Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

ASPEN: A STREAM PROCESSING ENVIRONMENT

Brian K. Livezey October 1988
Richard R. Muntz CSD-880080

ASPEN: A Stream
T

Processing Environment

Brian K. Livezey
Richard R. Muntz

Computer Science Department
University of California
Los Angeles, CA 90024-1596

ABSTRACT

In this paper, we describe ASPEN, a concurrent stream processing system.
ASPEN is novel in that it provides a programming model in which programmers use
simple annotations to exploit varying degrees and types of concurrency. The degree
of concurrency to be exploited is not fixed by the program specification or by the
underlying system. Increasing or decreasing the degree of concurrency to be
exploited during execution does not require rewriting the entire program, but rather,
simply re-annotating it.

Examples are given to illustrate the varying types of concurrency inherent in
programs written within the stream processing paradigm. We show how programs
may be annotated to exploit these varying degrees of concurrency. We briefly
describe our implementation of ASPEN.

TThis work was done within the Tangram project, supported by DARPA contract F29601-87-C-0072.

ASPEN: A Stream

Processing Environment

Brian K. Livezey
Richard R. Muntz
Computer Science Department

University of California
Los Angeles, CA 90024-1596

1 INTRODUCTION

Stream processing is an ideal paradigm for data-intensive applications. In
addition to allowing programmers to elegantly solve a rich and varied set of problems
that are, at best, awkward to express in other paradigms, stream processing presents an

execution model in which such problems can be solved efficiently.

In this paper, we discuss three forms of parallelism which are inherent to the
stream processing paradigm. We describe ASPEN, a stream processing environment

in which eachAof these forms of concurrency may be exploited.

Existing implementations of concurrent stream processing systems [2,6]
require programmers to structure their programs $o as [0 reflect the degree of con-
currency that is to be exploited during execution. Our goal is to allow programmers to
write their programs first, and later insert annotations which indicate the concurrency
to be exploited. These practices allow the same program to be executed in different
configurations with only minor changes to the annotations, thus exhibiting different
performance characteristics, but producing identical results. The execution charac-
teristics of a program can be changed without altering the program itself. Only the

annotations need to be changed.

This research is part of the Tangram project [10, 13] at UCLA, whose goal is
to develop a Prolog-based distributed modeling environment which combines DBMS
and KBMS technologies with a variety of modeling tools. We see the work described

in this paper as the foundation upon which much of the Tangram system will be built.

The remainder of this paper is organized as follows. Section 2 provides neces-
sary background information including a characterization of streams and stream pro-
cessing. The third section describes the types of concurrency inherent in a stream-
based language and explains how each can be exploited. Section 4 briefly describes
the implementation. Finally, section 5 discusses related work and contains concluding

remarks.
2 STREAMS

Streams, at the highest level of abstraction, can be viewed merely as ordered
sequences of data objects that are accessed in a sequential manner. Thus, they could
be implemented as lists in Prolog (15]. However, implementing streams as lists
severely limits the power inherent in stream processing. Performing successive
transformations on a list produces intermediate lists, and a complete copy of the
transformed list must be stored for each step. This storage is expensive or intractable

for large streams.

We avoid such storage problems by providing an implementation which per-
mits lazy evaluation within a single process. When lazy evaluation is used, an ele-
ment of the stream is produced only when it is needed. Transformations can be corou-
tined such that one element of the input stream can be moved through a succession of
transformations until it is completely transformed. Only then is the next element of

the input stream requested. Thus, one can avoid storing intermediate streams and one

can write programs that manipulate potentally infinite streams,
2.1 Transducers

The elementary unit of computation in stream processing languages is the
transducer. Abelson and Sussman [1] recognize four basic forms of transducers.
Enumerators are stream sources. They take zero or more parameters and generate a
stream of output. A mapping takes as input one or more streams and performs some
sort of transformation on its input to produce an output stream. Filters are used to
reduce the amount of data on a stream. They remove elements that fail to satisfy cer-
tain specified properties. Accumulators perform aggregate functions on streams.

They take a stream as input and generally produce a single output value,

Hybrid transducers are quite common. Hybrid transducers are often formed by
composing two or more elementary transducers. This mode of programming is com-
mon in ASPEN. Programmers define elementary transducers or obtain existing trans-

ducers from libraries and use them to compose more complex transducers.
2.2 Log(F)

In this section, we briefly review Log(F) [11,12], a rewrite rule language
developed by Sanjai Narain at UCLA. As we shall see, Log(F) provides lazy evalua-
tion. With the extensions described in the next chapter, Log(F) is an excellent
language for expressing ASPEN programs. Log(F) allows programmers to express
computations with a very fine degree of potential parallelism where each transducer
potentially represents a process. ASPEN, as described in the next section, allows pro-

grammers to annotate their programs to exploit the desired amount of concurrency.

The following example illustrates how one composes Log(F) rules and how
they are translated into Prolog for interpretation by a standard Prolog engine. The
rules below describe how to append two streams,

append([1, C) => C.

append([A | B], €) => [A | append(B, C)].

We use the Prolog list notation to represent streams. In the term, [A | B], A

represents the first element of the stream, and B represents the rest of the stream.

Log(F) rules are easily translated into Prolog reduce rules. The corresponding
reduce rules for the above Log(F) rules are:

reduce (append (A, B), E) ‘-
reduce (A, D),
append(D, B) => C, .
reduce(C, E).

append([], C) => C.

append([A | B], C) => [A | append(B, C)].
1.
. [BE | T]).

raduce({[1, [
raduce([H | T]
The symbols [] and [H|T] have reflexive reductions; that is, they reduce to them-

selves. Such symbols are referred to as constructor symbols.

When executed by a standard Prolog engine, reduce rules can be made to
behave in a lazy fashion. If we were to reduce append([a,b,c], I[d,e])
once, we would obtain the result [a|append([b,c], [d,e])]. We could
further reduce the tail, or continuation, to obtain the result [b|append(([c],
[d,@])]. Thus, we see that the computation is demand-driven; that is, no result is

computed until it is needed.

3 CONCURRENCY IN ASPEN

This section describes the types of concurrency achievable in ASPEN pro-
grams. A single mechanism for achieving all types of concurrency is proposed. We
describe situations in which the performance of this mechanism is unacceptable and

provide additional mechanisms to handle such cases.
3.1 Types of Concurrency

We recognize three basic types of potential concurrency in ASPEN programs.
They are stream parallelism, AND-parallelism, and merge parallelism. In this section,

we describe each type of concurrency and give examples in which they arise.
3.1.1 Stream Parallelism

Stream parallelism is equivalént to pipelining. The potential for stream paral-
lelism arises in ASPEN programs when transducers are nested. It is illustrated by a
transducer which takes a stream of numb_ers as input, filters out the odd numbers and
produces a stream consisting of the squares of the even numbers. The transducer is
specified as sq(even (S)), where S represents a stream of numbers. This trans-
ducer can be represented as the pipeline composition of two transducers as in Figure

1.

S :G/—en\ \/s_q\ = sq(even(S))
_ _/

Figure 1 Pipeline Parallelism

Concurrent execution of both stages of the pipeline active at all times could poten-

tially double the throughput of this transducer. Obviously, as the number of stages in

the pipeline increases, the potential parallelism also increases.

Note that no parallelism is achieved if strictly lazy evaluation is used. How-
ever, if each of the transducers behave eagerly and run concurrently, we do achieve
parallelism. In the absence of multiple processes, lazy evaluation in this case yields

an efficient use of storage as there is no need to store intermediate values.
3.1.2 AND-Parallelism

The potential for AND-parallelism arises in ASPEN programs whenever a
transducer has multiple inputs which are streams. An example of this is a transducer
which computes the sum of the squares of two streams, expressed as add (sq(A),

sq(B)). Decomposition of this transducer yields the graph in Figure 2.

add(sq(A), sq(B))

Figure 2 AND-Parallelism

Since the two inputs to add are independent, they can be produced concurrently.

In this case, we can achieve concurrency even when lazy evaluation is used.
Multiple inputs to a transducer can be produced in parallel while remaining within the

framework of lazy evaluation.

3.1.3 Merge Parallelism

Merge parallelism can be achieved if the task of producing a single input
stream to a transducer can be shared by multiple transducers. Consider a transducer
which produces a stream that represents the relation, R, which is comprised of frag-
ments, R1,.,Rn. We can express this as select([tuples(R1l), ...,
tuples (Rn)]). Decomposing this transducer into its component transducers, we
get the graph in Figure 3. select/l is a transducer which accepts as input a list of
transducers whose outputs are to be interleaved in some unspecified manner to form
one stream. tuples/l is a transducer which produces a stream of output tuples

corresponding to the relation name that is given as an argument.

Figure 3 Merge Parallelism

3.2 Achieving Concurrency Through Annotations

Parallelism is achieved when different portions of a computation are per-
formed concurrently on different processors. However, having every node in a trans-
ducer network represented by a different processor could result in too much overhead;
the communication overhead could far outweigh the concurrency gained. Instead, a
computation must be judiciously partitioned over the available processors. One must
consider not only the potential concurrency in a given program, but also the overhead

introduced by exploiting that concurrency. One must consider the computation costs

of various portions of the program as well as the communication costs involved. Such
factors are often determined by the nature of the input data as well as the structure of

the program itself.

Automated optimization in a distributed environment is an open problem. We
are currently considering how one could assign weightings to individual transducers
so that an optimizer could automatically make decisions about how to distribute a
given program. The output of such an optimizer would be an annotated program. At
present, we require programmers to provide such annotations. The prefix annotation,
#, allows programmers to indicate which transductions it would be cost-effective to
perform concurrently. All three types of parallelism mentioned in the previous sec-

tion can be achieved through the use of the # annotation.

Stream parallelism is achieved in the example of Figure 1 by annotating it as
follows: sq(#even (S)). Even integers are filtered out of the stream S on some
remote site and streamed to the local site where they are squared as they arrive. Alter-
natively, the program could be annotated as sq{even(S) @ ipswich) to
specify that reduction of the term even (8) is to take place on the site whose name

is ipswich.

AND-parallelism is achieved in a similar manner. The transducer
add (sq(A), sq(B)) isannotated as add(#sq(A), #sq(B)) toindicate that

the two input streams are to be produced concurrently.

Finally, merge parallelism is achieved in the example of Figure 3 by annotat-
ing it as follows: saelect ([#tuples (R1), ... , #tuples(Rn) 1). The
exact interleaving of elements on the stream produced by saelect/1 is determined

by the availability of data elements from each of the concurrent processes. The imple-.

mentation of select/1 is discussed fully in [9].

Decisions about how to annotate an ASPEN program may be guided by
several different factors. The programmer may have knowledge of the expected data
and how it might affect computation costs. Some transductions may be known to be
computationally expensive, while others are comparatively inexpensive. Many other
factors may determine the best way to annotate a program, but regardless of how the
program is annotated, the underlying program is not changed. Only the annotations
are changed. Thus, the original specification of the transducer is the same whether it

will be executed concurrently or sequentially.

We support the annotation of rule invocations rather than the annotation of
rule definitions for several reasons. Some invocations of a rule warrant the use of a
separate process while other invocations of the same rule do not. The same rule may
be invoked once to solve a problem which the programmer feels is likely to be expen-
sive, while another invocation might be to solve a rather triviai problem. Secondly,
transducers are quite often defined in an'iterative manner. For example, consider the
transducer intsfrom (N), which generates a stream of integers starting from N.

intsfrom(N) => [N | intsfrom(N + 1)].

If the definition of intsfrom/l were annotated, a new process would be created for
every iteration, or for every output element produced. By annotating invocations, we
can specify that the entire stream represented by intsf rom/1 is to be produced by a
single process. Finally, the effect of annotating definitions can be achieved easily by

annotating invocations.

3.3 Extending Log(F)

While the # annotation is sufficient for expressing all three types of con-
currency, there are a number of important cases in which it is not entirely appropriate.
In this section, we describe those situations in which the # annotation alone is
insufficient and propose alternatives which greatly improve performance. These
language extensions are necessary for the efficient execution of sequential programs as

well as concurrent programs.
3.3.1 Common Subexpressions

Pure functional programming languages allow programmers to construct only
programs whose data flows are trees. Tree dataflows disallow the optimization of
common subexpressions; if an expression is used in several places throughout a com-
putation, it must be recomputed each time it is used. Allowing dataflows which are
directed acyclic graphs (DAGs) rather than restricting the dataflows to be trees would
permit optimizations such that these common subexpressions need only be computed

once.

We introduce in this section a mechanism that allows common subexpressions
to be optimized. This mechanism is available to the programmer so that programs
with optimized common subexpressions can be expressed. Common subexpression
optimization could be done automatically by a compiler. However, programmers may
not want this optimization to be applied to all common subexpressions. In some
cases, for example, the common subexpression may represent computations that are
intended to produce different results upon different invocations. Such situations arise,
for instance, in real-time processing when accessing a clock value. In such cases,

optimizing common subexpressions may alter the behavior expected by the program-

10

mer.

Henderson [5] describes the introduction of local definitions into a functional
programming language to allow the optimization of common subexpressions. We
have introduced into ASPEN a mechanism which appears to the programmer very
similar to local definitions. However, local definitions in ASPEN programs must
guarantee not only that the same initial value is assigned to all occurrences of a com-
mon subexpression; they must also guarantee that whenever one occurrence of a com-
mon subexpression is reduced, the result of that reduction will be visible to all
occurrences of the common subexpression. Thus, no redundant reductions are per-

formed.

By introducing an infix operator, where, we make it possible to express
transducers with optimized common subexpressions. Suppose that we had the follow-
ing transducer:

sq_plus_dbl(S) => add(sqg(S), dbl(s)).

Fach instance of S is treated as a separate stream. So, each element of S is calcu-
lated twice, once for each consumer. This overhead could be quite significant if S
represents a complex transduction. By rewriting the transducer as follows:
sq_plus_dbl(s) => add(sq(R), dbl(R))
where
R <= 8.
the overhead may be significantly reduced. Thus isolating common subexpressions in

the where portion of a transducer guarantees that when any instance of the common

subexpression is reduced, all instances will be reduced.

11

The compiler described in [9] translates rules of the above form into a form
which may be compiled by the Log(F) compiler and executed. For example, the
above transducer would be translated into the following.

sq_plus_dbl(s) =>

add (sq(common (T, S), dbl(common(T, S)).
The common/2 transducer guarantees that each time one instance of S is reduced,
the reduction will be seen by all other instances. When the first occurrence of
common (T, §S) is reduced, the logical variable T, which is shared by all
occurrences of the term, is bound to the result of the reduction. When the second
occurrence of common (T, S) isreduced, T is found to be bound, so its value is

returned immediately as the result of the reduction.

In order to support the optimization of common subexpressions in distributed
executions, we introduce a new use of the # annotation. By annotating a common
subexpression with a # annotation, the programmer can specify remote reductions
whose results are consumed by multiple processes. As with the in-line use of #,
replacing # annotations with @/2 annotations in the where portion of a transducer

allows the user to explicitly specify the site to be used for reduction.

With this use of the # annotation, the above transducer can be annotated for
parallelism as follows:
sq_plus_dbl(S) => add(f#sq(R), #dbl(R))
where
R <= §s.
The generation of the input stream, R, the sq mapping, the dbl mapping, and the

addition of the resulting streams can all take place in parallel.

12

3.3.2 Multiple Outputs

Pure functional languages make the expression of transducers that have multi-
ple outputs very difficult. One possible approach would be to have transducers gen-
erate streams of output structures, each with one argument for each output. This tech-
nique works well for transducers which produce all of their outputs at the same rate.
However, it is awkward and inefficient for transducers that produce their different out-
puts at differing rates. Narain [12) proposes a method in which rewrite rules are
extended with extra arguments to accumulate their outputs. When all of the streams
have been collected in their entirety, a single output structure whose arguments
represent the multiple outputs of the rewrite rule is generated. The major weakness of
this approach is that no output is generated until all output streams have been com-
puted in their entirety; such behavior fits very poorly into a concurrent stream process-

ing environment.

In the ASPEN programming model, all transducers produce a single stream of
output. Elements of the stream may be fyped to indicate the logical output stream to
which they belong. Consumers merely filter out the proper type. The problem of
representing and implementing transducers with multiple outputs is now reduced to

that of representing and implementing common subexpression optimization.

To solve the multiple output problem in sequential ASPEN programs, we
make use of the common subexpression optimization techniques described previously.
The transducer for quicksorting a stream illustrates their use. In the following exam-

ple, o1/l and ©2/1 are assumed to be constructor symbols and thus are not rewrit-

13

ten.

quicksort([1) => [1].
quicksort([H | T]) =>
append (quicksort (first(8)),
[H | quicksort (second(S))])
where
S <= partition(T, H).

partition([1, P) => [1.
partition([H | T], P) =>
if(H =< P,
[01(H) | partition(T, P)],
[02(H) | partition(T, P)]).
Note that partition/2 produces a single stream of output. Each element of that
output stream is specified as either the first output (1) or the second output (02).

Each element of the output stream is made available to consumers as soon as it has

been calculated.

The transducers £irst/l and second/l simply filter the appropriate output
from the stream. They are defined below.

first([1) => [1].
first([E | R])} => '
if(E = ol1(T), [T | first(R)], first(R)).

second([1) => [1.
sacond([E | R]) =>
if(E = 02(T), [T | second(R)}, second(R)).

This set of filters is easily extended to allow functions with many outputs.

The quicksort transducer for distributed execution is shown below.

quicksort([]J) => [1.
quicksort ([H | T]) =>
append (#quicksort (first (5)),
[H | #quicksort(second(S))])
where
S <= #partition(T, H).

The partition transducer need not be changed. The same filters that are used in

14

the sequential case can also be used here.

In the distributed execution of quicksort/l, partition/2 produces two
copies of its output stream. Both consumers receive all elements on the stream,
regardless of type. Each stream is filtered as it arrives at its consumer. An obvious
optimization is to force the filtration to take place at the producer, thus reducing the
total amount of data that must be transmitted and buffered. For context-free filters
like first/l and second/l, this is a trivial optimization. For more complex

filters (e.g. filters that maintain state), the optimization may be more difficult.
3.4 Increasing Merge Parallelism

Now that we are able to deal effectively with transducers that have multiple
outputs, we can exploit another form of merge parallelism. This form of merge paral-
lelism arises when a node in a pipeline is replaced by a graph of processes which is
capable of processing multiple elements of the stream concurrently. A split frans-
ducer at the beginning of this network splits the input stream into multiple substreams.
Each of these substreams is operated upon by some number of intermediate transduc-
ers. The resulting streams are then merged back together at the end of the network by

a merge transducer.

In [9] we describe several methods for exploiting this form of merge parallel-
ism. We describe here one method which extracts merge parallelism through
cooperation between the split transducer and the merge transducer. In addition
to producing streams of data, the split transducer also produces a stream of control
information. This control stream is used by the merge transducer to assure that the
streams are merged in the proper order. We give the ASPEN code for such a merge

operation below. The first argument to merge is the control stream. Each element,

15

E, indicates whether to accept input from the first stream (E = 1) or the second stream
(E=2).
merga([1, X, ¥) => [].
merge{{l | Cs], X, YY) => x_merge (Cs, X, Y).
merge([2 | Cs], X, Y} => y merge(Cs, X, Y).
x_merge(C, [X | Xs], ¥) => [X | merga(C, Xs, Y)].

y_merge(C, X, [Y | Ys]) => [Y | merge(C, X, ¥s)].

One can now construct a transducer that splits its input stream based upon some
characteristic of the elements. Such a method is very useful when intermediate
transformations differ based upon the split characteristic. Each stream that is gen-
erated by the split transducer can be operated upon by a unique transducer, rather than
trying to collapse the functionality of several transducers into one. Such a method is
used in the Stream Machine [2] for an application in the field of oil exploration.
Three streams of measurements are- used to calculate the volumetric percentage of

hydrocarbons in the rock formations at various depths in a borehole.

These measurements are litholog)} (the type of rock), electrical resistivity, and
transit time (the time for a sound wave to propagate through the formation). The
difference between the porosity of the rock and the percentage of water in the forma-
tion yields the volumetric percentage of hydrocarbons in the formation. The percen-
tage of water is computed directly from the resistivity. The porosity is computed from
the transit time, but different calculations are selected based upon the type of rock. It

is for this calculation that the split/merge technique is applicable.

Figure 4 shows a re-implementation of their example in ASPEN. The parame-
ter Rw is the resistivity of water and is constant for each borehole. The selectMo-
del transducer produces three output streams, ol, 02,and ¢. ol and o2 are

consumed by sPorosity and lPorosity, respectively. The stream ¢ is used

16

by merge to assure that the output streams of sPorosity and 1lPorosity are

merged in the proper order.

hydrocarbons (Rock, Time, Rasistivity, Rw) =>
subtract {#iporosity (Rock, Time),
$water (Rasistivity, Rock, Rw)).

porosity(Rock, Time} =>
merge (control (R), #sPorosity(first(R)),
#1Porosity(second(R)))
wherea
R <= #selactModel (Rock, Time).

saelectModel([1, [1) => ([1].
selectModel ([Rock | Rs], [Time | Ts}) =>
case(Rock, [
sandstone: [0l(Time), c¢(1)
| selectModel (Rs, Ts)],
limestone: [02(Time), c(2)
| selectModel (Rs, Ts)]
1

).

water([], [1, Rw) => [].
water ([Resistivity | Rs], [Rock | R2s], Rw) =>
case{Rock, [
sandstone : [sqrt (0.8 * Rw/Resistivity)
| water%Rs, R23, Rw)]
limestone : [sqrt (Rw/Resistivity)
| water (Rs, R2s, Rw)]
]

).
lPorosity([1) => [1.
lPorosity([Time | Ts]) =>
[(Time - 47)/142 | lPorosity(Ts)].
sPorosity({]) => [1].

sPorosity ([Time | Ts]) =>
[(5/8)*(Time — 55)/Time | sPorosity(Ts)].

Figure 4 Qil Exploration Example

17

This example introduces a new filter, control, which extracts control mes-
sages from a stream. The transducer case is also introduced to allow the program-

mer to construct case statements as in other high-level programming languages.

The original Stream Machine program consists of six modules of Pascal code.
The ASPEN code consists of six transducers composed entirely in ASPEN. The
Stream Machine code requires an additional code segment to specify how the Pascal
modules were to communicate. No such module is required here; the relationships are

specified in the transducers through functional composition.

The split/merge technique is very useful when the operations to be performed
on the intermediate streams are complex and are intended to be executed in parallel.
Perhaps even more significant is that this technique allows better software engineering
of ASPEN programs. Note that the porosity models in the above example are defined
independently of each other as transducers. Without using split/merge techniques,
they would have had to be collapsed into one transducer or they would have had to be
defined as operations on individual elements rather than streams, a severe restriction

on their potential power as well as the degree of parallelism that may be exploited.

The above method has the advantage of not requiring any modifications to the
transducers that process the intermediate streams. The same code is used for these
transducers whether they are participating in a split/merge operation or not. However,
the intermediate transducers are required to perform one-to-one mappings; otherwise,
ordering cannot be maintained. In [9], we present an option which allows one-to-N
mappings while still maintaining order on the stream. In this scheme, we introduce
synchronization markers into the stream that is to be split. These synchronization
markers are used to insure that the streams are merged in the proper order even if

intermediate transducers perform mappings which add or remove elements from the

18

stream. The Sync Model [8], a parallel execution model for logic programming, uses
a similar technique to achieve parallelism in the all-solutions evaluation of logic pro-

grams.
4 Implementation

ASPEN is implemented in terms of a server-pool model. All sites that are to
provide ASPEN support allocate a pool of server processes and await requests from
clients. Servers receive messages which request them to reduce a term and stream the

results back to the client.
4.1 Multiple Outputs

When a server is to produce output for N (N> 1) consumers, it is informed as
to the number of consumers to expectf. A stream descriptor is rétumed to the client.
This stream descriptor may be passed to the N consumers. Reduction of a stream
descriptor causes a connection with the server to be requested. After this connection
is established, results are streamed back {o the consumer. If fewer than N connection
requests have arrived, results of the reduction are buffered until all consumers have

arrived.

If a stream descriptor is passed to a transducer which never reduces that stream
descriptor, the server process will block and will never be deallocated. To prevent
this, we provide the ability to cancel input streams. By syntactic analysis, we can
determine which arguments to a transducer will never be reduced. When such an
argument is detected, the transducer is modified so that it will cancel the argument.

Cancelling a term causes the term to be analyzed in search of stream descriptors.

TProgrammcrs are not expected to provide this number. It is generated by a compile-
time analysis of the program.

19

When a stream descriptor is found, a message is sent informing the associated server

that the stream is no longer necessary.
4.2 Constrained Eagerness

By default, servers behave in a completely eager fashion. That is, a server
continues to produce output until the end of the output stream is generated or until all
of its consumers have cancelled. While such a mode of operation can result in a high
degree of parallelism, it can also result in a great deal of wasted work. If a consumer
decides at some point that it has seen enough of the input stream and does not wish to
see any more, all of the subsequent terms that have been eagerly created by the pro-
ducer represent wasteci work. Creation of these extra terms may have actually
resulted in the creation of additional processes, thus increasing the amount of wasted
work dramatically. In such situations, much computation may be saved without
sacrificing concurrency by producing the stream in a constrained fashion. We have
generalized the anticipation coefficient [6] to allow programmers 0 control the eager-
ness with which servers execute. Specification of the production mode lazy(N, M)
indicates that a stream is to be produced in bursts. The first burst is to contain N ele-
ments, the maximum number of terms that the programmer wishes to be outstanding
on the stream at any one time. Thereafter, clements are produced in bursts of size M
each time more elements are requested. All modes of production along the continuum
from completely lazy to completely eager can be achieved through the use of lazy(¥,
M). By specifying lazy(0, 1), completely lazy behavior can be achieved. A behavior
in which bindings are produced on demand, N at time, can be achieved by specifying
lazy(N, N). A behavior in which the consumer is kept busy any time there are fewer
than N bindings on the stream (equivalent to the anticipation coefficient above) can be

achieved by specifying lazy(N, 1). By specifying lazy(es, o), completely eager

20

behavior is achieved. Note that specification of lazy(es, c°) is equivalent to specifying

no constraint at all.
5 CONCLUSIONS

Stream processing is a powerful programming paradigm. It allows rich and
varied programs to be expressed elegantly and solved in an efficient manner. Several

interesting applications of stream processing are presented in [13] and [3].

In this paper, we have presented a stream processing environment called
ASPEN. Annotations allow programmers to exploit concurrency without rewriting
their programs. A term may be annotated with the # annotation if the programmer
feels that the performance of his program may be improved by evaluating that term in
parallel with the rest of the program. The @ annotation allows the programmer to
explicitly specify a site upon which ﬁhe reduction of a term is to take place. This can
be extremely useful when the term to be reduced requires access to data which resides
only at a specific site. Programmers can express programs in ASPEN whose
dataflows are bAGs as well as trees. Using simple annotations, programmers can
express programs which exploit three types of parallelism, stream parallelism, AND-
parallelism, and merge parallelism, making ASPEN a powerful stream processing

language.

The annotations presented in this paper allow programmers to freely mix eager
and lazy evaluation. Portions of an ASPEN program which run within a single pro-
cess are evaluated in a lazy fashion. This is desirable for two reasons. First, there is
no need to buffer intermediate results since each result is calculated only when it is
needed. Second, the delay before the first result is produced is much lower than if

eager evaluation were used. These factors are extremely significant for large, poten-

21

tially infinite, streams. By introducing eagerness at process boundaries, concurrency
can be exploited. We have introduced further annotations to allow the programmer to
constrain this eagerness in order to prevent one process from running too far ahead of

another and requiring unbounded buffer space.

The annotations presented in this paper are intended to be, to the greatest
extent possible, semantics-free. That is, their introduction into a program changes
performance characteristics of the program only, without changing the semantic
meaning of the program. When annotations which explicitly specify an execution site
are used to gain access to a particular database relation or fragment, there is, of
course, a semantic impact upon the program. Those annotations which do not expli-
citly specify an execution site can be taken as hints, to be either ignored or heeded
during execution, at the discretion of the system. Since adherence, or lack of adher-
ence, to these annotations has no irhpact on the semantics of the program, there is
significant potential for making program distribution decisions automatically, with no

need for the programmer to annotate his program.

Previous work in distributed stream processing has suffered from one of two
drawbacks. First, the work by Kahn and MacQueen [6] and by Barth, et al [2] lack
uniformity. That is, there are two different programming models. Processes were
specified in one manner, and the linking together of those processes is specified in a
different manner with explicit communication between the processes. In ASPEN,
communication is implicit. Turning a sequential ASPEN program into a distributed
program requires only introducing the appropriate annotations into the program and
does not require rewriting any portion of the program. Similarly, turning a distributed

program into a sequential program requires only removing annotations.

22

The second drawback with other distributed stream processing systems is that
it is often difficult to specify the granularity of concurrency. In Flat Concurrent Pro-
log [14], stream processing is achieved by repeatedly refining the instantiation of a
shared variable. CFL, a concurrent functional language has been proposed by Levy
and Shapiro [7] as a user-level language for Flat Concurrent Prolog, relieving the pro-
grammer of the burden of specifying correct synchronization. The current evaluation
technique for CFL is eager evaluation. CFL provides no mechanism for the user to

control concurrency.

Parlog [4] allows programmers to annotate a group of goals to indicate that it
is to be run entirely within a single process. However, Parlog does not support lazy
evaluation within a single process. Thus, introduction of sequential nodes in a stream
processing network will result in a disruption of flow through the network. In
ASPEN, programmers specify the gfain of concurrency with simple annotations. By
supporting lazy evaluation within a single process, ASPEN allows the construction of

efficient stream processing networks.

The proposals by Kahn and MacQueen [6] and Barth, et al [2] suffer from
similar problems. Although both support the evaluation of multiple modules within a
single process, explicit input/output operations and scheduling are still necessary.
Demand-driven execution is the default behavior in sequential ASPEN and is
achieved within a single process without incurring the overhead of IPC mechanisms

or schedulers.

ASPEN has proved to be an effective environment in which to express and
evaluate data-intensive applications. As ASPEN is used more extensively, its
strengths and weaknesses will no doubt become more apparent. We believe that the

strengths will outnumber the weaknesses and that addressing the weaknesses will

23

require only incremental changes to the implementation presented here.

24

[1]

[2]

[3]

(4]

[5]

[6]

[7]

(8]

9]

[10]

REFERENCES

Abelson, H. and G. Sussman, The Structure and Analysis of Com-
puter Programs, MIT Press, Boston, MA (1983).

Barth, Paul, Scott Guthery, and David Barstow, ‘‘The Stream
Machine:; A Data Flow Architecture for Real-Time Applications,’’
pp. 103- 110 in Proceedings 8th International Conference on
Software Engineering, London, England (August 1985).

Chau, L., ‘‘Functional Grammars and Stream Pattern Matching,”’
Draft, UCLA Computer Science Dept. (March 1988).

Gregory, S., Parallel Logic Programming in PARLOG: The
Language and its Implementation, Addison-Wesley, Reading, MA
(1987).

Henderson, Peter, Functional Progrdmming: Application and
Implementation, Prentice-Hall, Englewood Cliffs, New Jersey
(1980).

Kahn, Gilles and David B. MacQueen, ‘‘Coroutines and Networks
of Parallel Processes,”” Proceedings of the IFIP Congress 77,
pp.993-998 (1977).

Levy, Jacob and Ehud Shapiro, ‘‘CFL - A Concurrent Functional
Language Embedded in a Concurrent Logic Programming
Environment,”” CS86-28, The Weizmann Institute of Science,
Rehovot, Israel (December 1986).

Li, P-Y.P. and A.J. Martin, ‘““The Sync Model: A Parallel Execu-
tion Method for Logic Programming,”” Proc. Symp. on Logic Pro-
gramming, pp.223-234, IEEE Computer Society (1986).

Livezey, Brian Kevin, ‘‘A Stream-Based Language for Con-
current Programming and Distributed Database Access,”” M.S.
Thesis, UCLA Computer Science Department, Los Angeles, Cal-
ifornia (1988).)

Muntz, R.R. and D.S. Parker, ‘“Tangram: Project Overview,”

Technical Report CSD-880032, UCLA Computer Science Dept.,
Los Angeles, CA 90024-1596 (April 1988).

25

[11]

[12]

(13]

(14]

[15]

Narain, S., “Log(F): A New Scheme for Integrating Rewrite
Rules, Logic Programming and Lazy Evaluation,”” CSD-870027,
UCLA Computer Science Dept., Los Angeles, CA (1987).

Narain, S., “LOG(F): An Optimal Combination of Logic Pro-
gramming, Rewrite Rules and Lazy Evaluation,” Ph.D. Disserta-
tion, UCLA Computer Science Dept., Los Angeles, CA 90024-
1596 (1988).

Parker, D.S., R.R. Muntz, and L. Chau, ‘‘The Tangram Stream
Query Processing System,”” Technical Report CSD-880025,
UCLA Computer Science Dept., Los Angeles, CA 90024-1596
(March 1988).

Shapiro, E.Y., Concurrent Prolog: Collected Papers, MIT Press,
Cambridge, MA (1987).

Sterling, L. and E. Shapiro, The Art of Prolog, MIT Press, Cam-
bridge, MA (1986).

26

