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Abstract - We model a job in a parallel processing system as a concatenation of stages each of which
requires a certain integral number of processors for a certain interval of time. With this model, we derive the
speedup of the system for two cases: systems with no arrivals and systems with arrivals. In the case with no
arrivals, our speedup result is a generalization of Amdah!’s Law. We extend the notion of "power” (the simplest

throughput
response time
tems to our case of parallel processing systems. With this model, and with this definition of power, we are able to
find the optimal system operating point (i.¢., input rate of jobs) and the optimal number of processors to use in the
parallel processing system such that power is maximized. Many of the results for the case of arrivals are the same
as for the case of no arrivals. A familiar and intuitively pleasing result is obtained which states that the average
number of jobs in the system with arrivals equals unity when power is maximized.

definition is power = ) as previously applied to general queueing and computer-communication sys-

We also model a job in a way such that the number of processors required by a job is a continuous variable
that changes continuously over time. The same performance indices and parameters studied in the first model are
also evaluated for this continuous model. These results can be very helpful in designing a parallel processing sys-
tem.

Index Terms - processor efficiency, system utilization, power, speedup, Amdahl’s Law, parallel processing,
multiprocessing, optimal design,

L. INTRODUCTION

As parallel computing systems proliferate, the need for effective performance evaluation techniques
becomes ever more important. In this paper, we study some fundamental performance indices, maximize these
indices, and find the optimal values of some design parameters. The performance indices studied in this paper are
processing time speedup, response time speedup, processor utilization, mean service time, mean response time, and
power. An expression for each index is given in this paper. Furthermore, by optimizing power, we are able to find
A" (the optimal input rate of jobs) and P* (the optimal number of processors to use) given the job specification.

We model a parallel processing system as a system with a single queue. Only one job can be admitted into
service at a time, following a FCFS discipline, while the others wait in the quene. While in service, the system pro-
vides a maximum of P parallel processors to work on the job. A job in such a system is modeled as a concatenation
of stages where the number of processors required in each stage can be different. If, for some stage, the job in ser-
vice requires fewer processors than the system provides, then the job will simply use all that it needs and the other
processors will be idle for that stage. If, for some other stage, the job in service requires more processors than the

This research is sponsored by the Defense Advanced Research Projects Agency, Department of Defense (Contract
number MDA903-87-C-0663).
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system provides, then it will use all the processors in the system (processor sharing) for an extended time such that
the total work served in that stage is conserved. An example is given in Figure 1 in which the total processing work
required by a job is W seconds.

FIGURE | GOES HERE.

For such a parallel processing system, there are two performance measures which compete with each other:
processor efficiency and mean response time. That is, by raising the processor efficiency of the system (by reducing
the number of processors), which is desirable, the mean response time will also be raised, which is not desirable.
Similarly, by lowering the mean response time, the processor efficiency of the system will also be lowered. In this
paper, these two performance measures are combined into a single measure, known as power, which increases by
either lowering the mean response time or by raising the processor efficiency of the system.

Power, studied in [6] and [7], was defined in [7] as —]-s_—_ in a general queueing system where p is defined as
x

the system utilization, T is defined as the mean response time, and x is defined as the average service time. With this
measure we sce that an increase in system utilization (p) or a decrease in response time (7) increases the power.
(Note that this normalized definition is such that 0<p <land 1< T/% and 30 0 < power < 1.) The symbol * will be
used to denote variables which are optimized respect 1o power. In [7], it was found that for any M/G/1 queueing
system [5], power is maximized when N =1, where N = the average number of jobs in the system. This result
says that an M/G/1 system has maximum power when, on the average, there is only one job in the system. This
result is intuitively pleasing since it corresponds to our deterministic reasoning that the proper operating point for a
single server system is exactly when only one job is being served in the system and no others are waiting for service
at the same time. In this paper, our results also correspond to this deterministic reasoning when power is maximized
with respect to the job arrival rate ().



An extensive study of power applied to computer networks is given in [3]. In [8] a system is studied where
a job has a deterministic service requirement and has a processor requirement which changes during its execution
time. In that model, a job requires a linearly increasing number of processors until half of the work of the job is
finished; then the job needs a linearly decreasing number of processors until the other half of the job is done, Only
one job is in the system; no arrivals are allowed and hence queueing effects are not considered. It is assumed in [8]
that whenever the number of required processors is greater than the number of available processors in the system,

the job will use all the available processors by elongating the service time under the constraint that the overall work
is conserved. In [8], power was defined in the unnormalized form (from [7]) as %ﬂ, where u (P) is defined as the
x(P)
processor efficiency during the service time of the job given there are P processors in the system and x(P) is defined
as the mean service time of a job given P processors in the system. This is the appropriate definition of power if one
considers the performance when only one job is to be processed. It was shown that in order t0 maximize power, the
optimal number of processors to use in the system is approximately 60 % of the maximum number of processors
required by the job when the job has a "linear profile” - see Example 1 following Theorem 3 below. This result was
achieved by numerically solving a 5* order polynomial equation. In this paper we are able to obtain this result
analytically for a more general case.

Speedup is a performance measure which is used to describe how much faster a job can be processed using
multiple processors, as opposed to using a single processor. In this paper, we assume there are P processors in the
system and we define the following notation:

p £ the system utilization, i.e., the fraction of time when there is at least one job in the system.

X(P)} 2 the mean service time of a job given P processors in the system

T,(1,p) £ the mean response time of a queueing system with a single processor at system utilization p.
T,(P,p) 3 the mean response time of a queueing system with P processors at system utilization p.

Note the difference between u (P), which is the average processor efficiency given P processors, and p, which is the
average system utilization. Whenever there is a job in the system, the system utilization is “1" but the processor
efficiency need not be "1" since there may be some idle processors in the system because the job in service does not
require all the processors. Hence, the system utilization is always greater than or equal to the processor efficiency.
(Note that 1 (1) = p for a single processor queueing system.)

With these definitions, we define the processing time speedup with P processors, denoted by §,(P), to be

x(1)
S,(P) = 2=- )
T wP)
and we define the response time speedup with P processors at system utilization p, denoted by §,(P,p), to be
Ti (l»p)
SP.p)=——"— 2
{P,p) T.(.p) 2

Two cases are considered in this paper. Case one allows no arrivals. That is, there is only one job in the
system to receive service. Case two allows arrivals at a rate A and so queueing effects are considered. The process-
ing time speedup is the appropriate measure to use when no arivals are allowed in the system (i.e., only one job is
to be processed) and the response time speedup is the appropriate measure when job arrivals are allowed. We
define the following notation which is used, finally, to define power.

u,(P) A the average processor efficiency given there are P processors in the system (case of no arrtvals).



uz(A,P) A the average processor efficiency given the job arrival rate A and P processors in the system,
T»(A,P) 2 the mean response time (i.e., service time + queueing time) given the job arrival rate A and P
processors in the system *.

1Y (P) A power (with parameter 7) given P processors and no arrivals to the system.

(M P) £ power (with parameter r} given the job arrival rate A and P processors in the system.

(i) If no arrivals are allowed, we define power as:

wP)
x(P}

Clearly, power will increase by either raising the processor efficiency or by lowering the mean service time. With

the definition in (3), a more general definition of power (as originally studied in [7]) is given as:

, [u, (P

PPy = ——— @)
x(P)

where r is a positive real number. With this generalization, we have the freedom to favor the processor efficiency

more heavily than the service time by simply increasing the value of the parameter r.

o) = &)

(ii) If arrivals are allowed, we define power in a similar way as in (3) except that the mean service time is replaced
by the mean response time since queueing will occur in a system with arrivals:

1) _ uZ(l’P)
NP0, /)= 75 5y ©)
and the generalization of (5) is given as
[ (AP
) ——
o, P) T.0.7) (6)

where r is a positive real number.

With these definitions of power, we find the optimal number of processors to use in a parallel processing
system such that power is maximized. Furthermore, if we allow arrivals, we also find the optimal system operating
point (i.¢., input rate of jobs).

‘This paper is organized as follows. In Section II we present two models of a job: a discrete model and a
continuous model. In Section III we solve the case when no arrivals are allowed in the system. In this case, we find
the processing time speedup of the system given P processors, We also find P", the number of processors which
maximizes power. In Section IV we solve the case when arrivals are allowed in the system. In this case, we find
the response time speedup of the system given P processors. We also find A" and P* which maximize power. One
interesting result we get is that the P" for systems with no arrivals and the P* for systems with arrivals are equal
when power is maximized; this provides a great simplification in design.

II, MODELS OF JOBS

A. A Discrete Job Model

* T,(P,p) and T,(A,P) are, in fact, the same function. We distinguish them to explicitly show the value of p in
T,(P,p) and the value of A in T5(A,P). In all cases, we have p = Ax(P).

-



We model a job as containing a total of W, Non-overlapping subsets of these tasks are collected into
stages, and these stages are processed one at a time. :a random variable with mean W and coefficient of varia-
tion cw *. We assume the service time distribution ... cach task is deterministic such that each task requires one
second of work. A job is described by specifying W and cy along with two other vectors. The first vector is called
the fraction vector, f , and the second vector is called the processor vector, P . We denote the fraction vector (_f’ )
and the processor vector (P} as:

F =l 2 s v £

P =[Py Py Py s Pu ]

where n is the number of stages in a job. Thus, the i stage has an f; and a P; assocmted with it. The meaning of
and P can be described as follows: a fraction f; of the total tasks in a job can use P, processors to concurrently

process these tasks. From this definition, it is clear that Zf} = 1. Thus, for example, if stage i contains 10 tasks and

W = 80, then f; = 1/8; moreover, if P; =5 (and P 2 5), lL;:en it will take 2 seconds to complete stage i.

For the convenience of computation, we can rearrange the elements in? and P as follows in such a way
that neither the mean response time nor the processor efficiency _c);f the system are changed. P is rearranged so that
its elements are increasing; this new vector will be denoted by P =[P, Pa, ...... , Py)suchthat P, < P;in P and
7 is similarly rearranged and relabeled as?accordmgly By so doing, we may merge several stages with the same
P.’s into one stage simply by adding all the corresponding fi’s into one f.. Since the system admits only one job
into service at a time, it can easily be shown that this rearrangement does not affect the performance at all. An
example is shown in Figure 2.

FIGURE 2 GOES HERE,

B. A Continuous Job Model

*+ the coefficient of variation of a random variable is equal to its standard deviation divided by its mean.
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We now describe a continuous version of the above model. In this model we assume that the number of
processors required by jobs is a continuous increasing function which changes continuously over time. A special
model with deterministic workload per job will be described first. After that, a general model with a random work-
load per job will be described.

For the special case with a deterministic workload, we define R (f) = g {¢) tobe the function which gives the
number of processors required by a job at time ¢ and ¢ is in the range [0, b] such that R {by=B. For such a model,
b

the workload (seconds of work) for each job is deterministic with value W = t[g {£)dt.

For the general case, we define fé(f) = g(ﬁ) to be a random function which gives the number of proces-

sors required by the job at time ¢+ K is a random variable with mean K and coefficient of variation ¢ and gisa
function such that it has a fixed maximum value B and ¢ is in the range [0, Xb] as shown in Figure 3. As explained

in the discrete model { Section I[IA), we assume ﬁ(r) =g (—I.t,(—) to be a monotonically increasing continuous function

in ¢ without loss of generality. Later we relax the strictly increasing constraint on g.

FIGURE 3 GOES HERE.

The distribution of X affects the results given in this paper in the following simple fashion.

(i) All time variables should be multiplied by X.

(i) All mean time variable should be multiplied by K.

(iii) P* is independent of the distribution of K.
Therefore, we assume K = 1 in the remainder of this paper. In addition, cy does affect some of our expressions and
it appears explicitly in these expressions.

III. SYSTEMS WITH NO ARRIVALS
In this section, we examine the system with no arrivals. That is, there is one job in the system to be pro-

cessed using P processors and no arrivals to the system follow. We wish to find the processing time speedup and to
find P* which maximizes power. For systems with no arrivals, we have
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mean workload of jobs
Px(P)

From the definitions of processing time speedup (as given in (1)) and power ( as given in (3)), we see that only the
mean workload of jobs, P, and X(P) are involved in the definitions. Since the mean workload of jobs, P, and x(P)
are not affected by the distribution of the service requirement, we see that the distribution of the service requirement
does not affect both the processing time speedup and power (only the “mean” affects these measures). Therefore, to
simplify the notation, only deterministic service requirement is considered in this section. Jobs with random service
requirements will have the same result as the deterministic service requirement as long as they have the same mean.
We first study the continuous case and then apply the results obtained in the continuous case to the discrete case.

ui(P)=

N

A. The Continuous Case

We assume R (¢) has the following three properties: (1) R (f) is continuous and everywhere differentiable,
(2) R () is rmonotonically increasing, and (3) R (1) is a one-to-one mapping. We define:

a{P) 2 length of the interval from when a job first begins service until it first requires more processors
than the system supplies, i.e., a(P)=min(t: R(t) > P) (see Figure 4).

b A the service time of the job if the number of processors in the system is always greater than the number
of procesiors required by the job (see Figure 4).

1) A [ R
a(P)

FIGURE 4 GOES HERE.

Note from Figure 4 that / (P) = [ X(P) — a (P) 1P. The processing time speedup for this system is

b b
_ |R (t)dt P[R (t)t
5,(P)= ;((;)) =— = * ®)
[R@dr  Pa@)+ [ R
a(P)+ a(P}P a{P}
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u,(P)
THEOREM 1: Power, defined as

, is maximized with respect to P when P = P*, where P" is the unique

x(P)
value satisfying
P 1P ') ©)
a(P’)
[Proof] From the definitions, we have
b
sPy=a®y+ | EQg—apy+ L8 (10)
i P P
Since u,(P) is the efficiency of the processors, we have
b
t[R (t)dt
ur(P)= (11)

PE(P)  PX(P)

where W = (1) = total number of seconds of work required by a job. (Note that W is independent of P.) Thus,
power M{"(P) becomes

P
npey= L8 W (12)
XP)  PRERPE)Y
Maximizing IT{"(P) with respect to P, we require
L PECPYE =0
which leads to
2Py < —2p ZL)
X(P)=-2P 2 (13)
But from (10) we have
di(P)
P -I(p
dx(P) _ da(P) . dP ) (14
dP dP P
Substituting equations (10) and (14) into equation (13), we have
__aplda®)y L dI(P)|, AE®) _IP)
a(P) ZPI: P +P dP]+ P P
Solving for P, we find that the optimal value of £ must be such that
[(P) 2P% |da(P) 1 dI(P)
P= - = 1
a(P) a(P)[ P P ar 13

Note that

dl(P) _ dI(P) da(P)
dP ~ da(P) dP

Moreover, since



b
1(P)= [ R(ddt
alf)

we have
dl (P}
da{P)

: _ ariPy dar(P) _ pda(P),
Buta (P) is such that R (a (P)) = P, thus 2Py P and so T P T

daP) 1dIP) _
ot =0 (16)

From equations (15) and (16) we see that the optimal value, P", is such that
Pt = I(P .)
a(P’)

=—R(a(P)

therefore

L

I(P)
a(P™)

2
It can easily be shown that %nil)a)*) < 0; therefore, P* = indeed maximizes power.

Q.ED.

To help explain the meaning of Theorem 1, let us stage and interpret the following Corollary:

u (P)

Corollary 1: Power, defined as , is maximized if and only if

x(P)

PY=2a(P") an

*

{Proof] Since ﬂ::_—) =a(P"), wehave thatX(P ) =a(P")+a(P ) =2a(P")

Q.E.D.

To interpret this Corollary, we note from Figure 4 we know that a (P} is that portion of the service time
when the job has available at least as many processors as it needs, Therefore, x(P) = 2a(P) implies that the portion
of the service time when there are enough processors equals the portion of the service time when there are not

enough processors for its needs. Let us define a(P) to be the "unextended service time” and H}? to be the

"extended service time". This Corollary states that the optimal number of processors, P *, should be selected so that
the "unextended service time" equals the "extended service time". Also note that during the unextended service
time, the processors are not fully utilized (4 < 1) whereas during the extended service time, the processors are fully
utilized (u = 1). Therefore, the time period for 4 < 1 equals the time period for u = 1.

u, (PYY .
THEOREM 2: Generalized power, defined as L%L is maximized when P~ is selected such that
X
LB (1)
ra(P™)

[Proof] The proof can easily be derived following the procedure given in the proof for Theorem 1.



QE.D.

[, (P))
x(P)

XPY=(r+DaP")

Corollary 2: Generalized power, defined as , is maximized when P" is selected such that

(19)
{Proof] This proof can easily be derived following the procedure given in the proof for Corollary 1.
Q.E.D.

Let us consider two examples to show the application of Theorem 2.

Example 1: If R (7) is a linear function, i.e,, R (1) = %‘ for 0 < ¢ £ b, and power is defined as in (4), then we have

Pt B
NZr+1
or
P* 1

Masximum number of processors required - N2r +1
[Proof] From R {(t) we have

-L
a(P)—BP
tB Bb b
IPy= | =tdi===-—=P?
,,_J;,b 2 28
B

Hence,

P I(P") =B2—P'2
ra(P") 2rP"

Solving for P*, we have

pr__B
V2r+1
Note that B is the maximum number of processors required by the job, therefore,
P’ 1

Maximum number of processors required B V2r+1
QED,

In this example, by setting r = 1, we have % = {—13_- = 58 % (where B is the maximum number of proces-

sors required). This is the case approximated in [8]; here we have the exact value of P".

Example 2: [T R{1) = ?B;t" for 0 < ¢t < b and power is defined as in {4), we have



B

P = ~
[(n+Dr+1]1""
or
P’ _ 1
Maximum number of processors required n

[(n+ Dr + 11

[Proof] This proof is similar to the proof in Example 1.
QE.D.

In Theorem 1 we required R (¢) to satisfy three constraints. Unfortunately, all three constraints will be
violated if we apply this result to the more natural case of an integer number of processors (as in Sections IIIB and
IIIC below). In the following Theorem, we show that Corollary 1 still holds even when any or all of the constraints
for R (¢) are violated.

THEOQREM 3: Corollary 1 applies even if R () has any or all of the following:
(1) a countable number of non-differentiable points
(2) vertical segments (such that R (¢) is not a one-to-one mapping)
(3) horizontal segments (such that R () is not monotonically increasing)

[Proof] See Appendix.

Theorem 3 is important because we can use the condition in Corollary 1 (that is, TP Y=2a(P*)) or in
Corollary 2 (that is, X(P ") = (r + 1)a(P")) to solve discrete cases as we now proceed to do.

B. The Discrete Case: Jobs with Two Stages

In this section, a job is modeled as consisting of W tasks of which a fraction f (0 < f <1) must be done seri-
ally (i.e., each such task can use only one processor) and of which the remaining fraction (1 — f) can be done con-
currc_r)ntly with P processors, where P is the number of processors in the system. This is equivalent to?: [f, 1-1]
and P =[ 1, P ]. Note that this is the model used by Amdahl to derive Amdahl’s Law [1], which we now state:

THEOREM 4 (Amdahl’s Law): The processing time speedup of this model, given P processors, is

__P

fP+1-f

[Proof] Since Wf of the tasks must be done serially, they will take Wf seconds; also since (1 — f)W of the tasks can

be done concurrently with P processors, they will take U_—éﬂﬂ seconds. Therefore, the mean service time equals:
T(P) = W+ kPﬁﬁ

Moreover, since a single processor working alone will take W seconds, the processing time speedup is simply W
divided by x(P).

Sp(P)= Q0

Q.E.D.

-11-



This result was first derived by Amdahl in [1] and is known as Amdahl’s law. This expression implies that
the processing time speedup of the system depends very much on the characteristics of the job (f) and that the pro-
cessing time speedup may be much smaller than the number of processors even for relatively small f. For example,
if f=0.1, then one will obtain a speedup less than 10 with 1000 times the processing capacity (P = 1000).

P
THEOREM 5: Power, defined as us(F) , is maximized when the number of processors is selected to be
x(P)
1 if f2 —;-
P=11 f 1
7 if f< r3

(Proof] During the entire service time (E(P)), the processing capability is PX(P); the work actually completed is
simply W (since the service time for each task is 1 ). Hence, the processor efficiency equals

w__ 1
PPy Pr+1-f

u(Py=

Defining power as in (3), we have

=
—
~—
f—
-~

p P
TPy = =
@) 3(P) W Pf+1 —f)z

Optimizing IT{(P) with respect to P, it is easy to show that P* = 1—}11 However, P* cannot be smaller than 1 (an

obvious boundary condition); hence, P* =1if 1—;1 <1{or, f2 %).

Q.ED.

The result given in Theorem 5 matches our intuition. It says that when many of the tasks have o be done
serially (a large /), P* should be small since, even with more processors, they will be wasted most of the time. On
the other hand, if most of the tasks can be processed concurrently (a small f), P* should be large since we can then
achieve a higher concurrency. Figure 5 shows the curve for P* versus f. Note that there is a sharp drop in P * when

fis small and also note that P* =1 for f 2 % Therefore, the conclusion here is that when power is maximized, the

concurrency can be hurt badly by a slight increase in the value of f.

-12-
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Corollary 3: For P" = 1-f > 1, the interval of time when the system is working on the serial portion cquals the

interval of time when the system is working on the parallel portion.

[Proof]
The service time for the serial portion = fW. The service time for the parallel portion = &%{Jﬁ = fW.
QE.D.

Corollary 3 is similar to Corollary 1 although they each apply to different environments. If we regard the
service time for the serial portion as the unextended service time and regard the service time for the parallel portion
as the extended service time, then Corollary 3 is exactly the same as Corollary 1.

Corollary 4: At the optimal power point,

1 it f2y
SC®=1 1 @n
— if —
27 if f< 2
[Proof] From Theorem 4, we have
P
P) = —————
5o fP+1-f
From Thecrem 5, we have
. 1
pro ] it f25
1-f . 1
f -_—
; if f< >
Substituting P = P* in the expression for §,(P) completes the proof,
Q.E.D.
THEOREM 6: Generalized Wi P o maximi ‘i
: Generalized power, defined as —W is maximized when P " is selected such that
x
proll it fe2 @2
1-f if f< 1
f r+1
[Proof] It can be shown that
(w1 (P)) 1 P

PPy = — ==
x(P)

W (Pf+1- )
Optimizing T1{?(P) with respect to P, one finds that P* = —!j-[ However, P* must not be smaller than 1; hence

-13-



1
r+1

P‘=1if1—_[sl(or,f2 ).
rf
QED.

Corollary 5: For P'= -l—éi > 1, we have

r-(service time for the serial portion) = (service lime for the parallel portion) 23)
[Proof]
The service time for the serial portion = fW. The service time for the parallel portion = a ;_ W =r-fW,
QED.
Corollary 6: At the optimal power point,
; if f2 %
S(PHY= (24)
1 if f<t
(r+1)f 2

[Proof] This proof is similar to the proof for Corollary 4.
QED.
C. The Discrete Case in General

For the general case, we assume that a job has W tasks and that the fraction vector and the processor vector
(after rearrangement) are

F=UF1 f2. Fs, e fl
=[Py Py Ps o P

n
where P, < P, forl<i<n-—land 3 fi=1

i=l

Before describing the Theorem, we need some more notation. We assume that there are P processors
available in the system, We define the index "m" such that P, <P <P, ifPysP <P or,m=n+1ifP 2P,
or,m=1if P < P,. Once mis determined, we define

m-1 f:
a-T 4 @s)
and
B=%f 6)

: I w. _
Note that oW is the unextended service time, whereas, %’— is the extended service time.

THEOREM 7 (Amdahl’s Law Generalized): The processing time speedup for any P is given by
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P
of +p

Sp(P)= 27)

[Proof] The mean service time is

1 fi 1
X(Py=W( Z -t F Eﬂ) Wia + FB) (28)
Since a single processor working alone will take W seconds to serve a job, the processing time speedup with P pro-
cessors is simply W divided by X(P).
QED.

Note that this is a generalization of Amdahl’s Law [1]! The maximum posmble processing time speedup,

denoted as S, maz, for this model will be achieved when P 2 P,, which gives o = E? and f=0. Hence,
i=l

S

i= 1

In the following two Corollaries, we derive P * for the discrete cases using the results from Corollary 1 and Theorem
3. A result similar to that of Corollary 7 is also obtained in [2].

u (P »
Corollary 7 *: Power, defined as _1( ) , is maximized when P satisfies either one of the following two condi-

x(P)
tions:
) P’ =-g if Puoy <P' <P, (30)

or

.. ] ﬁu—l
P =P, if 0&— - —L <
¢1)) Py i % S P 3D

[Proof] In case (i) there is no ambiguity in defining the unextended service time. Specifically, the unextended ser-

vice time = oW and the extended service time = ﬁpﬂ From Corollary 1 and Theorem 3 we must have

P‘
Hence,
pr=t
o

In case (i), we do encounter an ambiguity in defining the place where the unextended service time ends {and thus
the extended service time begins). In order to resolve this, we define x to be the interval in stage m — 1 in the
extended service time and the interval t,,_; — X (tm—q = fr—1 W/Pp_ is the mean service time for stage m — 1} to be
the interval in stage m — 1 in the unextended service time, as shown in Figure 6. From Corollary 1 and Theorem 3

* It is easy to show that P will never be greater than P If P* > P,, the service time will not be improved while
the processor utilization will get smaller than when P" =P,; hence, power will get smaller. A similar argument
shows that P* will never be smaller than 2.

-15-



and assuming P" = P,,_;, we have

which gives us

LW BW
2 2P, .
Since 0 € x £t,,_;, we have
0< ﬂ - _& < 1
2 2P, 1
Since t,_; = m1”  we have
m=-1
0< E _ _L < fm—l
2 2P, Pa.
Q.ED.

FIGURE 6 GOES HERE.

w1 (P)” .
Corollary 8: Generalized power, defined as [_:IE(-))_] is maximized when P~ satisfies either one of the following
x(P
two conditions:
)] P = B if P, <P <P, (32)
ro
or

ro B < Ina

T ‘: . < _
@ P =Pny OSSP

(33

[Proof] This proof is similar to the one for Theorem 8.
Q.ED.
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From Corollaries 7 and 8 we develop an iterative procedure in [4] to find P* for any given ?and 7. In that
procedure, the number of iterations is upper bounded by log,n, which is reasonably small.

In our results of Section IIIB and ITIIC, we neglected the physical requirement that P’ be an integer.
Clearly, if P” requires to be an integer, P” should then be rounded up or down to the nearest integer, whichever of
the two has a larger value of power.

IV.SYSTEMS WITH ARRIVALS

In this section we study the case when new jobs enter the system according to a Poisson process with rate
A. The following Theorem describes a very useful property which results in many amazing results later in this sec-
tion.

THEOREM 8: For all cases (continuous and discrete models), the coefficient of variation of the service time distri-
bution (denoted as ¢,, when there are P processors in the system) is not a function of P, Thatis, forallP 21,
€x, =Cqp (34}

{Proof] We define X (P) to be the random variable representing the service time distribution when P processors are
available. For the continuous model, we can show that

. - b
xPy=K|apy+ | fﬁdz] (35)
alP) P

(35) shows that X (P) equals K multiplied by a (deterministic) constant; since this constant multiplies both the stan-
dard deviation and the mean of X (P), it will cancel out in their ratio (i.e., the coefficient of variation) and so
Cr = CK (36)

p

Hence, c,, is not a function of P, which implies ¢, = ¢,,.

For the two-stage discrete case, we have

R(P)=WF+ ﬁl—“lgf)—“i=ﬁ++ -Q-;—Q} 37)

Hence, using a similar argument as above, we have

Cap = s, = Cw 38)

Similarly, for the general discrets case, we have

hm=Wa+%?=wk+%] (39)

Hence, using the same argument as above, we have

Cyp

=Ly =Cw (40)
Q.E.D.
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Defining W 10 be the random variable representing the work brought in by a job, we can show that

o t b
W= [g(=)di=K[g ()i (1)
» K 0

&
Since _[g ()dr is a constant, (41) shows that the work brought by a job is a random variable which has the same
0

coefficient of variation as K.
A. Finding the Response Time Speedup

In this section we find the response time speedup for all cases. Amazingly, we discover that the response
time speedup when queueing is allowed is the same as the processing time speedup when queueing is not allowed.
THEOREM 9: For all cases (continuous and discrete models), we have

SAP, p)=5,(P) “
[Proof] We define p to be the system utilization; hence,
p=Ax(P}

Since only one job can be admitted into service at a time, this system can be analyzed as a single server system.
Hence, we can apply results from M/G/1 theory [5] to find the average response time for this system.

_ 1 2
T,(P, p)=%(P) [1 " p-z_("l’f_m} 43)

In Theorem 8 we have shown that ¢, = c,, for all cases; thus, we find the response time speedup as

T{lLp X1 =S

P,p)= . P
SER=TE S e

Q.E.D.

Therefore, the response time speedup and the processing time speedup are solely determined by the job
specification and P (and not affected by the system’s operating point) in our models. {Another interesting model
studied in [4] has a different response time speedup and processing time speedup.)

Corollary 9: For the continuous model, we have

b
PJR (t)d:
5,(P. p)= — (44)
Pa(P)+ | R(0ds
a(P)

{Proof] This can easily be proved from (8) and Theorem 9.
Q.E.D.

Corollary 10: For the two-stage discrete model, we have
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S, (P, p)= ﬁ (45}
[Proof] This can easily be proved from Theorems 4 and 9.
Q.ED.
Corollary 11: For the general discrete model, we have
SC.0= 5 (46)

[Proof] This can easily be proved from Theorems 7 and 9.
QE.D.
B. The Optimal Arrival Rate
In this section, we find the optimal operating point (A"} for both the discrete case and the continuous case.
Amazingly, even though the definitions of power in this paper and in [7] are different (since p # u,(A,P)), the

results obtained in both papers are the same. Therefore, all the deterministic reasoning given in 7] also applies in
this paper.

u,(AP . .
THEQREM 10: Power, defined as TZEK P; , is maximized when A.= A" (for a given P) such that
2 I
. 2 1
A= . 47
2+ \{2 + 2::,2, x(P)
[Proof]:
AW
APy=
ua(AP) P
From M/G/1 we have

2 3 s
T(MP}=%(P) [1 +p 1+ G jl:f(P) 2+ (cx, — DAX(P)

A=p 201 - XE(PY)
Defining power as in (5), we have

w2(MP) AW 201-2xP) 1
T2(0P) P 2. (¢, 2 - DAX(P) X(P)

Y, Py =

Maximizing power with respect to A, we have
A" 2 1

T 24 \2Z+2cL X(P)

Q.ED.

Corollary 12: When power is maximized with respect to A,
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. 2

pl=———— (48}
2++2+ 2c,2,
and
N =1 (49)

[Proof] From Theorem 10 we trivially show that
2

TEAIP) = ——————
P ) 2+ \f2 +2c ,,2
Using Little’s result [9], it is easy to show that

N =A'T,0\P)=1

QE.D.

The result given in (49) is intriguing. Indeed, N =1 corresponds to the same deterministic reasoning
given in {7] and which is described in our Introduction.

[u2(AP))
To(MP)
A= ar 1

(~c% +3)r + (2 + D) ++[(c5, +2c, + DrP+ 2=}, + 25, +r+{c5, + " X(P)

THEOREM 11: Generalized power, defined as , is maximized when A = A" (for a given P) such that

(50}

[Proof] This proof is similar to the proof for Theorem 10.

Corollary 13: When power is maximized with respect to A, then
- 4r

b= (—c2, +3)r +(c3, + D+A[(c, +2c5, + Dr? +2(-cx, +2c3, +3)r + (cf, +1)°
and
o 2 [(1+c§,)r+b(r)+(1+c§,)]
(¢t —r2+2Q-ch)1+cl)r+ [(1 2+ (1+c )]b(r) +(cZ +1)
where

b(r)= \[(r_‘:, +2c%, + Dri+2(-cy, +2¢5, +3r+ (1 +¢3, )

Ifr > > 1, we have

rh-ﬂp T+l
and
% (1 + Czr )r
limV =————
r=oc 2

Note that the results in Theorem 11 and Corollary 13 are the same as in [7].
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C. Finding the optimal number of Processors (P ")

In this section, we first study the relationship between IT{"(P) and ITY"(\.P). From the result below, we
show that there are many cases in which P° for a system with no arrivals and P" for a system with arrivals are the
same!

We may express the processor utilization, u,(A,P) for systems with arrivals in terms of the processor utili-
zation, 1 (P) for systems with no arrivals as follows:

u+(AP) = (processor utilization)
= (processor utilization | system busy) P [system busy + (processor utilization | system idleyP [system idle]

= (processor wtilization | system busy)-P [system busy]

Thus we come to the simple conclusion that

ur(P) = 1 (PYP “n
Substituting u,(A,P) = pu(P) into the definition of power, we find that
u(AP)  puy(P) p ui(P)
PPy = = = :

T2(AP)  T2(MP)  T,(\P)X(P) X(P)

P _ .

Since u_l( ) . Y (P) and P - _2pd-p )2 for M/G/1, we finally have

x(P) To(MPYX(P)  2—P+pcs,
P AP) = JML:BZL.HSU ) (52)
2-p+pcy,

Note that p/[T5(A,P)/x(P)] is simply the normalized power discussed in [7).

Let us now discuss the optimal number of processors, P*. When the system is operating at the optimal
operating point ("), we have

2

xp

H&”(?\,’,P) — 2_2_%1'_"_9.:L.n51)(13)

Note that 22 El:p, )2 is only a function of c,, (since p" is a function of c,, only as shown in Corollary 13) and,
—-pP Cxp

in particular, is not a function of P; therefore, for cases where c,, is not a function of P, then P" for TV (A ,P) is
the same as P~ for TI{(P). That is, for c,, not a function of P, we have systems with

P’ {for systems with no arrivals)= P’(for systems with arrivals) (53)
For the generalized definition of power, we have

[MZ(K;P)]" - Pr[ul(P)]r - p’ . [ul(‘n)]’ - 2p’(1 "'p) n&,)(P)
WP  T2WP) T T,(PNE(P) EP)  2-PHPch

oy (,py = (54)

Using the same argument as above (i.e., for ¢, not a function of P), we have systems with



this characteristic. In [4], another model is discussed in which ¢, is indeed a function of P. In that case, a numeric
procedure is required to find P°.

Corollary 14: For the continuous model, power, as defined in (5), is maximized when P * is chosen such that

pr=LE) (56)
a(P ) .
and
EpE— 7
a(P Y 2+2+ ck)
[Proof] This is easily derived from Theorems 1 and 10.
QE.D.
Corollary 15: For the two-stage discrete model, power, as defined in (5), is maximized when
. 1
= (58
W2+ \/2+ 2cw )
and the optimal number of processors is
. 1
.1 it f25
P'= ) . (539
-f . 1
7 if f< 3
[Proof] This is easily derived from Theorems 5 and 10,

Q.E.D.
V. CONCLUSION

For the model which allows no arrivals, we have found the processing time speedup, (S,(P)} for any P, and
the optimal number of processors (P") which maximizes power. This S,(P) was shown to be a generalization of
Amdahl’s Law. For the model which allows arrivals, we have found the response time speedup (§,(P,p)) for any P,
the optimal arrival rate (A") and the optimal number of processors (P *} which maximize power, It was amazing t0
find that §,(P) is the same as §,(P,p) for the models studied in this paper. It was even more amazing to find that P’
for a system with no arrivals is the same as P' for a system with arrivals when power is maximized. In all cases, we
found that power is optimized when P is chosen so that the unextended service time equals the extended service
time. This characteristic makes optimal design (in terms of maximizing power) easier because the same solution
applies to both cases!
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APPENDIX (Proof of Theorem 3)

THEOREM 3: Corollary 1 applies even if R (1) has
(1) a countable number of non-differentiable points
{2) vertical segments (such that R (¢) is not a one-to-one mapping)
(3) horizontal segments (such that R (¢) is not monotonically increasing)

[Proof] To prove (1), we first prove the case when the non-differentiable point is at the intersection of two straight
lines. We then generalize it for all cases. To prove the case when the non-differentiable point is at the intersection
of two straight lines, as shown in Figure 7(a), we assume the following (see Figure 7(a)):

(a) there is one non-differentiable corner at point D=(x,, yd),b

{b) the work (area) under R {¢) beyond point Dis I (i.e.,f = jR (1)dr) and ;’- = x4 (i.e., point P* = y, meets the con-
o d

dition in Corollary 1),

E&)_ for some & > 00, we can find _Eaims E=(x,, y.) and F=(x;, y,) are on R (¢) such that the length of line segments
DE = the length of line segment DF = §.

(d) the slope of line segment DEis 5, and the slope of line segment DF is sy such that s, # sy.

Using (c) and (d) we can fit a unique circle which is tangent to DE at peoint E and which is tangeat to DF at point F.

FIGURE 7a GOES HERE,
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The way to find this unique circle can easily be described as follows:

(i) at point E, draw a line (L) which is perpendicular to DE and at point F, draw a line (L,) which is perpendicular
to DF.

(ii) Since the slopes for DE and DF are different, L, and L, will intersect at some point O.

(iii) Using point O as the center of the circle and OE (5E =OF } as the radius, we find this unique circle which
passes through points E and F and is tangent to DE and DF at points E and F.

With this circle, we define a new curve R () which coincides with R (1) except that the line segments FD and DE
are replaced by the circle between points E and F. Clearly, R, (¢) meets the requirement for Corollary 1 (that is, no
non-differentiable points) and hence we may apply the result in Corollary 1. Let us define P to be the optimal
number of processors to maximize power for Ry(t) and assume I:{ happens at the point G=(x,, ¥,) such that

I _
-yi = x,, where I is the area under R, (¢) beyond point G (i.e., /1 = JR1(0)d). Next, we must show that JimG =D.
] X

Clearly, we have gTOR 1(t) =R (t). Assuming éi_rgG does not equal D and is to the right of D (i.e., x; > x4), then we

have [ > I, x, > x4, and y, > yq, (since R (1} is an increasing function of 7). However, we then have x;y; < X,
which implies < 7,, a contradiction! Hence, point G cannot be to the right of point D. A similar argument shows
that point G cannot be to the left of point D, Hence, we come to the conclusion that i151_r,noG = D. This implies that y,

is P* for curve R (¢); that is, we can apply Corollary 1 to R () directly. If there is a countable number of such non-
differentiable points, then we may apply the argument above to each such point separately.

We now prove (1) for cases when the non-differentiable point is at the intersection of two curves as shown in Figure
7(b). For this situation, we find points E=(x,, y,) and F=(x;, y;) such that x, = x4 + 8 and x; = x4 — 8. Then, we find
the tangent lines at points E and F, say L, and L, respectively. If 3 is small enough, L, and L, will intersect at
point D', We define a new curve R (1) as the same as R (¢) except that the curve from F to D to E is replaced by the
line segments FD' and D'E. For R,(¢), it only has one non-differentiable point at the intersection of two straight
lines. In this case, we can apply Corollary 1 to R,(r) as we just proved above. Hence, by letting 8 — 0, a similar
technique and proof can be applied here to show that Corollary 1 also applies in this case. (1) is thus proved.

The proofs for (2) and (3) are similar to the proof for (1). Hence, only an abstract is given here without much detail.
For case (2), as shown in Figure 7(c), we find points E=(x,, y,) and F=(x;, y;) such that x, =x; + & and x; = x4 - &
and we form a line segment between poinis E and F. We define R (f) to be the same as R (1) except that the curve
between points E and F is replaced by the straight line between points E and F. Then, R 1(t) meets the condition for
(1) (i.e., with only non-differentiable points). Letting & — 0, we can use a similar argument as given in the proof for
() (ie., deﬂﬂ 0G = D) to show that Corollary 1 applies in case (2).

Similarly, for case (3) as shown in Figure 7(d), we find points E=(x,, y,) and F=(x;, y;) such that y, = ys + $ and
Y5 =¥a— 9, and we form a line segment between points E and F. We define R (¢) to be the same as R (r) except that
the curve between points E and F is replaced by the straight line between points E and F. Then, R (t) meets the
condition for (1) (i.e., with only non-differentiable points). Letting 8 — 0, we can use a similar argument as given
in the proof for (1) to show that Corollary 1 applies in case (3).

QE.D.
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FIGURES 7b, 7c, 7d GOES HERE.
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