢_4(CL)=>cond(plus_or_minus{n(5,CL),c(4,CL}),1(1}),CL).

cond(true, X)=>X.

plusc(t(X),1(Y),1(C)=>if(equal(X,Y+C) true false).
plus_or_minus(t(X),1(Y),{C))=>or{equal(X,Y-C),equal(X,Y+C)).

or(true,true)=>true.
or(true,false)=>true,
or(false false)=>false.
or(false,true)=>true.

We must now express the first 10 constraints. Clearly, we could express the first and fifth by,
respectively:

c_5(X)=>cond(eqt(n(1,X),c(2,X)).X).
¢_9(X)=>cond(eqt(n(5,X),1(1)),X).

eqt(t(X) (Y))=>if(equal(X,Y),true false).

Unfortunately, if all ten constraints are expressed this way, extreme inefficiency resulis. On the
other hand constraints like these can be enforced extremely efficiently in Prolog: if there occur
variables V1 and V2 in some structure $, and we wish to declare that V1 and V2 are the same, we
can simply replace V1 by V2in §, or vice versa,

-15-

We assume the existence of an F* primitive inst(L,B), where L is a list containing some variables,
and B is a constant list. This can easily be defined in our implementation of F*. The output of inst
is an instantiation of variables of L to distinct numbers in {1,..,5}, and distinct from the numbers in
B. inst can enumerate all possible instantiations. Thus, we can now represent the table as follows:

[inst({N1,N2,N3,N4,N5LI1),
inst({C1,C2,C3,C4,C51,[D,
inst{[D1,D2,D3,D4,D5]1,(]),
inst{[P1,P2,P3,P4,PSL11),
inst([A1,A2,A3,A4,A51.[D]1.

Clearly, the total number of instantiations are (5!)**5 or about 25 billion. The first 10 constraints
can now be expressed simply by changing certain of these variables, so that the new table is:

finst((IN1,N2,N3,N4,11,D),
inst([C1,N1,P2,C4,C51,[D),
inst([P3,D2,N4,C1,31,01),
inst([N3,P2,P3,P4 P51,00),
inst(IN2,A2,A3,P5,A5],D1.

For example, N1=C2 is expressed by replacing C2 by N1, and N5=1 is expressed by replacing N5
by 1. Of course, we are departing from the framework of F* in that we are reducing non-ground
terms. However, the gains are considerable, so reluctantly we propose this approach, while
continuing to think of how to express such constraints efficiently within F*. Of course, this example
still illustrates the basic thesis that non-deterministic, lazy rewriting can prune search spaces of
problems of the form "given set S, and condition C, find those members of S which satisfy C". If we
now define:

soln=>c_2(c_3(c_4(c_1([inst([N1,N2,N3,N4,1],[],
inst([C1,N1,P2,C4,C51,[D),
inst([P3,D2,N4,C1,31,[D),
inst([N3,P2,P3,P4,P5],[1),
inst([N2,A2,A3,P5,A51.[D1N)-

and obtain normal forms of soln, we obtain the following associations:

Zebra solution
1 2 3 4 5
Norway | Italy England | Spain Japan
yellow blue red white green
water tea milk juice coffee

diplomat | doctor | sculptor | violinist | painter

fox horse snails dog zebra

-16 -

Clearly, the zebra is owned by the Japanese.
8.0 PERFORMANCE FIGURES
These figures provide some idea of the performance we have been able to obtain with the above

algorithms using our current implementation of F*. If we try to solve these problems in Prolog,
using unintellligent generate-and-test, the time taken is far too much to be practical.

Time in seconds on SUN-3/50 with 4 MB main memory
Changing dollar: all 292 solutions 230
Zebra: Only solution 35
SEND+MORE=MONEY: All 25 solutions 20
8-Queens: All solutions 20
9-Queens: All solutions 97
15-Queens: First solution 37
9.0 SUMMARY

A great deal of work in rewriting has focussed on confluent rewrite rule systems. Of course, these
are very important because of their close relationship to equality theories. In particular, they can be
used to solve the word problem in a computationally feasible manner, ¢.g. [Knuth & Bendix 1970].

We have tried to show that non-confluent rewrite rule systems such as F* can also exhibit interesting
behavior. In particular, we can use these to generate sets using non-deterministic algorithms, which
can be very compact. Moreover, if rewrite rules are interpreted lazily, we can achieve substantial
reductions of search spaces of problems of the form "given set S, and condition C, find those
members of S which satisfy C".

Whenever critical, algorithms achieving such reductions could always be developed, and in any
language, declarative, or procedural. What we have proposed is a technique for simplifying their
development. In particular, we can separate development of algorithms for generating search
spaces, from development of algorithms for testing candidates, yet achieve the search space
reduction transparently. Due to the efficient implementation of F*, and as the performance figures
show, our technique could be viable for important cases of real problems.

REFERENCES
Barbuti, R., Bellia, M., Levi, G. [1986]. LEAF: A language which integrates logic, equations, and

functions. In Logic programming: functions, relations and equations (eds.) D. DeGroot, G.
Lindstrom, Prentice Hall, N.J.

Bruynooghe, M., Pereira, L.M. [1984). Deduction revision by intelligent backiracking. In,
Implementations of Prolog, ed. J.A, Camphell, Ellis Horwood.

-17 -

Chang, J.-H., Despain, A.M. [1984]. Semi-intelligent backiracking of Prolog based on a static data
dependency analysis. Proceedings of IEEE symposium on logic programming, Boston, MA.

Clark, K.L., McCabe F. [1979]. Programmer’s guide to IC-Prolog. CCD Report 79/7, London:
Imperial College, University of London.

Dincbas, M., Simonis, H., van Hentenryck, P. [1988]. Solving a cutting-stock problem in constraint
logic programming. Proceedings of fifth international conference and symposium on logic

programming, eds. R, Kowalski, K. Bowen, MIT Press, Cambridge, MA.

Garey, ML.R., Johnson, D.S. [1979]. Computers and intractability. A guide to the theory of NP-
completeness. W . H. Freeman & Co. New York, N.Y.

Huet, G., Levy, 1.-J. [1979). Call by need computations in non-ambigucus linear term rewriting
systems. IRIA technical report 359.

Jayaraman, B., Gupta, G. [1987]. EqL User’s Guide. Department of Computer Science, University
of North Carolina at Chapel Hill, N.C.

Kahn, G., MacQueen, D, [1977]. Coroutines and Networks of Parallel Processes. Information
Processing-77, North-Holland, Amsterdam,

Knuth, D.E., Bendix, P.B. [197(]. Simple word problems in universal algebras. Computational
problems in abstract algebra, ed. J. Leech, Pergamon Press.

Kowalski, R. [1979]. Logic for Problem Solving, Elsevier North Holland, New York.

Kumar, V., Lin, Y.-I, [1988]. A data-dependency-based intelligent backtracking scheme for Prolog,
Journal of Logic Programming, vol. 5, No, 2, June,

Lloyd, 1. [1984]. Foundations of logic programming. Springer Verlag, New York.

Narain, S. [1986]. A Technique for Doing Lazy Evaluation in Logic. Journal of Logic
Programming, vol. 3, no. 3, October,

Narain, S. [1988]. LOG(F): An optimal combination of logic programming, rewriting and lazy
evaluation. Ph.D, Thesis, Department of Computer Science, University of California, Los
Angeles,

O’Donnell, M.J. [1985]. Equational logic as a programming language. MIT Press, Cambridge, MA.

Peyton Jones, S. L. {19871, The implementation of functional programming languages. Prentice
Hall, Englewood Cliffs, N.J.

Polya, G. [1973]. How to solve it. Princeton university press. Princeton, N.J.

Sterling, L., Shapiro, E. [1986). The art of Prolog. MIT Press, Cambridge, MA.

-18 -

Subrahmanyam, P.A. and You J.-H. [1984]. Conceptual Basis and Evaluation Strategies for
Integrating Functional and Logic Programming. Proceedings of IEEE Logic Programming
Symposium, Atlantic City, N.J.

van Emden, M.H., Yukawa, K. [1987]. Logic programming with equations. Journal of Logic
Programming, vol. 4, no. 4.

van Hentenryck, P., Dincbas, M. [1987]. Forward checking in logic programming. Proceedings of
fourth international conference on logic programming, ed. J.-L. Lassez, MIT Press, Cambridge,
MA.

APPENDIX. COMPILATION OF F*

For completeness, we outline the algorithm for compiling an F* program into Hom clauses. Let P
be an F* program. The compilation of P into pure Prolog clauses proceeds in two steps:

Step 1. For each n-ary, n>=0, constructor symbol ¢ in P, and where X1,..,Xn are distinct variables,
generate the clause:

reduce{c(X1,...Xn),c(X1,...Xn))
Step 2. Let f(L.1,...Lm)=>RHS be a rule in P. Generate the clause:
reduce(f(Al,..,Am),0ur):-Q1,Q2,...0m reduce(RHS ,Cut).

where Al,..,Am,Out are distinct variables not occurring in the rule, and if Li is a variable, Qi is
Ai=Li, otherwise, Qi is reduce(Ai,Li).

For example the F* rules:

append([1,X)=>X

append({UIV],W)=>[Ulappend(V,W)]
intfrom(N)=>[Nlintfrom (s(N})].

are compiled into:

reduce((1.00).
reduce([UIVL,[UIV]).

reduce(append(A1,42),0Out):-reduce(Al,[1),A2=X reduce(X,0ut).
reduce(append(A1,A2),Out):-reduce(Al,[UIV]),A2=W reduce([Ulappend(V,W)],0up.
reduce(intfrom(A),Out):- A=N,reduce ([Nlintfrom{s(IN))],Out).

If we now type, in Prolog, reduce(append(intfrom(0),[1),Z), we obtain
Z=[Olappend(intfrom(s(0}),[1)). Thus, append(intfrom(0),[]) is only partially, or lazily reduced, and
directly by Prolog, not by some lazy interpreter implemented in Prolog.

-19-

It can be seen that where reduce(f(Al,..,Am),Out):-Q1,..,Qm reduce (RHS,Out) is the translation of
f(L1,...Lm)=>RHS, Q1...,Qm represent the attempt to match some term f(t1,...,tm) with £{L.1,..,.Lm).
If these succeed, the match succeeds with some substitution o, Now, reduce(RHS,Out) represents
simultaneously, application of o to RHS, and recursive simplification of RHSo. In fact we have:

Theorem. Correctness of compilation of F*, Let P be an F* program and PC be its compilation.
Let EO and En be ground terms. Then there is a successful N-reduction beginning with EQ and
ending with En iff PCl-reduce(EQ,En).

To compute normal forms, we need to add, for each m-ary constructor symbol ¢, the clause:

nf(E.c(X1,... Xm)):-reduce(E,c(T1,..,Tm)),nf(T1,X1),...nf(Tm,Xm).

Now, to compute the normal form of a ground term E, we can execute nf(E,X), where X isa
variable,

