SYNCHRONIZATION OF ASYNCHRONOUS PROCESSES
IN CSP

Rajive Bagrodia November 1988
CSD-880089

SYNCHRONIZATION OF ASYNCHRONOUS PROCESSES

IN CSP!

Rajive Bagrodia

April, 1987 {revised August, 1988)

Computer Science Department,
University of California at Los Angeles,
Los Angeles, CA 90024

Arpanet address: rajive@cs.ucla.edu

'A preliminary version of this paper titled "A Distributed Algorithm to Implement the
Generalized Alternative Command of CSP’ was presented at the 6th ICOCS held at Cambridge
in May, 1986. This work was partially supported by a grant from the National Science
Foundation under grant No. CCR-8810376

ABSTRACT

Many concurrent programming languages including CSP and Ada use synchronous message-passing
to define communication between a pair of asynchronous processes. Suggested primitives like the
generalized alternative command for CSP and the symmetric select statement for Ada allow a process to
non-deterministically select one of several communication statements for execution. The communication
statement may be either an input or an output command. We propose a simple algorithm to implement

the generalized alternative command and show that it uses fewer messages than existing algorithms.

1. Introduction

Many concurrent programming languages [Hoare 78], [Gehani 83], [Andrews 81] use synchronous
message-passing for communication between a pair of concurrent, asynchronous processes. In
synchronous message-passing, the sender and receiver must both be ready to communicate for a
communication between them to occur; we refer to the above form of communication as a binary
rendezvous. The generalized alternative command [Kieburlz 79] allows a process to select ong of
several binary rendezvous for execution. A number of algorithms {Bernstsin 80, Buckley 83, Van De
Snepscheut 81, Schwarz 78, Schneider 82] have been designed to implement the above command for a
group of concurrently executing processes. Buckley & Silberschatz [Buckley 83] present four criteria to
determine the ‘effectiveness’ of algorithms that implement this construct. In the light of these criteria, they
point out major drawbacks of many previously published algorithms and present an algorithm that meets
the criteria. in section 2, we present an algorithm that satisfles the above criterla and Is simpler and more

efficient than the algorithm presented in {Buckley 83].

More recently, researchers have proposed the use of multiway rendezvous [Charlesworth 87, Forman
87, Francez 86, Milne 85] to model synchronous communication among an arbitrary number of
asynchronous processes. Multiway rendezvous is a generalization of binary rendezvous. Existing
solutions [Chandy 88, Bagrodia 87] for the multiway rendezvous, subdivide the problem into two parts,
synchronization and exclusion, and implement muRiway rendezvous by combining solutions to each of the
subproblems. Although the above algorithms can be used to implement the special case of binary
rendezvous, such solutions are more complex than algorithms designed specifically for binary

rendezvous.

Section 2 prasents a simplified version of the binary rendezvous problem. In the simplified description,
we ignore the syntax and semantics of communication in CSP and restrict our attention to the issue of
pairwise synchronization of asynchronous processes. In sections 3 and 4, we describe the algorithm in
the simplified context. The correctness proof for the algorithm is presented in saction 5. In section 6, we
indicate how the algorithm presented in this paper is extended to implement the generalized aiternative

command of CSP.

2. Problem Description

We consider a group of concurrent, asynchronous processes. Each process in the system has a
unique identifier, called its process_id. A synchronization between two processes in the system is
reterred to as an Interaction. Each interaction is represented by a unique pair (pi,pi), where p; and p; are
the process_ids of the two processes involved in the corresponding synchronization. We use the term
procass p; to mean the process with process_id p,. Each process in the system is either idle or active.
We assume that processes do not terminate. An idle process is waiting to commit to any one of a set of
interactions: this set is referred 1o as its Interaction_set. An idle process p; becomes active, only after it
commits to some interaction (p,,pj). An active process becomes idle autonomously. The algorithm
ensures that a process p; commits to an interaction (™ pi). only when it determines that process p; will
also do so. We assume that each interaction in the system is assigned a unique identifier, referred to as

its Interaction_ld2.

An interaction (pi,p]-) is enabled if both processes p; and p; are idle. The interaction is said to be
disabled if at least one of the two processes is active. We assume that when two processes commit to
the same interaction, they are synchronized for a finite period of time. We define a relation confiict
between a pair of interactions, where confiictie,,e) Is true if and only if k- / and interactions e, and e
contain a common process. It is required to construct a distributed algorithm that satisfies the following

two properties:

1. Safety property: Processes do not (simultaneously) commit to interactions that conflict with
each other.

2. Liveness property:
a. If process p, commits to interaction (p,, p]). process p, will eventually do so.

b. Every enabied interaction is eventually disabled.

The next section gives an informal, intuitive description of the algorthm. The properties of the

algorithm are formally defined and proven in section 5.

2Unique identifiers for interactions are not strictly required in this algosithm. The pair of process_ids can be used to uniquely
identify each interaction. The assumption of unique interaction_ids is being made only for simplicity in exposition.

3. Algorithm : Informal Description

The algorithm associates a unique token with each interaction. The token contains the process_ids of
the two processes involved in the interaction. When a process p; becomes idle, it determines it any
interaction (p;, pi) can be executed by requesting that interaction. An idle process requests interactions
from its interaction_set in increasing order of priority. The unique interaction_id of each interaction
determines its priority, where a higher interaction_id implies a higher priority. A process p; may request
only those interactions, for which it possesses the corresponding token. When p, requests an interaction

(PP} it sends the corresponding token to p;. A process may request at most one interaction at any time.

On receiving a token, a process p; may either commit to the corresponding interaction, refuse to do so
or delay its response. If P is idle and has not itself requested another interaction, it commits to this
interaction. A process commits to an interaction by sending the token back to the requesting process.
On the other hand, if P, is active, it refuses the interaction. A process refuses an interaction by capturing
the token and sending a cancel message to the requesting process, in this case p;. This implies that the
process that last refused an interaction has the responsibility to initiate the next request for the
interaction. Henceforth, a process that has requested an interaction, but has not received a response to

ils request, is referred 10 as a grey process.

Dus to the asynchronous nature of the requests for interactions, conflicts can arise when a grey
process receives the token (request) for another interaction before receiving a response fo its request.
These conflicts can be easily resolved by using the unique interaction_ids. Specifically, if a grey process
p, receives a token with interaction_id e,, it delays the token if e, is less than the interaction_id of the
token requested by p;; otherwise, p; refuses the interaction and sends a cancel message as described
above. This guarantees that the requests in the system will never be delayed in a manner that can cause
the system to deadlock. If a grey process, say p; delays an interaction, the algorithm ¢can guarantee that
p; will either commit to its requested interaction or to the delayed interaction. Thus, it is only necessary
for a process to delay at most one interaction. Tokens received by a grey process that has delayed an
interaction, can immediately be refused by the process independently of the relative priority of the two
interactions. A grey process responds to the delayed interaction, after it receives a reply to its request.
Consider an interaction (p,, p;) with interaction_id e,. Process p; requests interaction e, and sends the
corresponding token to p;. Subsequently, p; receives some token and delays it in accordance with the

rule for delaying interactions described above. In reply to its request, eventually p; receives either the

token for interaction e,(i.e. P has committed to interaction e,) or a cancel message (i.e. interaction e, is
refused by p;). In the first case, p; commits to interaction e, and retuses the delayed interaction. In the

second case, p, relinquishes interaction e, and commits to the delayed interaction.

The key idea of the algorithm is that an idle process continues to request interactions in increasing
order of priority, until it either commits to an interaction or runs out of tokens. if any process delays an
interaction, it is guaranteed to eventually become active. If an idle process runs out of tokens, it will
commit to the first token it receives from another process. If it does not receive any tokens, it follows that
all interactions in its interaction_set must be disabled. This properly is proven subsequently. We first

give a precise description of the algorithm in the next section.

4. The Algorithm

A process autonomously makes the transition from active to idle. On becoming idle, it negotiates with
processes named in its interaction_set to commit to an interaction. We assume that when two processes
commit to an interaction, they remain synchronized until the process that requested the interaction sends
a signal to the other process to terminate the synchronization. (This assumption is not necessary for the
algorithm. In general, the synchronization may be terminated by gither of the two processes.) Each

process p, in the system has the following local variables:

token_g;: Ordered queue to store the tokens owned by process p; the queue is ordered on the
interaction_ids of the tokens. Standard queue operations, namely enqueus,
dequeue, and empty are assumed to be defined for this ordered queue.
color;: used to describe the state of the process, which may be any one of the following:
white. the process is idle and does not have any outstanding request.
grey. the process has requested an interaction, but not received a reply to its request;
black: the process has committed to an interaction.
yellow: the process is active.
mo;: it color=grey, it contains the id of the interaction requested by the process; otherwise
Ris setto 0.
delay;: set to Irue If and only if p; has delayed a token.
delay_token;: if delay; is true, then delay_token; contains the token delayed by p;.
com;. vector of booleans: comje,] is true if and only if p; commits to interaction ey.
sync;. vector of booleans: syncje,] is true if e, was requested by p and both processes

have committed 10 @;.

The algorithm uses the following types of messages:

token: RECORD
ino: unique id of this interaction. (Every ino is greater than 0)
process_list. process_ids of the two processes named in the interaction,

END_RECORD;
cancel: sent by a process to refuse an interaction.

done: sent by a process to terminate an interaction.

Initially, the variable color for each process is set to yellow; variable delay and vectors com and sync
are set to false: rno Is initialized to 0. The token for each interaction is arbitrarily assigned to one ot the
two processes named in the interaction. Each process executes the following rules which constitute a

single guarded command [Dijkstra 75]. The subscripts on variables have been dropped tor simplicity.
R1l: On transition to idle state:

(color=yellow) A (process is idle)
==> color:=white;

R2: Requesting an interaction:

(color=white A —emply(token_gq))
===> [REQUEST_ TOKEN;
color:=grey;

)|

R3: Committing to an interaction:

R3.1 On racelving a token:
(color=white) v ((color=grey) A (token./no=rnoj})
===> [COMMIT_TOKEN (token) ;
color :=black;
]

R3.2 On recaiving a cancel massage:
(color=grey) A delay
===> [delay:=false;
COMMIT TOKEN (delay_token) ;
color : =black;
1

R4: Rafusing an Interaction:

On receiving a token:
(color=yellow) v (color=biack) v delay v { {color=grey) ~ (token. /no>mo))
=m=)> REFUSE_TOKEN (token) :

R5: Delaying an interaction:

On receiving a token:
(color=grey) A (token.ino<rno) a —delay
===> [delay:=lrue;
delay_token :=token;
1

R6: Relinguishing an Interaction:

On raeceiving a cancel massage:
(color=grey) A —delay
m==> [MO:=0;
color:=whits;
i

R7: Transition to active state:

7.1 Terminate Interaction:

(Eek, sync(e,]) ===> [Sync[e,] :=false;
sand done message to other procesas;
Set delay and com to false;
color:=ysliow;
]

7.2 On receiving a dona message:

(color=black} ===> [Sat delay and com to false:
colot :=yeallow;
1

Request_Token

token:=dequeue (token_q) ;
rno:=token. ino;
send token to other process in token,process_list;

Refuse_Token{token)

send cancel message to requesting process;
enqueue (token_¢, token);

Commit_Token{token)

com {token. inol :=true;
1f delay then Refuse_Token(delay_token);
[token.ino <> o
==>Sand token to requesting process;
[] token.inc = rno
==>8ync [token. ino] :=true;
enqueue (token_q, token);

5. Correctness Proof

In this section, we prove that our algorithm satisfies the properties listed below.

s —(com;[e,]ncom fe]A(l#K)) 1
o —(sync [e,]async;lencontfiicle,.e)) 12
« enable(e,) -+ disablee,). P1

The symbol > stands for 'leads-to’ [Chandy 88], and means that if the left-hand side of the relation

holds, the right-hand side holds or will eventually hold. Invariants 11 and 12 represent the safety
properties for the algorithm, where 11 ensures that a process commits to at most one interaction, and 12
guarantees that processes do not commit fo interactions that conflict with one another. Property P1
ensures that if an interaction e, is enabled (both processes named in the interaction are idfg), then
eventually e, is disabled (at least one of p, or Pj becomes active).

Safety
Theorem 1: The following is an invariant:
—(comje k}Aoom'-[e,]A(ht K))]

Proof: Without loss of generality, assume com]e,]. From the algorithm, for any e, comj[ée] is set to
true only due to execution of R3 which also sets color;=black. Subsequently, color,=black leads-to
color;# black, only due to R7, which also sets array com, to false. As the preconditions to R3 exclude

color,=biack, we have come J=>VI=k, —coma] 0
Lemma S1: Given interaction (p;, pi) with interaction_id 6, synci[ek]:comi[ek]/\comj[ek].

Proof: Given synce,]. From the text of Commit_Token, sync,[e,]=>comfe,]. Also due to the text of
Commit_token, syncje,] is set to true, only when a process p; receives a token e, that it had requested.
From R2 and R3, a process sends a token to another either to request an interaction or commit {o an
interaction requested by another process. Since interaction g, was requested by p; the token must have
been sent by p; to p; only after p, commitied to e,. Due to R3, when p; committed to &, comje,] must

have been set to true. 0

We use invariants |1, and lemma S1 to show that the algorithm maintains invariant |12.
Theorem 2: The following Is an invariant:
—(8ync;le,}async j[ei]Aoonﬂici(ek,e h);

Proot: As conflict{e,, @), interactions e, and e, must have a process in common; let the process be p,.
Assume that interactions e, and e, are defined by the pairs (P;P.) and (pj, p.) respectively. We present a

proof by contradiction. Assume (synci{ek]z\syncj[el]).

It sync[e,], due to lemma S1, com;e. Jrcom fe,]. Similarly, if syncj[e,]. due to lemma Si,

comjelacom fe]. However, com_ e, Jacom Je|] violates invariant I1. 0

Liveness

Lemma LO: For some e, if com;[e,]. then eventually p; becomes active.

Due to R3, if comje], then color,=black. Due to R7, color=black impiies that eventually

color; = yellow, which by definition implies that p; is active.
Lemma L1: The interaction delay graph is a finite, acyclic graph.

The interaction delay graph is a finite, directed graph G, each of whose vertices represent an
interaction. A directed edge from vertex g 1o vertex g, exists in G if and only if interaction e; was delayed
by a process that had requested interaction g, Since a process may request or delay at most one

interaction, each vertex in G may have at most one incoming or outgoing edge.

Initially this graph is empty and hence trivially acyclic. Subsequently, a cycle in this graph can be
formed only due to the addition of an edge. In the algorithm, a process p, can delay an interaction &, only
if p; has requested an interaction e, such that g < ;. Therefore, all edges in the graph go from a vertex

with a lower Id to one with a higher id. It follows that G must be acyclic. f

Lemma L2: If a process p delays an interaction, eventually all interactions in the interaction_set of p,

are disabled.

Proof: Consider a process p, that has requested an interaction (pk,pj). For simplicity in notation, let this
interaction have an interaction_id 8,. Assume delay,, i.e. p, delays some interaction &, in accordance
with rule R5. Thus, delay_token, =e,. An arc exists from g to g, in G. If p, becomes active, by definition,
all interactions in its interaction_set are disabled. Due to LO, # for some e, com,[é], then eventually p is

active. We prove that given delfay,, eventually com,[e,]vcom,[e].

From lemma L1, G is acyclic. Hence, there exists at least one vertex in G, called the sink vertex, that
has an incoming arc and no outgoing arc. Let the sink vertex be represented by e,. Either g is a sink
vertex or a sink vertex is reachable from g,. In either case, let the incoming arc to g; be from vertex 6.
This implies that some process p, has requested interaction e, and delayed interaction e,. Since vertex
e, has no outgoing arcs, interaction e, has not been delayed. Only two possibilities remain: either p
commits 1o interaction e, (comfe.]), or e is refused. In the second case, due to R3.2, com,[e/]. Due to

lemma LO, (com[e]vcom[e.]) implies that eventually p, is active, and by definition e, is disabled.

10

When interaction ¢, is disabled, the corresponding arc (e, &,) is deleted from G. Since each vertex in G
can have at most one outgoing arc, deleting arc (e, 8;) from the graph will result in vertex e, becoming a
sink vertex {no outgoing arcs). Since G is finite and g, is reachable from g,, we can inductively conclude
that eventually g, will become a sink vertex. By using the reasoning applied above for pg, it follows that

eventually (com,[e,]vcom,[e)]). 1]

We use lemmas L1 and L2 to prove property P1.
Theorem 3: Liveness: An enabled interaction is eventually disabled.

Proof: Consider interaction (p;, p) with interaction_id &,. Due to LO, the interaction is disabled if
(comje,]v (comj[ek]). Without loss of generality, assume that the token for interaction &, is owned by p;.
Due to R2, if p, remains idle, it must eventually request interaction g, and send the corresponding token to
P;- On receiving the token, if p; commits to or delays the interaction, then g, will be disabled due to R3 or

L2. Assume p; refuses the interaction and captures the token.

If p; remains iclie, due 10 R2, it must eventually request interaction g, and send the token to p;. Once
again, it p; commits to or delays the interaction, the interaction is disabled. Assume p; refuses the

interaction. Due to R4, it must be that
(color;=yellow) v (color=black) v delay; v ((color=grey)a(g,>TNO}))

If color=black, due to R7, eventually color;=yellow; If color;=yeliow, interaction e, is disabled by
definition; it delay, e, will eventually be disabled due to L2. Thus, it must be that
((color;=grey)a(e, > rno}}). However, a process requests interactions in increasing order of priority and &,
has already been requested by p;,. Thus, if p; is grey and has currently requested some interaction €,

tno, =g, and it is impossible for g, to be greater than mo;. 0
Corollary 1: An interaction generates at most four messages before it is disabled.

In the above theorem, when interaction &, is requested by p;, if the interaction is disabled, exactly two
messages are generated -- a token message from p; to p; and either a token or a cancel message from p;
to p;. However, if the interaction is refused by p; but not disabled, then eventually p; must request the
interaction. From the above theorem, the interaction is bound to be disabled and at most two more
messages may be generated - a token message from p; to p; and either a token or a cancel message

from p;to p;. 0

11

5.1. Algorithm Efficlency
Buckley and Silberschatz [Buckley 83] present four useful criteria to measure the efficiency of
algorithms that implement the generalized atemative command. We compare the algorithm presented in

this paper with respect to these criteria.

The first criterion states that the number of processes involved in determining whether any given
interaction can be executed should be as small as possible. This criterion ensures that processes do hot
access global information. In the algorithm presented in this paper, for each interaction (p,, pi)’ the only
processes involved in making this decision are p; and Py Second, the amount of system information that
each process needs in order to make a decision to commit to an interaction should be small. In our
algorithm, each process needs to know only whether the other process named in an interaction, is idfe.
This information is communicated by the exchange of messages (token or cancel) between the two
processes, and no global state information need be saved by a process. The amount of local state
information is also small, and apart from the tokens, consists of exactly three variables, color, rno, and
com. As proved in invariant 11, variable com need not be an array, as each process commits to at most
one event. Variable sync is an auxiliary variable that was used to simplify the correctness proofs and is
not needed for the operation of the algorithm itself. The third and fourth criteria impose a bound on the
time and the number of messages needed to ensure that two processes named in an interaction do not
stay idle indefinitely. The corollary o the liveness theorem establishes the necessary bounds by showing
that each interaction can generate only a finite number of messages before it is disabled. We now
compute the maximum number of messages needed to establish synchronization between two idle

processes named in an interaction.

Consider two processes p; and p; that are named in an interaction @, Let T be the number of
interactions in the interaction_set of each process. Further, let t be the number of interactions e in the
interaction_set of each process, such that ¢;sg,. Assume that eventually, both p; and p; commit to
interaction e,. We compute the number of messages required, in the worst-case, for interaction g to be
disabled. Without loss of generality, assume p, originally owns the token tor e,. Process p; can have at
most T tokens. At worst, p; successively requests the T interactions, all of which (including ¢,) are
refused by the other process(es). This generates at most 2*T messages. Subsequently, p, does not
receive any tokens, other than g, (if it does, it would have to commit to the corresponding interaction).

Process p, requests tokens in increasing order of priority. This implies that p; can request at most t-1

12

interactions before requesting 6,. The t-1 interactions must all be refused (since p, eventually commits 1o
8,) generating exactly 2*(t-1) messages. It follows that in order for interaction g, to be executed exactly
2*(T+1) messages are generated in the worst case. The algorithm described in [Buckley 83] requires at
most 6*M + 2°Q messages for an interaction to be executed; where M Is the number of interactions in the
interaction_set of a process, say p; and Q is the number of processes in the interaction_set of A with

process_ids that are smaller than p;

6. Discussion
In this section, we informaily indicate how the algorithm is used o implement the generalized

alternative command of CSP.

A CSP program consists of a collection of sequential processes that execute concurrently. The
concurrent processes communicate with each other via synchronized message-passing. Non-
deterministic process behavior is provided by means of the generalized alternative command. This
command, as described in [Buckley 83], allows a process to arbitrarily select one of several statements
for execution. Each statement in the command is protected by a guard (a boolean expression and/or a
communication statement) which must be enabled for a statement to be considered for selection. A
guard is enabled if the boolean expression evaluates to true and the process named in the
communication statement has not terminated. The communication statement may be either an input or an
output statement. In CSP, every input {output) statement must explicitly name the source (destination)
process. Communication between two processes can occur when the output statement in a process
matches the input statement of another process. A pair of communication statements are said to be
matched [Hoare 78] if (1) an input command in one process specifies as its source the process name of
the other process; (2) an output command in the other process specifies as its destination the process
name of the first process; and (3) the target variable of the input' command has the same type as the

expression of the output command.

In the context of CSP, an interaction (p;, p) represents a pair of matched communication statements in
processes p; and Pj respectively. The interaction_set of a process refers to the set of matched
communication statements in an alternative command of the process. The term ‘process p; commiits to
imteraction (p;.p;)’ implies that p; executes the communication statement that matches a corresponding

communication statement in process p. The interaction is terminated when the processes have

13

exchanged the appropriate message. We now indicate how the above algorithm is extended in minor

ways to implement process communications in CSP.

In a CSP program, two processes p; and p; may contain more than one pair of matching
communication statements, thus violating our assumption that a pair of process-ids uniquely identifies an
interaction. This problem may be easily handled by associating a unique identifier with every pair of
matched communication statements in the program. As CSP does not allow dynamic process creation,

this association may be done statically (at compile time).

Second, a process in a CSP program may contain many alternative commands, each command
comprising of different communication statements. In addition, each communication statement may be
preceded by a boolean expression; the communicalion statement is executable only if the boolean
expression evaluates to true. The two characteristics mentioned above imply that in general, the
interaction_set of a process is dynamic, rather than st_atic as assumed in this paper. To handle dynamic
interaction_sets, for every p;, we define a boolean array called status; which contains a single entry for
each matched communication statement in process p,. When p; encounters an alternative command,
status; is initialized to false (in the algorithm, sfatus will be initialized to false, when rule R1 is exacuted).
Each communication statement in the guards of the altemative command' corresponds o a unique
interaction; consider the communication statement comresponding to interaction e,. |f the communication
statement is not preceded by a boolean expression, or if the boolean expression evaluates 10 lrus,
status(e,) is set to true. The condition for refusing an interaction (rule R4) is modified such that on
receiving a token, the process will also refuse the interaction e,, if — status(e,). The rule for requesting

tokens (rule R1) is also modified to prevent a process from requesting an interaction e, if — status(e,).

Finally, it may be mentioned that the algorithm described in this paper is not fair: we do not assert that
if a particular interaction, say (p;, pi) is enabled infinitely often, processes p; and p; will commit to the
interaction infinitely often. In fact, as presented in this paper, the algorithm gives a higher priority to
interactions with a smaller id. We indicate how an implementation may prevent this bias. For simplicity in
the presentation, we have assumed in this paper, that interactions are always requested by a process in
increasing order of an id number associated with the interactions. In fact, as shown in [Bagredia 86],
correciness of the aigorithm does not require the interactions to have unigue ids, nor to be requested in a
particular order of priority. Unique process-ids are sufficient to allow processes to resolve conflicts.

Although the modification cannot guarantee fairness, it will decrease the probability of an interaction with

14

a higher Id being always ignored in favor of an interaction with a lower one.
Acknowledgements

| am grateful to Professor Shmuel Katz and Dr. Ira Forman for initial discussions on the problem and the
algorithm. | am indebted to Professor Chandy and Professor Snepscheut for their detailed comments
which resulted In significant improvements In the presentation of the aigorithm and its correctness proof.

Thanks are also due to the refarees for their helpful comments.

[Andrews 81]

[Bagrodia 86]

[Bagrodia 87)

[Bernstein BO]

[Buckley 83]

[Chandy 88]

[Charlesworth 87]

[Dijkstra 75]

[Forman 87]

[Francez 86]

[{Gehani 83]

[Heare 78]

{Kieburtz 79]

15

References

Andrews, G.R.
Synchronizing Resources.
ACM TOPLAS 3(4):405-430, October, 1981.

Bagrodia, R.

A Distributed Algorithm To Implement The Generalized Alternative Command of CSP.

In Proccedings of 6th international Conference on Distributed Systems. Cambridge,
May, 1986.

Bagrodia,R.L.

A Distributed Algorithm to Implement N-Party Rendezvous.

In K.V.Nori (editor), Foundations of Software Technology and Theoretical Computer
Science, LNCS 287, pages 138-152. December, 1987.

Bernstein, A.J.
Output guards And Non-determinism in Communicating Sequential Processes.
ACM TOPLAS 2(2):234-238, April, 1880.

Buckley, G. and Silberschatz, A,
An Effective Implementation Of The Generalized Input-Output Construct of CSP.
ACM TOPLAS 5(2):223-235, April, 1983.

Chandy, K.M. and Misra, J.
A Foundation of Parallel Program Design.
Addison-Wesley, Reading, Massachusetts, 1988.

A. Charlesworth.
The Multiway Rendezvous.
ACM Trans. on Programming Languages and Systems 9(3):350-366, July, 1987.

Dijkstra, E.W.
Guarded commands, nondeterminacy, and formal derivation of programs.
Communications of the ACM 18(8):453-457, August, 1975.

Forman, |.R.

On the Design of Large Distributed Systems.

Technical Report No. STP-098-86, Microelectronics and Computer Technology Comp,
Austin, Texas, January, 1987,

Praliminary version in Proc. First Int'l Conf. on Computer Languages, Miami, Florida,
October 25-27, 1986.

Francez, N., Hailpern, B. and Taubenteld, G.
Script:A Communication Abstraction Mechanism.
Science of Computer Programming 6(1}, January, 1986.

GehaniN.
Ada: An Advanced Introduction.
Prentice-Hall, 1983.

Hoare, C.A.R.
Communicating Sequential Processes.
CACM 21(B):666-677, August, 1978.

Kieburtz, R.B., and Silberschatz, A.
Comments on 'Communicating Sequential Processes.
ACM Trans. Program. Lang. Syst. 1(2):218-225, October, 1979.

16

[Milne 85] Miine, George.
CIRCAL and the Representation Of Communication, Concurrency and Time.
ACM TOPLAS 7(2), April, 1985.

[Schneider 82] Schneider,F.
Synchronization in Distributed Programs.
ACM TOPLAS 4(2):125-148, April, 1982.

[Schwarz 78] Schwarz, J.S.
Distributed synchronization of Communicating Sequential Processes.
Technical Report, Dept. Of Artificial Intelligence, University of Edinburgh, Scotland,
July, 1978.

[Van De Snepscheut 81]
van De Snepscheut, J.L.A.
Synchronous Communication Between Asynchronous Components.
IPL 13(3):127-130, Decamber, 1981,

