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Abstract

In this paper we address the design of Locus' [PopeWalk85] family
networks rendering PCI service. Given are the expected user work-
load, the hardware costs and the performance constraints. The work-
load consists of three classes of users: Interactive, High-Interactive,
and Communication-Intensive. The number of PC’s is given and is
equal to the number of users. We show that the problem can be re-
duced to a discrete Capacity and Flow Assignment (CFA) problem.
The backbone capacity assignment is inspired by the Lagrangian De-
composition Approach [Fox66]. It starts from a backbone capacity
assignment which matches the initial flow and chooses a backbone
server upgrade that gives the greatest response time reduction per
Dollar. At this point we apply the flow deviation method and iter-
ate until the constraints are met. We present several computational
examples of network configuration synthesis, that emphasize the sig-
nificance and generality of the results obtained.

*PC-Interface (PCI) is a trade mark of Locus Computing Corporation (LCC)

tThis work was sponsored in part by the UCLA-IBM Joint Study D850915
{Sponsored in part by CNPq-Brazil grant 200366/86
Locus is the predecessor to the forthcoming IBM AIX/370






1 Introduction

Locus is the predecessor of the newly announced IBM AIX/370. It is a
Unix compatible distributed operating system that supports a large variety
of architectures. Some of the mainframe architectures supported are 4300,
9370 and the 3090. A set of such backbone servers is called a “Transparent
Computing Facility” cluster (TCF cluster). Personal workstations such as
high-end PS/2 and PC/RT are supported as well, and they can be used to
access a TCF backbone cluster.

The UCLA School of Engineering and Applied Sciences Network
(SEASnet) is the primary computing facility of the school. SEASnet also
serves as a pilot/demonstration center, as it is the most experienced produc-
tion environment for pre-AIX/370. SEASnet demonstrates a high degree
of heterogeneity, as it consists of two 4361s and a 4381 as backbone servers
(as well as a number of DEC VAX/750s SUNs FPS and others as in Figure
1). On the client side, SEASnet users use primarily IBM PC/ATSs running
DOS to access the system (ascii terminals and PC/RTs are also available).

In this work we shall concentrate on the PC to backbone-cluster connec-
tion. This connection is accomplished by an operating system bridge called
PC-Interface (PCI). PCI allows a PC running DOS to transparently access
an AIX or Unix file system through the so-called network drive (Drive E:).

The problem of optimal synthesis of such heterogeneous systems is both
compound and difficult. There are several subparts to this general prob-
lem, namely - component measurement and characterization, load and sys-
tem model construction, and lastly, the sub-optimal configuration synthesis
algorithms. The major contribution of this paper is the last among the
three - the configuration synthesis. This contribution is very general, as
the presented algorithms can be applied to many resource systems which
need to be optimized.

We begin this paper by providing the necessary context that inspired
this work. We shall describe the system that was used to measure and char-
acterize the components of the synthesized configurations in the computa-
tional example we present. Hence, further system description and workload
characterization will be provided in section 2.

We then proceed with an exposition of our top-level approach in section
3. We describe how the backbone cluster synthesis problem can be mapped
into an extension to the Capacity and Flow Assignment (CFA) problem.
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In section 4 we present the extended sub-optimizing CFA algorithms
we developed for the synthesis problem. Both Capacity Assignment and
Sub-Optimal Session Assignment algorithms are outlined.

In section 5 we apply the algorithms to three different configuration
sets. We derive sub-optimal session assignments, and ultimately present
the cost/performance curves that readily yield the configurations of choice.

In section 6 we outline analysis insights and provide general conclusions
for this work. In section 7 we suggest additional directions and further
extensions to our work.

We proceed with the description of the system that inspired this work.

2 System Description and Workload Char-
acterization

SEASnet is an Ethernet based network, serving the UCLA School of En-
gineering. Figure 1 illustrates the general layout of SEASnet through the
school. Our focus for this work is in the PCI networking option. PC-
Interface allows any of the 100+ PCs in the school to access any of the
backbone machines. Figure 2 shows the part of SEASnet on which we fo-
cus, and from which we derive the computational example of section 5.
The backbone servers provide extensive file service for class instruction, as
well as research work. We present here algorithms that optimize resource
utilization, as well as synthesize systems with more (or fewer) available
resources.

Extensive measurements were carried out on SEASnet in order to pa-
rameterize its resources and construct a queueing network model. Most of
these measurements are reported elsewhere [Betser87, BeLaCaKa87). An
important benchmark was the delay incurred in a 1 Mega-Byte file transfer.
This is a crucial yardstick for a file service oriented system.

Based on our study of the SEASnet user behavior [Betser88], we intro-
duced three classes of users in our characterization:

1. Interactive (Int) : Short interactive commands interleaved with 1 min
think time.

2. High Interactive (HI) : Short interactive commands in succession with
1-2 sec think time.
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3. Communication Intensive (CI) : Massive continuous file transfer from
backbone servers to PCs.

The performance figures for workloads with customers of different classes
were derived through measurements and simulation. With the aid of many
such experiments, under various configurations and loads combinations, we
have identified the contention points for SEASnet. We then constructed
the queueing network model shown in Figure 3. This model describes a
Locus backbone server supporting a variety of PCI sessions.

We model the primary governing parameters of the Locus-PCI operation
paradigm. It is important to note that we present the contention points as
the CPU speed and I/O capacity of the backbone servers. We also present
a bottleneck at the PC end, in the way of the Ethernet interface speed.
We have observed that these are the primary resource contention modules
within this architecture?. :

The tuning and validation of of this model was a long iterative process,
and is reported in detail in {Betser88]. We present in Figure 4 some recent
comparisons between measured results and simulated results generated by
the queueing network model.

Our model was used to simulate many of the configurations that we
reported in the computational example of section 5. These extensive sim-
ulations were used to construct the delay space tables. These tables were
used as input to the optimization and synthesis algorithms we subsequently
conducted.

Having provided this motivation, we proceed to the description of the
optimizing algorithms.

3 Reduction to the Capacity and Flow As-
signment Problem

For a given a user load, the synthesis of heterogeneous backbone clusters for
PCI networks consists of two major decisions :

2The Ethernet is an example of a non-bottlenecking resource. We have never gotten
even close to full Ethernet throughput during our extensive experimentation
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Figure 5: Corresponding Star Topology for Backbone-Server Cluster

1. Number and type of backbone servers to allocate (cost constraint
bounded)

2. Specific session allocation onto the backbone servers

The problem can be transformed into a discrete Capacity and Flow
Assignment problem (CFA) by mapping each backbone server onto a link,
and mapping the number of sessions allocated to a backbone onto the flow
of the corresponding link. This entails a star topology, as illustrated in
Figure 5. This entails a star topology, as illustrated in Figure 5.

We will solve the original problem by solving the CFA between a source
and a destination connected by a number of links equal to the maximum
number of sites that any feasible solution may include and having as the
total flow the entire user workload. When the CFA algorithm converges,
the number of backbone servers in the system will be equal to the number
of links with nonzero capacity, and the flow on each link will represent the
session set assigned to the backbone server.

We must search through many local minima until we find a cost effec-
tive solution that satisfies the problem constraints. That will be done by
choosing different starting feasible flows for each topology considered.
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We will execute the capacity assignment algorithm to find the initial
session allocation to each backbone server that satisfies the cost constramts.
We will then iterate between the Flow Deviation (FD) and the Capacity
Assignment (CA) until we find a local minimum. The workload that will
result from this process will be suboptimal due to the fact that the objective
function 1s concave.

In the following sections we will consider the algorithms in detail, and
apply them to concrete examples to evaluate their effectiveness.

4 The Capacity and Flow Assignment Algo-
rithm

4.1 Capacity Assignment Algorithm

Let’s first introduce some notation:

backbone(?) - backbone server (site) allocated to link i.

cost(7) - cost of backbone(i).

upgrade(i) - backbone server allocated to link i after upgrade.

T - average system response time.

Tnar - constraint on average system response time.

AT(7) - difference in the delay of link i if one more session
is transferred to it.

T - - Incremental delay per upgrade cost.

The Capacity Assignment algorithm is as follows:

1. Choose the minimum fit capacity assignment that matches the flows
in each link. For every backbone server that has at least one session
assigned to it, the minimum fit assignment will be the least expensive
backbone server. If no session is assigned to a backbone server, that
site will be deleted.

2. If the total cost assigned to the links is greater than the maximum
cost, then STOP. The problem is not feasible.
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. Calculate the total average response time of the system by table look

up.

If T < Tinaz STOP. The problem is feasible, and the allocated capacity
is suboptimal.

.Compu.te the ratio r = _'cos:(upgradeé-‘ﬁﬂ;)n(backbone(i)} for all links. r
is the incremental delay per upgrade cost. If the backbone server
assigned to a site cannot be improved (it is already the most expensive
backbone server available), then set r=0.

Find the link that has the largest r (r is always positive). If r = 0,
then STOP (all sites are already using the most expensive backbone

server). Otherwise upgrade the backbone server in that link and
GOTO step 2.

The algorithm will find a cost effective solution, since at every step
it upgrades the capacity that gives the greatest response time reduction
per Dollar. The method will typically generate suboptimal solutions. An
optimal solution could be obtained (at higher cost) using a dynamic pro-
gramming approach [Frank.etal69).

4.2

The Sub Optimal Session Assignment Algorithm

The sub-optimal session assignment algorithm is as follows:

1.

2.

Compute T, the average response time at the initial flow assignment.

For each link compute the incremental delay as a function of a unit
increment in the flow (transfer of é, sessions).

Find the link that has shortest incremental delay.

Find the link (having nonzero flow) that has the maximum incremen-
tal delay (the zero flow links are not taken into consideration).

Deviate a unit flow(é.) from the maximum incremental delay class

of the maximum incremental delay link to the minimum incremental
delay link.
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6. Compute T, the average response time at the current flow assignment.

T.UT, —T. < eor T. > T,, then STOP. Otherwise do T, = T, and
GOTO step 2.

The algorithm computes the incremental delay for each link by computing
the numerical partial derivative with respect to each class and deviates
8. sessions of the maximum incremental delay class from the link with
maximum incremental delay, to the one with minimum incremental delay.
Each class has a constant & that is calculated according to the load that a
session from that class brings to the system. In our computational examples
the classes High Interactive and Communication Intensive have é. = 1 and
the class Interactive has 6, = 4.

In the next section we apply the algorithms to three different topologies
under various costs and compute the cost performance curves for uniform,
skewed, and suboptimal workloads. The suboptimal workload is the work-
load that results upon convergence of the Capacity and Flow Assignment
algorithm.

5 Configuration Synthesis Examples

In this section we present three configuration synthesis examples. The
workload consists of three classes, namely Interactive (Int), High Interac-
tive (HI), and Communication Intensive (CI). There is a total of 90 sessions
divided among the classes (48Int, 24HI, 18CI). We consider costs in the
range of 1.2 to 7.0 million Dollars and topologies with 4,6, and 10 back-
bone servers. The backbone servers can be a 4361 or a 4381 with typical
costs of 300k and 700k Dollars®. The assignment of sessions to the back-
bone servers can be skewed, uniform, or suboptimal. A skewed assignment
is one where some backbone servers are overloaded and others are under-
loaded. With this workload we represent the situation that occurs when
users are permitted to connect to any backbone server and the system is
not balancing the load. A uniform assignment results when each backbone
server receives an equal number of sessions from each class. The subopti-

3These costs are illustrative. They can vary substantially depending on system periph-
erals, customer discount, etc.
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Uniform Skewed

Site | Int | HI'| CI || Int | HI'| CI
1 12 ] 6 4 16 | O 4
2 12 | 6 4 16 | O 4
3 12 | 6 5 8 |12 5
4 121 6 5 8 112 5

Table 1: Uniform and Skewed Workloads with 4 Backbone Servers

mal assignment is the result of the optimization described in the previous
sections.

5.1 Synthesis with 4 Backbone Servers

In this example we divide the 90 sessions among the classes as follows:
48 interactive, 24 high interactive and 18 communication intensive. The
uniform and skewed workloads for 4 sites are shown in Table 1.

We run the optimization for costs ranging from 1.2 million Dollars to 2.8
million Dollars. This represents the entire cost allocation space. In Table
2 we show the backbone servers allocated to each site, the corresponding
cost, and the suboptimal workload computed.

In Figure 6 we plot the corresponding average delay for each configu-
ration. We can see that the upgrade of the backbone servers is producing
significant improvement in the performance. This occurs because the load
applied to system is overwhelming the 4361s.

5.2 Cost Performance with 4,6, and 10 Backbone
Servers

In Table 3 we report the optimization results for 6 backbone servers in the
range from 2.2 M Dollars to 3.0 M Dollars. Suboptimal session allocations
are indicated for each backbone configuration set.

Figures 7 and 8 show the condensed cost performance curves for the
optimization with 4, 6, and 10 sites. Solutions are defined for a spectrum
of sub-optimal cost and performance. Once the constraints are given, a
solution becomes readily available.
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Sessions in each class
Site | Backbone | Int ] HI | Cl [
cost of 1.2 M Dollars
1 4361 16 0 )
2 4361 16 0 4
3 4361 8 12 7
4 4361 8 12 3
cost of 1.6 M Dollars
1 4361 12 6 4
2 4381 16 ) 7
3 4361 12 7 3
4 4361 8 6 4
cost of 2.0 M Dollars
1 4361 12 6 3
2 4381 12 3 7
3 4381 16 7 5
4 4361 8 6 3
cost of 2.4 M Dollars
1 4381 12 6 6
2 4361 12 6 2
3 4381 12 3 6
4 4381 12 7 4
cost of 2.8 M Dollars
1 4381 12 4 6
2 4381 12 5 6
3 4381 12 9 2
4 4381 12 6 4

Table 2: Suboptimal Workload with 4 Backbone Servers
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Sessions in each class
Site | Backbone | Int | HI | cI |

cost of 2.2 M Dollars
1 4381 16 5 3
2 4361 12 3 3
3 4361 12 2 3
4 4361 4 0 2
3 4361 4 7 2
6 4361 0 7 2

cost of 2.6 M Dollars
1 4381 12 4 5
2 4381 12 4 5
3 4361 12 4 1
4 4361 4 0 4
5 4361 4 6 2
6 4361 4 6 1

cost of 3.0 M Dollars
1 4381 12 3 6
2 4381 12 3 5
3 4361 12 4 1
4 4361 4 0 K]
53 4381 4 8 2
6 4361 4 6 1

Table 3: Suboptimal Workload with 6 Backbone Servers
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We can see that the best working range is located in the range of 2-3 M
Dollars. This working range is defined by the knee of the curves. We note
that the best workload configuration for 10 sites with 3.0 M Dollars is the
uniform workload. This occurs because the 90 sessions workload distributed
among 10 sites drives all backbone servers at very low utilizations. This
makes performance less sensitive to load allocation in this capacity-overkill
situation. Clearly, this is not a cost effective solution for the user load given
in our example.

5.3 Computational Considerations

The synthesis of networks with discrete capacity is a time consuming task
due to the concave shape of the objective function. In our case we have
multiple user classes and backbone servers, as well as an unknown topology.
An optimal solution using dynamic programming approach [Frank.etal69]
would entail extremely expensive computations. Our approach iteratively
finds a suboptimal solution that is as good as the computational budget
available.

The designer must allocate his budget to the subtasks of user workload
characterization, the generation of the system delay tables, and the config-
uration synthesis optimization. Each of the phases is time consuming and
computationally costly due to the very large state space. The optimiza-
tion is quite efficient but it requires a number of iterations with different
initial feasible flows until a good workload distribution is found. The uni-
form distribution produces good initial results and should be the first to be
compared with the given delay constraints.

6 Conclusions

In this work we considered a rather complex configuration synthesis prob-
lem. Both the offered load and the computation/communication resources
carry a high degree of richness and complexity. This makes an intuitive or
straightforward engineering solution very difficult.

Through an extension of the CFA algorithm, combined with application
to backbone computing resources, we derive a direct way to construct a
performance-cost effective backbone network. This is accomplished through
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an optimization technique which deviates resource assignments in order to
identify sub-optimal solutions to the problem.

We also note that heterogeneous resources are modeled by studying
measured behavior, and by emphasizing the most dominant characteristics
of the integrated system. The fact that we have measured and compared the
physical system to predicted simulation figures gives us increased confidence
in the presented results.

Unlike recent contributions to this area [TanTowWol88], we do not make
restrictive assumptions with respect to service times for the user classes con-
sidered. We obtain stable numerical description of class behavior, and input
these results into the optimization algorithm. This enhances the stability
of the optimization algorithm, as possible instabilities in the simulation are
handled in advance.

The convergence of the presented optimization algorithm 1s impressive,
as solutions were obtained in less than 12 iterations for most cases, con-
suming about 1-2 minutes on 68020 based microprocessor. Stability of the
algorithm still needs to be studied, as in some cases there is divergence
from local minima.

The presented configuration synthesis algorithms are very general, as
they apply to resource allocation in the most general form. It is important
to create an appropriate performance mapping from raw resources and load
characteristics to the system under consideration. Once that is done, the
optimization can be readily applied, resulting in efficient resource utiliza-
tion.

It should be recognized that there is possibility to extend this work to
obtain an automatic search on the resulting plots such as in Figures 7 and
8. Hence cost/performance criteria could be defined to suggest the best
working area on the curve, depending on resource designation and financial
capacity cominitted to the planned resources.

7 Future Research

This work branches into several interesting directions. Using the fundamen-
tal synthesis approach and tools we constructed, more complex problems
could be attempted.
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1. Direct Uniz applications on an AIX/370 Cluster. In our analysis and
synthesis we addressed the predominant SEASnet paradigm of PCI
service by the Locus TCF cluster. There are additional modes of
operation that would constitute new classes of customers. One such
class is the Unix application family, interacting directly with Locus or
ATX/370 or any Unix family system [BeLaCaKa87]. The combination
of PCI users, Unix users and other classes, such as work-stations with
windowing interface will constitute a very interesting study.

2. User behavior detail. The classes of user load could be enriched to
include more statistics about usage histograms, traffic increases, time
clustering, and other aspects of behavior, pertaining to additional
classes as mentioned above.

3. Resource assessment in finer granularity. In addition to CPU and
I/O resources in the clusters, one could address the following finer
grain issues :

(a) Windows. Many new work-stations with graphics capabilities
provide windowing systems such as X, SUN-TOOQLS and others.
The communication and I/O resource requirements of such ar-
chitectures is of high interest and importance for future designs.

(b) Distributed file accesses. The availability of data has two vastly
varied flavors. Local data is accessible directly within a machine.
Remote data requires all the communication/network-protocol
overhead to become available. The trade-offs of replicating vs
remote access or process migration constitute a rich array of
possible extensions.

(¢) Reltability. Another vast number of design optimization relates
to performance costs due to higher reliability. This price could
be traded off with reliability design constraints to achieve the
final resource allocation for the system.

4. Load Balancing. In this work we are configuring a system such that
cost is optimized. Part of the algorithm deals with good utilization
of the resources. It would be even more challenging to maintain a
balanced load situation for a variety of user loads in the future.
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(a) Static allocation. In this case we address the pre-allocation of
jobs to a given configuration. A new job is assigned according
to mean time statistics.

(b) Dynamaic real-time. This is a fine grain assignment scheme based
on real-time monitoring of all jobs in operation. This scheme
would not monitor a job once assigned, as only new jobs are
assigned [EagLazZah88|.

A number of the above topics are currently under investigation at UCLA.
It should be pointed out that many extensions beyond the context of
SEASnet and UCLA are possible, due to the generality of the optimiza-
tion algorithms presented.
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