Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

DYNAMIC SHARING OF PROCESSORS IN PARALLEL
PROCESSING SYSTEMS: A PERFORMANCE EVALUATION

Jau-Hsiung Huang October 1588
Leonard Kleinrock CSD-880082

Dynamic Sharing of Processors in Parallel Processing Systems:
A Performance Evaluation
Jau-Hsiung Huang and Leonard Kleinrock

Computer Science Department
University of California, Los Angeles

Abstract - We model a job in a parallel processing system as a concatenation of stages which must be pro-
cessed in a given sequence, each stage of which requires a certain number of processors for an interval of time
which is exponentially distributed. A job is allowed to receive service as long as there are available processors in
the system following a preemptive priority service discipline. A job’s priority increases each time it begins a new
stage. A finite number of processors are assigned preemptively according to a job’s priority; jobs with equal priority
are resolved according to a first-come-first-serve rule. If a job with higher priority requires more processors than it
currently has assigned when it finishes one stage of work and advances (o the next, then it can obtain processors by
preempting jobs with a lower priority. When all the processors of the lowest priority job are taken away (totally
preempted), this job will be pushed back to the head of the quene and will wait for the next available processor.
(This use of processors by more than one job at a time is an important extension of the model described in our ear-
lier paper {12]).

An exact analysis for the mean response time for the general case of this model has not yet been obtained.
However, we are able to solve certain two-stage cases exactly. A Scale-up rule is then introduced. This rule is used
when we are given the mean response time for a parallel processing system with a fixed number of processors and
we wish to find the mean response time when the number of processors is m times larger. The Scale-up rule pro-
vides a very good approximation. By using the Scale-up rule and the two-stage cases, we are able to provide an
approximation for finding the mean response time for any general application.

Index Terms - parallel processing, scale-up rule, processor sharing, processor utilization.
L INTRODUCTION

We model a parallel processing system with P processors as a queueing system with a single queue. A job
is modeled as a concatenation of stages which must be processed in a given sequence and the number of processors
required in each stage may be different. Because of the characteristic of jobs and the preemptive priority scheme
used, the number of processors possessed by a job during its execution time varies. This characteristic makes the
exact analysis for the general case very difficult because we must keep track of how many jobs there are in each
stage. Later in this paper we show that an M/E,/m queueing system is a special case of this model and M/E, /m has
no known closed form solution as yet. The main goal of this paper is to find the mean response time of the system.

In this paper, we are able to find the exact solution for jobs with two stages when the number of processors
available in the system equals the maximum number of processors required by the job. We then propose a Scale-up
Rule. This rule is used to approximate the mean response time for a queueing system with m-P processors when the
result with P processors is given. For example, we can use the Scale-up rule and the result for M/G/1 queucing

This research is sponsored by the Defense Advanced Research Projects Agency, Department of Defense (Contract
number MDA903-87-C-0663).

-1-

systems to find the approximate mean response time for an M/G/m system (which has no known exact solution).
Combining our result for the two-stage model and the Scale-up Rule, we give an approximation for the general casc
(i.e., more than two stages). >From these studies, we propose a rule of thumb for designing parallel aigorithms,

The rest of this paper is organized as follows. Section II provides the model description and assumptions.
In Section IIT we find the exact mean response time of a job with a serial stage, which requires no processing capa-
city at all, and a parailel stage, which requires all the processing capacity, during its execution. In Section IV we
analyze, exactly, the mean response time of a two-stage model in which one stage requires P, processors and
another stage requires P = mP, processors. In Section V we introduce the Scale-up Rule with some examples. In
Section VI we use the Scale-up Rule and the exact result obtained in the two-stage model to approximate the mean
response time for a general model given any number of processors. A final conclusion is given in Section VIL

II. MODEL DESCRIPTION AND ASSUMPTIONS

In this paper, jobs arrive to the system according to a Poisson process with rate A. A job is assumed to be
composed of several stages which must be processed one after the other; in each stage up to a given maximum
number of processors can be used. The amount of service required by stage i is exponentially distributed with a
mean, say W; seconds; if stage i uses P; processors, then the time to serve this stage will also be exponentially distri-

Ww; '
buted with a mean equal to T’ seconds. The numbers of processors needed for different stages need not be the
same. Hence, a job can be described by using two vectors. The first vector is the processor vector which specifies
the number of processors required by each stage. The second vector is the time vector which specifies the average
service time required for each stage. We denote these two vectors as:

P=(P1, P2 Py, ..s P,)
7=

where P and Pstand for the processor vector and the time vector respectively and » is defined as the number of
stages in a job. We assume the system has P processors available.

Whenever 2 job in a stage requires more processors than it is allowed, this job simply uses all the proces-
sors available to it with an appropriately elongated stage service time such that the average work done for that stage
is constant. That is, the stage time will still be exponentially distributed, but with a larger mean. For example, if a
job in a stage needs 10 processors for a mean of 1 second while there are only 5 processors available to it, it uses
these 5 processors for an average of 2 seconds (in a processor-sharing fashion {10]). This is similar to the elonga-
tion of service described in [12].

The service discipline applied in this paper is a version of priority queueing with preemption. Spectfically,
if the highest priority job requires less than P processors, these processors which are not needed by this job are
assigned to the next highest priority job, etc. However, the priority is not based upon the different classes of jobs
entering the system; instead, the priority is based upon the stage that the job is currently working on. The purpose
of this priority assignment is to give a higher priority o a job which has fewer stages of work to finish (because this
job is perhaps closer to completion). Hence, when a job finishes one stage and advances to the next stage, the prior-
ity ranking of this job will be advanced. If by advancing to the next stage this job requires more processors than it
currently possesses, this job will preempt processors from other jobs in the system beginning with the lowest prior-
ity group until either it has gained enough processors or there are no more lower priority jobs in service. Ties are
resolved by a FCFS rule. Those jobs with all processors preempted will be pushed back to the head of the queue.
The following example gives an illustration of how the system works.

2-

Example: In this example we assume each job has two stages, the first stage requires 2 processors and the second
stage requires 5 processors (i.e., P = [2,5}). The time vector need not be specified for the purpose of this example.
The system has 2 total of 5 processors. and initially the system is empty.

Event 1: Job A arrives.
Job A uses two processors to work on the first stage at a rate of 2 seconds per second. The other
three processors remain unused.

Event 2: Job B arrives while Job A is still in stage 1.
Job B uses two processors from the unused processors to work on the first stage at a rawe of 2
seconds per second. Only one processor remains unused.

Event 3: Job C arrives while Jobs A and B are still in stage 1.
Job C uses the only unused processor to work on the first stage at a rate of 1 second per second.
There are no more processors unused.

Event 4: Job D arrives while Jobs A, B, and C are still in stage 1.
Job D joins the queue waiting for any processor to become available,

Event 5: Job A finishes stage one and begins stage two.
Job A now has higher priority than jobs B and C and job A needs three more processors to work
on the second stage; therefore, jobs B and C are both preempted and are pushed back to the head
of the queue such that job A can use all the processors. After gaining all the processors, job A
works at a rate of 5 seconds per second in stage 2.

Event 6; Job A finishes stage two and leaves the system,
All the five processors are released. Jobs B and C reenter service and both use two processors to
work on the first stage at a rate of 2 seconds per second. Job D also enters service and uses the
remaining processor t0 work on the first stage at a rate of 1 second per second.

The reason we claim the exact analysis is very difficult can be illustrated by using one special case. In this
special case, the system has m processors and the number of processors required by all stages equals "1"; the mean
service time for all stages is the same, Obviously this very simple special case corresponds 0 an M/E,/m queue
which is a queueing system without a known closed form solution,

In fact, a generalization of this model leads to a new class of queueing problems (much harder than those
addressed in this paper) as follows [11]. Consider that each arriving job has a random function, r(x), which
describes the rate at which that job can be processed, given that it has so far received x seconds of service (the units
for r (x) are seconds of work per second). If r (x) exceeds C, the maximum processing rate of the system, then the
service time is elongated as shown, for example, in Figure 1 of [12). The capacity C is allocated according t0 &
FCFS preemptive rule or, possibly, according to an arbitrary priority rule (as, for example, pure processor sharing as
discussed in [1]). In this paper, we have studied some special cases of this new class of queucing systems.

IOI. A SERIAL - PARALLEL MODEL

In this section, we assume the execution of a job requires two stages, namely a serial stage and a parallel
stage. In the serial stage, the job requires a negligible amount of total processors while in the parallel stage the job
requires all P processors from the system. One practical example of this model is for systems with a large number
of processors from which the serial stage requires only one processor while the parallel stage requires all processors.
Therefore, if the parallel stage has a higher priority, then there can be at most one job working in the parallel stage.
Once there is a job working in the paralle! stage, all other jobs will be stopped because there are no available proces-
sors left. On the other hand, if the serial stage has a higher priority, then all the jobs working in the serial stage can
work concurrently and they will have no effect on jobs working in the parallel stage because the capacity taken by
the jobs in the serial stage is negligible. We first study the case when the serial stage precedes the paraliel stage
(Figure 1(a)); then we study the case when the parailel stage precedes the serial stage (Figure 1(b)). Finally we
study the case when the parallel stage is preceded and followed by a serial stage (Figure 1(c)). We derive both the
mean response time and the z-transform of the distribution of the number of jobs in the system.

FIGURES la, 1b, and Tc GO HERE.

A. The Serial Stage Precedes the Parallel Stage

In this case, stage one is the serial stage and stage two is the parallel stage and the higher priority is given
to stage two (the parallel stage) as mentioned earlier. If there are no jobs in stage two, then all jobs in stage one are
allowed to work concurrently since there are always enough processors for each job. However, if one of the jobs
finishes stage one and advances to stage two, this job will occupy all the processors and preempt all other jobs still
in stage one.

One application of this model is for a distributed database which uses a locking mechanism 10 preserve
data integrity whenever more than one transaction tries to write into the database. We assume there are a large
number of workstations sharing this database. We model a transaction as one query (read) followed by one update
(write). If concurrent read is allowed in the database, then we allow all queries to be processed in the system con-
currently. Furthermore, when a transaction is in the query phase, it occupies only the processor which issues the
transaction. This read phase corresponds to the serial stage in our model. However, once a transaction finishes the
read phase and issues a write update, the entire database will be locked such that all other transactions will be
stopped. This update phase corresponds to our parallel stage. If we further assume the time required for the read
phase and the write phase are both exponentially distributed, then our model matches this distributed databasc
model perfecty.

4-

PROCESSOR

0

Phew——

J.——i —» TIME

FIGURE la. Serial Phase Precedes Parallel Phase

PROCESSOR

TIME

FIGURE ib. Parallel Phase Precedes Serial Phase

PROCESSOR
4

L--__._____J--m___..11ME

FIGURE l¢. Serial Phase Precedes and Follows Parallel Phase

Let us define the service rate of the serial stage 1o be y, and the service rate of the parallel stage to be ;.
The Markov chain for this system is shown in Figure 2 whers the state (, /) represents the situation where there are
k jobs in stage one (the serial stage) and / jobs in stage two (the parallel stage).

FIGURE 2 GOES HERE.

THEOREM 1: Given the serial - parallel mode! as shown in Figure 1(a), where |, is the service rate of the serial
stage and p; is the service rate of the parallel stage, the z-transform of the number of jobs in the system is:

A =2

P(2)= =kt A e?["“"‘W]
Ha=Az -

and the mean response time of the system, T, (where “sp” stands for “serial-paraliel”), is

Ly + 174,

LA VT W

[Proof] See Appendix A,

Interestingly, note that ﬁ in (1) is the load of the system since the. serial stage contributes no load at all.

Also nots that 1/, + 1/4; is the service time of a job. Hence, if we define
1 1

x:-':l"i-u—z (2)
and
bak
™
then (1) becomes
T,,al—‘_‘-; @

which is the expression of the mean response lime of an M/M/1 queue.

B. The Parallel Stage Precedes the Serial Stage

FIGURE 2
The Markov Chain for Serial Stage - Parallel Stage

Here we change the sequence of the stages such that stage onc is the parallel stage and stage (wo is the
serial stage. We assume the service raie for the serial stage is and the service rate for the parallel stage is 4, as
defined in the previous model.

The analysis of this model is simple since the serial stage (with the higher priority) will never affect the
parallel stage because the serial stage requires no capacity at all. This model can be treated as an M/M/1 queusing

system with service rate Wy with the modification that each job will suffer an extra delay of mean -Lll— before leaving
1

the system. Let us define the mean response time of this model to be T, (Where "ps” stands for "parallel-serial”).

THEOREM 2:

1/ 1
- — i —
1-AMpz W

[Proof] This result follows directly from the resulit for M/M/1.

T, @

Q.E.D.

Let us compare T, and T,, from (1) and (4); it can be shown that T, is aiways greater than T, for p= -:# <l
]
Indeed,

1 M 1 p
Lo Tw= 0 T, W 19 >0
T,, can be much greater than T,, when p approaches one as shown in Figure 3. If we regard the paralle! stage as the
blocking stage (since it blocks all other jobs in the system), then this result suggests that a job with an early blocking
stage performs better (i.e., has a lower mean response time) than a job with a late blocking stage assuming other

conditions remain the same.

FIGURE 3 GOES HERE.
C. A Combined Model

In this model, we assume the job begins with a serial stage which is followed by a parallel stage and which
is again followed by a serial stage as shown in Figure 1(c). “We define "f" to be the fraction of the mean service time
the job spends in the serial stage during the entire mean service time, i.e.

A “Hl
f& T
T/ + Vi,

Without loss of generality, we normalize the mean service Lme to be unity, i.e.

1 1
—_= and —=1-
| f 0] f
We define "g" to be merfrac:ion of the serial stage which precedes the parallel stage (i.c., a percent g of the serial
stage precedes the parallel stage and the remaining fraction (1-g) of the scrial stage follows the parallel stage). We
denote the mean response time of this system to be Tp,.

MEAN RESPONSE TIME

120

110

100

8
]

3
T

8
|

20¢=

10

FIGURE 3. Average System Time versus Load (jy=pp=1)

Q.1

THEOREM 3: For the serial - parallel model shown in Figure 1(c), the mean response time is

-
Ty = 1o -y ®)

under the condition that
AMi-fi<l
{Proof] By using the results of (1) and (4) we obtain

L1

M2 W1 (A-H+gf
TR Ll e v gy

|

Ha

Tf‘a +(1-8)f

The utilization of the processors is
A
= —mA] ~
el M1-1)

Hence, the condition for the system not 1o saturate is
p<l or AMl-f1<l
QED.

Figure 4 shows the mean response time versus load over different values of g and f. From these results, we have the
following theorem.

Corollary 1: If g, < g3, we have

Tm"rhf
(Proof] This can easily be proved from (5). FIGURE & GOES HERE.

1V. A TWO-STAGE MODEL

In this section, we consider a job with only two stages. In one stage, the job uses P processors Lo process
its work concurrently. In another stage, the job uses mP, processors to process the work concurrendy, where misa
real number greater than 1. We define the stage which uses P processors as the low-concurrency stage and the
other stage which uses mP | processors concurrently as the high—concurrency stage. We assume there are P =mP,
processors available in the system, i.e., the number of processors in the sysiem equals the number of processors
required by the high-concurrency stage. In this section, two cases are analyzed: one is when the low-concurrency
stage precedes the high-concurrency stage and the other is when the high-concurrency stage precedes the low-
concurency stags. For cases when the number of processors in the sysiem is greater than mP,, a good approxima-
tion will be given after the inroduction of the Scale-up rule, which will be described in Section V.

A. The Low-Concurrency Stage Precedes the High-concurrency Stage

In this section, stage one is the low-concurrency stage while stage two is the high-concurrency stage. We
assume the service rate for stage one is |1, and the service rate for stage two is j;. This job can be modeled as
shown in Figure 5. This model is similar to the model described in Section III except that in this model there can be
at most m jobs working concurrently in the first stage. For such a model, we can regard P, processors as one server
and regard the whole system as having m servers. Hence, the Markov chain of this model can be shown as Figure 6.

100 1 1 T T T 1T 11

W =0.25 -

MEAN RESPONSE TIME

0 0.5 1 1.5 2 25 3 35 4 45 S
ARRIVAL RATE

FIGURE 4, Mean Response Time versus Arrival Rate for Various
g and f (For Each Set of Curves, g=1,0.5, and 0 Respectively
From Left to Right)

We define p (k,j) 1o be the probability that there are k jobs in stage 12and j jobs in stage 2 in the system.

FIGURE 5 GOES HERE.

FIGURE 6 GOES HERE.

THEOREM 4: For the two-stage model as shown in Figure 5, the z-transform of the number of jobs in the system
is

m-l
s =% (m - k)p (&, O)2*

Per= =A33 + mp g — mAL 3 - Mg #3222 [0

and the mean response time is

T m-l A—myy -l
= - k, Q) -
T AMmiypa — mAy - Nda) .E'.lk(m ©p (k. 0) mik g = mAdy = My

where p (k, 0) for 0 < k S m - 1 can be obtained from the following:

)

NUMBER OF
PROCESSORS

$

» TIME

FIGURE 5., A Job's Profile

g 2unbyj 404 UI®Y) Aoyaey aul "9 Jun9td

- milibg — mpy A = Pad

m —k)p(k,0) = 7
Eo()p (k. 0) iits M

A\ + 1)
1,0)= ———=p (0,0 8
p(1,0) ™ 2(0.0) (8)

A2+ W) + My]
p(2.0)= —p(0,0))
2uin3
A+ W)A+ (k- D] ADA + 20 (k - 1)) A?
k,0)= k—-1,00- k-2,0) - ——pk-3,00 £23 (10
p k., 0) P p() T P } kuluep() (10)
The condition for the systemn not to saturate is

< M (n

my, + Hy

[Proof] See Appendix B.

>From (6) we observe that the constraint on A to have a finite delay is the same as that given in (11). The processor
utilization (&) can be found as

. Ay + mpy)}
mpy P

Hence, the constraint on A is equivalent to

u<l

An example is now given for m=2 which will be used later for comparison. >From (7) we have

2 1y - 20 A — 1A
2(0,0) +p(1,0) = 2= 2P (12)
HiH2

>From (8) we have

13
i Hap (1,0) = AA +)P (0,0) (13)

Soiving (12) and (13) we have

244 1y — 24 A = WA
TPy R TH P}

p(0,0)= (14}

(A2 + I AN 2 p — 21 A — WpA)
R Ha(AZ + o + 21 4)

p(1,0) = (15)

Substituting (14) and (15) into (6) we have

4,3 + audy, - A’

T=
(A% + paA + 200, 1) (24 Mo — 24 A — HoR)

(16)

B. The High-concurrency Stage Precedes the Low-concurrency Stage

-10-

Here we study the case when the high-concurrency stage precedes the low-concurrency stage. We assume
the service rate for stage one is |1, and the service rate for stage two is by, This model is shown in Figure 7.

FIGURE 7 GOES HERE.
Unfortunately, we are not able to solve the general case for arbitrary values of m. A study using the Markov chain
approach is given in (8] without obtaining the exact solution.

However, the result for m = 2 can be derived as follows. The Markov chain .for m =2 is shown in Figure

FIGURE 8 GOES HERE.

From this Markov chain, we have
(A + py)p(k, 0) = Ap (k - 1,0) + uap (k, 1) k21

an

-11-

NUMBER OF
PROCESSORS

{

mP1

P,

FIGURE 7.

.y o —

I

— TIME

A Job's Profile

{ @inb14 103 urey) Aoqdey °g JWN9!4

O+ dp(h D=hp(k~ 1D+ ZHpk+ 1) k21

The boundary conditions are
Ap(0.0) = wop (0.1)

(h + 1) 0,1) =y p (1,0) + 2120 (0,2)
(A + 2)p(0,2) = -;-u,p(l,n

Defining P,(z) & ¥ p(k,i)z* and p(n) & Prob[x jobs in the system], we can show that
k=)

min(2,n)
pn)= 3, pln-4ip

j=i0
g

P(=)=§p(n)= -3 So(n-ii)e" +>:zp<n e -zzfr,(z)

() j =l andjnd

From P (z) we can derive, N, the mean number of jobs in the system, as

- ’ z ¥ i
Na .:71: (,)l._l =P (;)|,_, -E'o [jy-l Pi(2)+ ;J%P,-(z)] E LP @)+ = ;(z)]

gl =]
From these conditions it is shown in [8] that

N = P1(1) +2P3(1) + Po (1) + P1(1) + P3()

A Oud+ e + 20002 -y - iy — 4uDA - i + e + 2ud)

T2, Ha(ly + 202)(A + 2ip) — 2 Ma)
Using Litde’s result [13] we finally have

Oud + wpts + 20DA2 - po(id - iy - 4pdh - 4pdad + 3uipe + 2248)

N
T==—
7\- Ha(A + 20)(3 + 2M2)(A + 2L - 2 1)

C. A Comparisom

(18)

(19

20

21

(22

Let us compare the results given in (16) and (22) for p; =Wy = 1. These two examples have every condi-

tion the same except that the sequence of the stages is different. The result from (16) shows that

1+A 3I-X

= 3.2 2-%

where T, is defined as the mean response time when the low-concurrency stage precedes the high-concurrency

stage. The result from (22) shows that

-12-

- 6A +4) - 24
2T 120 - 12

where T, is defined as the mean response time when the high-concurrency stage precedes the low-concurrency
stage. The difference, Ty =T, is

A4 =2 =22

T, = =
PTIT 30+ DR + A+ 2)

It can be shown easily that for A < % (or, u < 1), Ty - T, is always positive. If we regard the high-

concurrency stage as the blocking stage (since it blocks other jobs in the system), then T =T, > 0 is consistent
with the resuit we obtained in Section IIIB. Hence, the rule of thumb in designing parallel algorithms is 10 put the
blocking stage as early as possible (if allowed). T, and T versus load are shown in Figure 9. Note that T and T
are very close to each other; this is because there is no pole in the denominator in the expression of T - T,

Figure 9: Comparison Between T and T,

V.THE SCALE.-UP RULE

The results derived in Sections III and IV are for cases when the number of processors in the system equals
the maximum number of processars required by the job. This assumption simplified the Markov chain dramatically,
hence making the analysis feasible. However, this analysis is infeasible when the number of available processors is
greater than the maximum number of processors required by the job. In order to solve this problem, we propose the
Scale-up Rule which gives a very good approximation result without adding any analytical complexity. An applica-
tion of the Scale-up rule to the two-stage modei when the number of processors in the system is greater than the

-13-

MEAN RESPONSE TIME

20 T T | — T 1 I |

10pH

T,

0 | (1 | L1 | |

0 01 02 03 04 05 06 07 08
LOAD

FIGURE 9. Comparison Between T1 and '1’2

maximum number of processors required by the job is given.
A. Previous Work: Classical Queueing Model

Although there has been considerable effort paid to the analysis of the M/G/m queue, almost no exact result
has been achieved for the mean waiting time. Two exceptions are provided by M/M/m and M/D/m systems
although in both cases the solutions are not in closed form ([5], [16]). Besides these two exceptions, only bounds,
approximations, and numerical results have been found for other cases. In [6] some numerical results are given for
the M/E,/m queue. In [3] and {9], some bounds are provided. In {2}, {7], and [17] some approximation results for
such systems are derived.

In this section, we focus our attention on the results in [14] and [15] which provide an approximation for
the mean waiting time in an M/G/m system, In [2] and [4] this model was extended to achieve a better result, Let
us define

Wiicim £ mean waiting time for an M/G/m system
In [14] and [15] the following approximation for Wy, ;. was suggested:

Wyian

WuiGim = Waimn

Waistim 23)
This expression proved to be a very good approximation as some simulation results in (8] demonstrated.
B. A Queueing Model with a Varying Number of Required Processors

Although the number of processors required by a job varies during its execution time, we were surprised
(and pleased) to discover that the rule which applies to the classical queueing system as stated in (23) also applies in
our model. In other words, if we have the mean response time for a system with P processors, we can find a good
approximation result when the number of processors is greater than P by using the following Scale-up rule.

The Scale-up Rule: Given a job specification and the number of processors in the system, P (which equals the
maximum number of processors required by the job}, we define the average waiting time of
the system 0 be Wy, pr/ (p), where p is the system load and PT stands for "Processor-Time
vector”. Define Wy, 1., () to be the average waiting time if the number of processors in the
system is mP, Similarly, define Wy, /1 (p) to be the average waiting time of an M/M/1 queue-
ing system with the same mean service time as the job. The Scale-up Rule says that

W o111 (9)

M W
Wremn ©) Misim(P)

Waierim(P) =

The Scale-up rule can be useful in two situations. First, if we can analytically obtain Wy,pr;1, as we did in
Sections III and IV, then we can use the Scale-up rule to approximate Wy, srr. Second, if we cannot obtain the
analytical result, then we have to run simulations. Since the time required to run simulations for the M/PT/m sys-
tem is longer than the time required for the M/PT/1 system, we can run simulations to find the mean waiting time
for the M/PT/1 system and then apply the Scale-up rule to find the mean waiting time for the M/PT/m system for
any m. A large amount of time can be saved using this rule.

C. The Case When the Available Processors Exceed the Maximum Number of Processors Required in the
Two-Stage Model

-14-

In this section we study the case where the available processors exceed the maximum number of processors
required in the two-stage model. The exact solution is not feasible; hence, an approximation model will be given,
The approximation result is a combination of the use of the exact result from Section IV and the use of the Scale-up
rule.

Suppose the number of available processors is m times of the number of processors required by the high-
concurrency stage. We first find the results of the system with the same job specification assuming the number of
processors in the system equals the number of processors required by the high-concurrency stage, The result for
this model is provided in Secton IV. With these results, we apply the Scale-up rule to get the approximate mean
response time, Some examples will heip to show how good these approximation results are. Figures 1010 13 givea
comparison between simular.iorL results and approximation results using the Scale-yp rule. Two cases are given for
two different jobs: one is with 7 =[1, 2] andP=[1, 1], and the other is with P ={2, 1} andP=[1, 1]. Figures
10 and 11 show the result when the available number of processors is twice as many as the maximum number of
processors required, Figures 12 and 13 shows the result when the available number of processors is five times as
many as the maximum number of processors required.

FIGURES 10, 11, 12, 13 GO HERE.

VI. AN APPROXIMATION FOR THE GENERAL CASE

As mentioned earlier, to evaluate the performance of a general case exactly is extremely difficult. In this
section, using the exact solution of the two-stage model and the Scale-up rule, we give an approximation method for
a general job specification and any number of processors in the system. The simulation of this approximation
method shows reasonably good results.

Given the job specification, we divide the service time for the job into two stages such that the mean ser-
vice time for each stage is the same. In each stage, we average the work load over its service time to find the aver-
age number of processors needed. By doing this, we achieve a two-stage model as analyzed in Section IV. We use
this two-stage model as the basis for the approximate model.

If the first stage requires fewer processors than the second stage, we use the resuit obtained in Section [VA,
An example is shown in Figure 14. In Figure 14(a), the processor vector for this 4-stage job is [3,1,3,9] and the
corresponding time vector is —;-, -é-, -}i-,-;- . By dividing the time vector into two equal intervals, the first two
stages of Figure 14(a) will be merged into the first stage of t.hé approximate model as shown in Figure 14(b). Simi-
larly, the last two stages of Figure 14(a) will be merged into the second stage of the approximation mode! as shown
in Figure 14(b). In order to equate the work in Figure 14(b) to that in Figure 14(a), the processor vector for Figure
14(b) is [2,6] and the time vector is (1,1). Figures 15 and 16 shows the approximation result for this example given
12 and 45 processors in the system, respectively. From these figures, we se¢ that the approximation results are very
close to the simulation results.

If the first stage requires more processors than the second stage, there is one more step to be applied in the
approximation method. An example is given in Figure 17. In Figure 17(a), the processor vector is (3,9.3,1] and the
1111
2'2'2'2(
such that the processor vector and the time vector of Figure 17(b) are [6.2] and {1,1] respectively. Since we have
analyzed the system only when the number of processors required in the first stage is exacdy twice that of the
second stage, we must modify the two-stage approximate model by using a three-stage approximate model. The
first stage of the three-stage model (as shown in Figure 17(c)) is the same as the first stage of the two-siage model
(as shown in Figure 17(b)). The second stage of the three-stage model is modified such that it requires exactly half

time vector is Applying the same rule as we did to Figure 14, we convert Figure 17(a) into 17(b)

MEAN RESPONSE TIME

15 T 1 ! T I T T | I
e APPROXIMATION *

12} e oo e oo SIMULATION -
ol -
6 -
3 —d <
0 | | | i L \ L | L

0 0i1 02 03 04 05 06 07 08 09 I

LOAD

-
FIGURE 10. AndApproximation Result for P = [1,2]
and P=

MEAN RESPONSE TIME

15 T T : T T | I
]
——— APPROXIMATION
12 e e o0 e SIMULATION —
9 = —
6 -
r -
. o i AR A -
0 | | | 1 | | |]

0 01 02 03 04 05 068 07 08 09 1
LOAD

FIGURE 11, AnhApproximation Result for P = [2.1] and
P=

MEAN RESPONSE TIME

—— APPROXIMATION
6 e s ¢ o »e SIMULATION -

1] i] | | 1 |

0 |

0 01 02 03 04 05 06 07 08 0.8

LOAD

-
FIGURE 12, ;n‘gpproximation Result for P = [1,2] and

MEAN RESPONSE TIME

e APPROXIMATION
— oo 0 0s e SIMULATION -

0 04 02 03 04 05 06 07 08 09 1

LOAD

-
FIGURE 13. An Approximation Result for P = {2,1] and
=10

FIGURES ika, 14b, 15, and 16 GO HERE.

NUMBER OF

PROCESSORS
f |
g s o o = oW e e
6 j—
3
: P
0 ‘ , : > TIME

2
-
FIGURE l4a., An Example with P = [3,1,3,9]

1, 1 » |
and t = 5 5 % 54

NUMBER OF
PROCESSORS

°r

6= = — = p—

3k

0o : L — TIME

FIGURE 1ib, An Approximation Model for Figure lha

MEAN RESPONSE TIME

15 T T T T | T ! T]

mm— APPROXIMATION
12 * e o0 SIMULATION

0] | i | | L | | |

0 01 02 03 04 05 06 07 08 09
LOAD

FIGURE 15. An Approximation Result for Figure 3.14a
and P=i2

MEAN RESPONSE TIME

e APPROXIMATION

4 o oo o oo SIMULATION
3-—
2 e

0 N R S VS U I DRI —
o o1 02 03 04 05 o088 07 08 09

LOAD

FIGURE 16. An Approximation Result for Figure 3.1ka
and P=45

FiGURES 17a, 17b, and 17c GO HERE.

ofmepmcumrequhedimhoﬂmmgemdmetotalworkrequi.redindﬁss:ageismesameasumott.hesecond
stage from the two-stage model. The third stage in the 3-stage model is used to adjust the service time such that it is

the same as the 2-stage approximation model. After these approximations, the processor vector and the time vector
2

for Figure 17(c} are [6,3,0] and (1, 3 %] respectively. Although the model in Figure 17(c) is different from the
model described in Section IVB, it can be solved by using the result from Section IVB plus an extra delay for stage
three in Figure 17(c). Note that the third stage has the highest priority and requires no processors from the system at
all; the existence of stage three has no impact on stages one and two. Hence, we can solve this problem by first
neglecting the third stage in Figure 17(c) and apply the results obtained from Section [VB; from this resuit, we add

NUMBER OF

PROCESSORS
&
g JE—
6—
-
3
05 L i L ! > TIME

FIGURE 17a. An Example with ;- [3,9,3,1]
1,0,
and t [-2— ?' -2"' -2-]

NUMBER OF
PROCESSORS

'
9

rTT

w
LA L

1 | L > TIME
0 2

(=]
bt

FIGURE 17b, The First Step Toward Approximation
Model for Figure i7a

NUMBER OF
PROCESSORS

o
s
—

0 L |) TIME
0 1 53 2

FIGURE 17c. The Second Step Toward Approximation
Mode} for Figure 17a

the mean service time of stage three to it to get the overall mean response time. Figures 18 and 19 show the approx-
imation results for this example given there are 12 and 45 processors in the system, respectively.
: FIGURES 18 and 19 GO HERE.
VII, CONCLUSION

In this paper, we were able to analyze some interesting models exactly to study the behavior of jobs
dynamically sharing P processors in a multi-processor system. By introducing the Scale-up rule, which is one of the
major contributions of this paper, we were able to give an approximation method for finding the mean response time
for a general application.

By looking at the comparisons in Sections IIIB and IVC, we have the following rule of thumb in designing
parallel algorithms: If there is biocking in the aigorithm, late blocking will generate a longer mean response time

than early blocking if the service discipline is the same as given in this paper. Hence, if we have the choice, we
would like 1o have early blocking rather than late blocking in the algorithm.

References

(1] Belghith, A., "Response Time and Parallelism in Parallel Processing Systems with Certain Synchronization Con-
straint,” Ph.D. Dissertation, Computer Science Department, UCLA, 1986.

(2] Boxma, OJ., Cohen,].W., and Huffels, N.,” Approximations of the mean waiting time in an M/G/c queueing sys-
tem,” Oper. Res. 27, 1979. pp. 1115-1127.

[3] Brumells, S.L., "Some Inequalitiss for Parallel Server Queues,” Operstions Research, 19, 1971, pp 402-413.

[4] Cosmetatos, G.P., "Some Approximate Equilibrium Results for the Multi-server Queue (M/GA),” Opnl. Res.
Quart. 27, 1976, pp.615-620.

(5] Crommelin, C.D., "Delay Probability Formulae,” P.O. Elec. Engrs. J. 26, 1934, pp. 266-274

(6] Hillier F.S. and Lo F.D., "Tables for Muitiple-Server Queueing Systems Involving Erlang Distribution,” Techni-
cal Report No. 31, Dept. of Operations Research, Stanford University, 1971.

[7] van Hoom, M.H., and Tijms, H.C., "Approximations for the Waiting Time Distribution of the M/G/c Queue,”
Performance Evaluation 2, 1982, pp. 22-28.

(8] Huang, J.,"On the Behavior of Algorithms in a Muitiprocessing Environment,” Ph.D. dissertation, Computer Sci-
ence Department, UCLA, 1988,

{9] Kingman J.F.C., "Inequalities in the Theory of Queues,” Journal of the Royal statistical Society, Series B, 32,
1970, pp 102-110.

21-

15 1 T T T] j T T J

m—— APPROXIMATION
12} e o o e ¢ SIMULATION o =

MEAN RESPONSE TIME

L i] i J i]] L
o 01 02 03 04 05 06 07 08 09 1

LOAD

FIGURE 18. An Approximation Result for Figure 3.17a and P=12

ms— APPROXIMATION
41— ¢ o o e o o SIMULATION =

MEAN RESPONSE TIME

ob——1 1 11| N B
0 o1 02 03 04 05 086 07 08 08 1

LOAD

FIGURE 19. An Approximation Result for Figure 3.17a and p=is

[10) Kleinrock, L., Queueing Systems, Vol. 2. Computer Applications, Wiley- Interscience, New York, 1976,

[11] Kleinrock, L., "Performance Models for Distributed Systems,” Teletraffic Analysis and Computer Performance
Evaluation, Proceedings of the International Seminar heid at the cengre for Mathematics and Computer Science
(CWT), June 2-6, 1986, Amsterdam, the Netheriands. pp. 1-15.

[12] Kleinrock, L. and Huang, J., "On Parallel Processing Systems: Amdahl’s Law Generalized and Some Results
on Optimal Design,” submitted to [EEE Trans. on Computers, 1988.

[13] Little, J.D.C., "A Proof of the Queueing Formula L = AW," Operations Research, 9, 1961. pp. 383-387.

[14] Maaloe, E., "Approximation Formulae for Estimation of Waiting-time in Multiple-Channel Queueing System,"
mgmt. Sci. 19, 1973. pp. 703-710.

[15] Nozaki, S.A., and Ross, $.M.," Approximations in Multi-server Poisson Queues,” Report University of Califor-
nia, Berkeley, 1975.

[16] Syski, R., Introduction Congestion Theory in Telephone Systems (second edition), North Holland, 1984.

[17] Yakahashi, Y. "An Approximation Formula for the Mean Waiting Time of an M/G/m Queue,” J. Oper. Res.
Soc. Japan 20, 1977, pp. 150-163. '

APPENDIX
A. Proof of Theorem 1:

From the Markov chain given in Figure 2, we have the following equilibrium balance equations:

A+ kp)p (k, 0) = Ap (k — 1,0) + pop (k. 1) k21 (Al)
A+pp k- LD =kmp k0 +Apk=21) k22 (A2)

The boundary conditlom are
Ap (0,0) = u2p (0,1) (A3)
A +u)p (0, =1,p(1,0) (A®)

Define the following two z-transforms:

Po(z) & Tp (k. Ot
kml)

P.(z) & $ptk D2t
k=l

Define p (k) to be the probability that there are a total of k jobs in the system. Each job is either in stage one or in

stage two. Define the z-transform of p (k) 10 be
P() & Tost
(1]

From the definition we have

plk)=pk, Q) +pk-11) kz1

(AS)
p0)= p(0.0) (A6)
From (AS) and (A§) we have
P(z)=Pof2)+ 2P, (2) (A7)
From (A1) and (A3) we have
AP (2} + 1y z-f;Po(Z) =Az2Po(2) + Py (2)
{AB)
From (A2) and (Ad) we have
(h+)P (2) = My Pos) + AaP 1 ()
(A9)

From (A8) and (A9) we have the following differential equation for Po(z).

(hs = Bl - Po(e) + Mh-+ iy ~ An)Po(a) =0

24

Solving this linear differential equation we obtain the following explicit expression of Po(z):

L PR

Po(z)=ce™
(A10)

where c is a constant yet to be determined. From (A8) and (A9) we have

Po(2)

A
P.(2)=
1(2) - AL

Combining (A7), (A10), (A11), and P(1) = 1 we find ¢ to be

poh 2w
™ [

c=
From the above results we have the z-transform of the number of jobs in the system as:

M2 = A FYE™]
P o ——
(2} Y

We define N to be the average number of jobs in the system; hence,

< 2P(2) =l-(u:+uz)
d ™7 e -

Let us define the mean response time of this model to be T,, where "sp” stands for serial-parallel. Using Little's

result {13], we finally arrive at

I _E_llu.ﬁllug
UL 1-My (AL2)

B.Proofof‘mm#

From the Markov chain given in Figure 6, we have

O+ k)pk, 0)=Ap (k- 1,0) + nop (k, 1); 1sks<m ALY

A+mu))pk,Qy=Apk- 1,00+ pplk 1)y m<k

(Al4)
A+m)pk-1.)=2pk-21)+ ki pk,0); 2<k<m (A1)
A+u)pk-1,1}=Apk =2,1) + mu; p(k,0);. m<k (A16)

The boundary conditions are

A2(0,0) = u2p(0,1) (AL
(A +2)p (0,1) =y, p(1,0) (A18)
We define the following two z-transforms:
Po(z) & Tpk. 0t
k=l
Pi@) & Tptk st
F 1]
We also define
pk) A Prob k jobs in the system]
P() 2 Tput
k)
From the above definitions we have
P(2)=Po(z) + 2P (2)
From (A13) and (A14) we have
3 (ko (k, Ots 5 Oobmiay)p (&, Ozt= EAp (k-1.0)2*+ Thipp (&, 1)s*
k=l k=m o+l k) k=]
After some algebra we have

m=1
(A + myy = A2)Po(2)=13P 1 (2) + 1y T (m - k)p (k, 0)z*
k=)

(Al19)
Similarly, from (A15) and (A16) we have
T+ mpk-1,08* = Tho(k-2,10% + Thuwp k. ONe* + 5 wpk, 0)z*
k=2 kwl k=l kum]
After some algebra we have
m=1
[(1 + o)z - hz]P 1(2) = miy Po(z) - mpy = W Po(@) =y T (m ~ k)p (k, 0zt
ksl (A.?.O)
From (A19) and (A20) we have
Pi(a)= Po(z)
Ha— Az (A21)
Using (A19), (A20), and (A21) we have
(lbz - h)u'l m-l &
Pol®) A2z + myL Py — mAM 2 — Mlps + A2z Eg(m Ep (k. 01
Ml m-l '
Pr(e)= A2z + mpl Py — MM 3 — Mlgs + AZ2? Eg(m kp (k. 0)x
Thus
Hilz ml
= -k k
P(z) "123 + ml.l.‘].lg - mlﬂ‘z - MQZ + 1222 ‘E(m)p (k' 0): (A22)

The remaining problem is to find all p (&, 0) for 0 <k < m-1. Using (A22) and P(1) = Po(1) + P, (1) = 1, we have

mil By = mp A =k
Hiiba (A23)

¥ (m - £)p (k, 0y =
kui)

Rearranging (A13) and (A15) we have

A+ kp,y A
plk1y=———p(k,0)~ IP (k- 1,05 1<k <m
. Ha (A24)
p(k,0)= 7‘: B k- 1,1)- IA"—p(k -2,1) 2sksm
My H (A25)
From (A17) and (A18) we have
A
p(0,1)=—p(0,0)
Ha (A26)
A
p(1,0)= Mu::’) 2(0,0)
! (A2T)
From (A2S), (A26), and (A27) we have
2 2
p@.0)=) tA] o
2”?“3 (A28)
Applying (A24) to (A25) we have for 3<kt <m,
(A + o)A + (k - D,) A+ 2, (k- 1)) Al
£, 0) = k-1,0)~ k ~2,0) - —=—p (k- 3,0
pk,0) o e D } Fiioty Py)} ku;mp() “29)

From (A27), (A28), (A29), and (A23) we are able 10 find all p(k,0) for 0Sk < m - 1. Applying these

results we obtain P (z) and consequently NandT.

Differentiating (A22) we have
vad Mk ! __MomMy -M
N O s T P O
Hence,
N K2 m-i A-myy -4y
= —= - k. 0)-
d A AUmu e - mAy - AW,) Elk(m p k. 0) midy g = mAy — Ay

.28-

