Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

IMPLICIT REPRESENTATION FOR EXTENSIONAL ANSWERS

Chung-Dak Shum August 1988
Richard Muntz CSD-880067

Implicit Representation for Extensional Answers

Chung-Dak Shum
Richard Muntz

Computer Science Department
Unversity of California, Los Angeles

Abstract

An exhaustive list of atomic objects is not always the best means of information exchange. This
paper concerns the implicit representation of extensional answers. Expressions for answers are
given in terms of concepts and individuals. Exceptions within individual concepts are allowed.
Two criteria are defined as measures of the goodness of such expressions: (i) minimizing the
number of terms; (ii) positive terms preferred over negative terms. Expressions satisfying these
two criteria are called optimal expressions. It is shown that under a strict taxonomy of concepts,
any two optimal expressions for an extensional answer share the same set of terms. The inductive
proof elicits an algorithm for obtaining such expressions. Generalizing the strict taxonomy of
concepis to a join-semilattice of concepts eliminates the term uniqueness property and also makes
the problem of finding an optimal expression intractable. The problem under multiple taxo-
nomies, although it involves a restricted type of join-semilattice, remains intractable.

1. Introduction

Conventional responses in database sysiems, usually given as lists of atomic objects, although sufficient 0
serve the purpose of conveying information, do not necessarily provide efficent and effective communications
between a user and the system. Recently, new notions of answers to queries have been receiving more research in-
terest. For example, in [1], an answer 1o a query is expressed in terms of both atomic facts and general rules; in
[2,3], intensional descriptions or concepts are being used as part of an answer. This latter notion of answers is par-
ticularly helpful when the number of entities or objects which satisfy the query is very large. Consider the person-
nel database of a large corporation and the query

<x/employee | (ylannual_pay) salary (x,y) A (y > 30,000)>.

If there is a large number of employees whose salaries are more than 30,000, and if it turns out that all engineers, all
managers and a few secretaries are, then it seems reasonable for the system to let the user know of the situation. In
this paper, we are interested in answers of this type and will refer to them as abstract responses.

Our work is closely related to that by Corella [3]. In his paper, the answer to a query is expressed not as a
set of individuals, but as a set of concepts or predicates, whose extensions may not be explicitly represented. Now
suppose that we have retrieved a set of individuals as the answer to a conventional database query, and we want 10
re-cxpress the answer in terms of a set of concepts. Those concepts must, of course, be pre-defined; otherwise, the
user may not be familiar with them and the answer in terms of those concepts will thus make not too much sense.
One of the immediate drawbacks to such an approach of expressing answers is that the extensions of the pre-defined

concepts often do not satisfy the query conditions as a whole. As a result, we cannot express answers the way we
want except in very rare cases. An obvious solution to this problem is to allow exceptions within individual con-
cepts [4] to be used as part of the answer. For example, if all engineers except John Smith satisfy the above query,
we should be able to say just exactly that in the answer.

Here we will study the different ways of expressing abstract responses. In Section 2, we introduce the no-
tion of an expression which will be used as answers 1o queries throughout the paper. Criteria for comparing such
expressions will be defined in Section 3, and algorithms for generating the so-called good expression under a strict
taxonomy of concepts will be given. The strict taxonomy of concepts is generalized t0 a join-semilattice of con-
cepts in Section 4. Section S is devoted to the study of obtaining expressions over multiple taxonomies. In the last
Section, we conclude the paper with suggestions of possible future work in this area.

2. Definitions and Notations

We consider a finite domain D of individuals, and concepts relative to D. A concept is a unary predicate
C(+) defined over D, where C, with possible subscripts, is the label of the concept. For convenience, we will also
denote the extension of the predicate {x | C (x)} by C. The context should suffice to disambiguate. A concept C,is
said to be subsumed by another concept C, if and only if C; < C,. We shall use both set terminology (union, inter-
section, complementation, set inclusion, difference) and logic terminology (disjunction, conjunction, negation, sub-_
sumption) when referring to concepts. The extensional answer A 10 a query is simply a subset of D whose elements
satisfy the query conditions. The problem is to re-express the answer in terms of some pre-defined concepts and in-
dividuals.

We are not dealing with an arbitrary collection of concepts; instead, we are interested in a raxonomy of
concepts.

Definition 2.1 A taxonomy is a finite tree whose nodes are labeled by concepts. Any node other than the leaf
node has two or more successors. The successor concept of each node is subsumed by its parent concept. The
union of all successor concepts of any non-leaf node is equal to the parent concept. A taxonomy is called sirict
if all sibling concepts are mutually exclusive.

Since we will be working mostly with strict taxonomies, the word taxonomy will simply be used to refer 10 a stnct
taxonomy unless otherwise stated. An extensional answer A to a query is related o0 a taxonomy by the following
definition.

Definition 2.2 A set of individuals A is classifiable by a taxonomy T iff the root concept of T contains A.

Next we look at how to express an extensional answer A in terms of concepts from a taxonomy T and individuals
from the root concept of T given that A is classifiable by T. To this end, we need the notion of an expression.

Definition 2.3 The alphabet of an expression defined over a taxonomy T is composed of the following:

1. Concepts: C1,Cz, " **,
Each concept is a label of anode in T.
2. Individuals: dy,d5, """,

Each individual is an element of the root concept of T.
3 Empty: €,

This denotes the empty expression.
4. Signs: +,—.

Next we introduce the notion of a term, followed by the syntax of an expression.

Definition 2.4 There are two types of terms:

1. If x is an individual or a concept, then +x is a positive term,
2. If x is an individual or a concept, then —x is a negative term.

Definition 2.5 An expression over the taxonomy T is defined inductively as follows:

1. A term (positive or negative) is an expression.
2. £ is an expression.
3. If ¢, and e, are expressions, soise €.

Expressions are introduced so that extensional answers can be re-expressed in terms of high level concepts and, con-
sequently, abstract responses can be offered to the user which enhance his understanding with regard to the state of
the world. Thus it seems natural to associate the meaning of an expression with a set of individuals.

Definition 2.6 The meaning of an expression over a taxonomy T is given by a mapping &: Exp — 2% where
Exp is the set of expressions over T and R is the root concept of T.

1. E(+d) = {d) if d is an individual;
E+CYy=C if C is a concept;
E-x)=0 if x is an individual or a concept.
EE)=92

2. E(e+d)y=E(e) u {d) if e is an expression and d is an individual;
E(e+C)=E(eY L C if e is an expression and C is a concept;
E{e—d)y=E(e) - [d) if e is an expression and d is an individual;
Ee-C)=E&(e)-C if e is an expression and C is a concept;
E(e €)= E(e) if e is an expression.

We assume the L and — operators within a set expression have the same precedence and the left associative rule is
used in the evaluation of such an expression, With the meaning of an expression defined, we can compare two ex-
pressions.

Definition 2.7 Two expressions &,,e, over a taxonomy T are equivalent iff Ele)=Elea).

Notice that by way of-definition, expressions with same terms do not necessarily carry the same meaning. Obvious-
ly, if a concept C = (d,,d,} and two expressions e, =+C—d, and e, =-d+C, e, and e, contain the same terms,
but they are not equivalent since &(e,) = (d,) whereas §(e;) = C.

To fix ideas, let us illustrate how expressions can be used as responses to querics via a more realistic exam-
ple. Suppose a large organization, say a government agency, has to keep record of a large number of vehicles.
These vehicles include many diverse types such as cars, trucks, and helicopters. Each type is a set of individual
vehicles and may be thought of as defining a concept. Figure 1 shows a taxonomy of the vehicle types. The succes-
sor concept of each node in the taxonomy is subsumed by its parent concept; for example, all cars are road vehicles.
Now assume that we are interested in the speed of the vehicles and the following question is asked

"Which vehicle can go at a speed of 60 mph or more?"

vehicle

land
vahicie

water
vehicle

air
vahicle
(hellcoptar)

(piane

passenger air
fraighter

1ruck

Figure 1 A Taxonomy of Vehicle Types

If each individual vehicle has an identification number and its associated maximum speed recorded, the response
could, then, be an enumeration of vehicle identification number. But it could also be simpler and the following are
example forms of answers in terms of concepts. It is not difficult to see that all three expressions are equivalent.

"passenger aircraft + air freighter + truck + car + train + speed boat";
"air vehicle + road vehicle — bike + train + speed boat™; or
"vehicle ~ bike — water vehicle + speed boat”.

Notice that in the third expression, speed boat is subsumed by water vehicle. Thus, the last two terms in that ex-
pression basically say that all warer vehicles are excluded besides speed boats. The question of which expression is
preferable will be discussed next.

3. Expression Complexity

We have defined altemnative ways for presenting an answer to a user, not as an exhaustive list of individu-
als, but rather as an expression of concepts and individuals. In fact, our definition of expression actually covers the
case in which just individuals are listed. Such is the case when the expression is made up solely of individuals and
all the terms within the expression are positive. It is not difficult to see that given an extensional answer A a
query and a taxonomy T by which A is classifiable, there may exist many expressions ¢; over T such that £(e;) = A,
Thus presenting an answer in the form of an expression over T is not necessarily unique. In this Section we will
present our view of what constitutes a good expression, illustrate certain properties associated with such expres-
sions, and give algorithms for obtaining them.

An extensional answer may not always be the best way of presenting a response, but sometimes it is. This
is true when there are only a few individuals that satisfy the conditions of the query. Hence, the number of items ap-
pearing in a answer is clearly one of the criteria against which to measure how good an answer is, in the sense of
how easy it is for a user to comprehend. In our case, the number of terms involved in an expression is the important
measure. Since a term in our expression may involve an individual or a concept, weighting each term equally, we
are assuming that the user has similar understandings with respect to concepts as well as to individuals.

Definition 3.1 Let A be an extensional answer to a query classifiable by a taxonomy T. An answer set E for
A is given by:

{e | E(e)=A}
A subset M of an answer set E is called a minimal answer set for A if for each e € M, lel < le’| for all
e’ € E, where | x| is the number of terms in expression x. We call each expression in M a minimal expression.

The following proposition for the minimal answer set should be obvious from the definitions.

Proposition 3.1 All expressions in a minimal answer set are equivalent and they all have the same {minimumy}
number of terms.

Here we will look at some interesting properties of minimal expressions. In particular, we define what we mean by
a subexpression and prove two lemmas that will be useful in establishing a later theorem. For convenience, let us
attach individual elements of leaf concepts to their corresponding terminal nodes in the taxonomy and refer to T,.
hereafter, as the modified tree taxonomy. This way we have a uniform treatment for individuals and concepts. Each
individual, informally, is just a concept with a single element.

Definition 3.2 A path P in a taxonomy T is a sequence of nodes <Cp .Cp,, - ,Cp,> in which successive
nodes are connected by edges in T. A rooted path is any path whose first node Cp, is the root node. A rermi-
nal path is any path ending at a leaf node. A full path is a rooted terminal path.

Definition 3.3 Let ¢ be an expression for an answer set A over a taxonomy T and P be a full path in T. A su-
bexpression of e over P is an expression formed by removing from e all those terms whose associated concepts
are not in P

Lemma 3.1 Let e, be a minimal expression and ep =+Cp +Cp, - - - +Cp, be a subexpression of ey
over some full path P. Then foralli > j, Cp, < Cp,.

Proof: Assume the contrary, then there exists some #, such that Cp, € Cp,,, .

Let ey = ey +Cp, €uor +Cp,,, €7 Where ey and ey represent respectively the head and tail portion of
ey and e,,p TEpresents the portion between +Cp, and +Cp, .

Notice that by the definition of subexpression of ey over P all concepts associated with e,,p are not
inP.

Consider the expression ey’ = ey €,,p TCp,, €7.

Since +Cp , will ovemide any effect e,.p has over +Cp, it is not difficult to see that &(ey) 15
equivalent 1o E(ey”). But ey’ has one term less than that of ey.

Therefore, e, is not a minimal expression. Contradiction.

Lemma 3.2 Let e, be a minimal expression. Then any subexpression ep = +Cp +Cp, - - £Cp, of ey
over some full path P must have alternate positive and negative terms.

Proof: Assume the contrary. There are two cases:

(l) ey =€y +CP:‘ €aotP +CPM er
where ey and ey represent respectively the head and tail portion of ey and e, p represents
the portion between +Cp_and +Cp, .

Notice that by the definition of subexpression of ey, over P all concepts associated with ¢,
are not in P, and by Lemma 3.1, Cp,, © Cp,. Thus, individuals in Cp_,, being introduced by
the term +Cp,, are not affected by e,,p. S0 the term +Cp,,, is redundant.

Therefore, e, is not a minimal expression. Contradiction.

@) ew=en—Cr, tww —Cp,, €1
The proof of this case is similar to (i).

Since the answer set with the minimum number of terms condition still leaves us with potentially many
minimal expressions, we are led to consider another measure of merit in order to further distinguish the so-called
good expressions. Suppose an extensional answer A has two individuals d and d,, and a concept C = {d,d;.d3).
Now two minimal expressions exist: +d,+d, and +C—d5. Most people would prefer the former response because it
answers the question directly. Thus the next criterion for a good expression is positive terms are preferred over
negative terms.

Definition 3.4 An optimal answer set C is a subset of a minimal answer set M such that for all ¢ € Q, ¢ has
the maximal number of positive terms. We called each expression in £2 an optimal expression.

Our two simple criteria for good expressions, namely, the minimum number of terms condition and positive terms

over negative terms, give rise 1o an optimal answer sct with an interesting property which is stated in the following
theorem.

Theorem 3.1 Any two optimal expressions in a given optimal answer set £ have exactly the same set
of terms. (ferm uniqueness)

Proof: By induction on the height of the tree taxonomy. The inductive proof also elicits an algorithm for ob-
taining an optimal expression. Here we highlight the inductive steps and leave some details to an Ap-
pendix,
height = 1 (a root concept R with individuals d; attached)

Consider two ways of expressing the extensional answer A classifiable by taxonomy T:

+d;, - +d;
) without root concept R: e7® = { ! r A2OD

£ A=0
£ A=R
-R A=0C
25 s L otR - - =
(ii) with root concept R: e1" =+R e7 where e] = -d; - d,, m < IR;+1

~R+d;, -+ +d;, otherwise

We claim that e7¥ is an "optimal expression” conditioned on R being excluded and 3% is "optimal"
conditioned on R being included. The simple proofs are omitted.

Next, we observe that except for A = R, e1® has more negative terms than err.

Thus only one of e}¥ and e7¥ must be optimal (¢?"). Notice that both e1* and e7* may not be unique
since a reordering of terms may give an equivalent "optimal" expression, but the set of terms forming
each is unique.

height = k

Assume that (1) €3} is an "optimal expression” conditioned on the root concept being excluded and
ei® = +R ¢ is an "optimal expression” conditioned on the root concept being included and the set of
terms forming each is unique; (2) except for A =R, et® has more negative terms than ez’ (3) one of
ex® and e}® is an optimal expression eg”.

height = k+1

Assume that the root R has » successor (S, - + - ,5,) and without loss of generality, each successor 1s
the root of a tree with height k. For each subtree T; rooted at successor S; (1 <i<n), e;f and
etk = §; ey, exist and have the properties as described above (height = k).

Again consider two ways of expressing the extensional answer A:
@ without root concept R: exh; = e - - - e

We claim that ex, is an "optimal expression” conditioned on the root concept being excluded.
Without the root the subtrees T; are mutually independent. Thus the only "optimal” way to express A
is to concatenate optimal expressions from each subtree.

(ii) with root concept R: e}%) =+R ern

£ A=R
where ez, = R A=Q
OPT (e, €k, » —R e -+ - eff") otherwise

The OPT function simply returns the argument expression which is optimal of the two. We note that
expressions (0) ey, -+~ €, and (B) —R eff" - - - ' cannot have the same number of positive and
negative terms. The details are shown in Appendix A.

Next we claim that e}?; is an "optimal expression” conditioned on the root concept being included.

The cases where A=R and A=@ are trivia. We only show the last case. Suppose
+R - -

Ertl = +R €y, " .

Assume that there exist e}%,’=+R ¢;, -+ ez’ * €x,, which is "optimal" conditioned on R being in-
cluded. By Lemma 3.2, for any full path, any concept in e, or ey’ which is closest to R must be
negative,

Thus for subtree T; we can get +5; 3’ which is "optimai” conditioned on §; being included instead of
et¥. Contradiction.

Similarly, we can show the same for eft) =+R —R e3* - - - eff".

Also ¢1?, has more negative terms than 5. This is true since each e}X has more negative terms
than e~

Hence one of e3%; and e}¥, must be an optimal expression and other equivalent optimal expressions
must share the same terms.

As mentioned, the proof of Theorem 3.1 is constructive in nature, an algorithm for obtaining an optimal ex-
pression for an extensional answer A over a taxonomy T falls naturally out of its induction step. Basically, we doa
postorder traversal of T, that is, before a node is visited, all its descendants must have been traversed. Expressions
ex¥ and eIiR are constructed as each node (indexed by k;) is being encountered and the optimal expression is readily
obtainable once the root has been visited.

By Theorem 3.1, the set of terms occurring in different optimal expressions must be identical. Thus, the
ordering among terms is the only way by which two optimal expressions can differ. However, it is not true that any
ordering will do; instead, Lemma 3.1 tells us that the ordering of terms is related to a partial ordering of their associ-
ated concepts.

Theorem 3.2 - Let (T, *-,T,) be the set of terms associated with an optimal answer set {2 and
corresponding to each term T; is a concept C;. Then Try - - T is an optimal expression if and
only if for any Crgy © Crgj), i > j, Where % is a permutation of these k elements.

Proof: only-if part

Assume the contrary, that is, there exists some i and j such that C gy © Cxgy and i < j.

Since the taxonomy is a tree, C ngy © Cryjy implies that C ;) and C gy must lie in some full path P. 1t
follows from Lemma 3.1 that i > j. Contradiction.

if part

An important observation is that for an optimal expression, if the concepts associated with two adja-
cent terms are disjoint, switching them makes another optimal expression. This should be obvious
from the meaning of expressions.

For any arbitrary expression which satisfies the "if condition", we can transform an optimal expres-
sion to that form through a series of switching operations as described above. The proof of this is om-
itted for simplicity.

Since each switching results in another optimal expression, any arbitrary expression which satisfies
the "if condition” is also an optimal expression. Thus the Theorem is established.

To summarize thus far, using our notion of an expression, we studied formally how to re-express an exten-
sional answer into a more abstrast form. Two simple criteria: (i) the minimum number of terms condition, and (ii)
positive terms over negative terms, were introduced as a measure of how good such an abstract response is. Under a
strict taxonomy, we were able to establish an optimal answer set whose members satisfy the two criteria and have
the same set of terms. Moreover, any permutation of those terms which satisfies a partial ordering induced by the
taxonomy belongs to the optimal answer set.

As far as the ordering of terms within an optimal expressions is concerned, there is still another criterion
that could be imposed in order to get an even smaller set of good expressions. Consider two abstract responses

“all engineers and all managers except John Smith" and
"all engineers except John Smith, and all managers”.

Assume that engineers and managers are disjoint sets and that John Smith belongs to engineers. Notice that these
two responses could be present in the same optimal answer set and they do carry the same meaning if the user is
aware of the assumptions. Most people would, however, prefer the second one as a response since it groups togeth-
er similar concepts and/or individuals.

Definition 3.5 A normalized answer set N is a subset of an optimal answer set €2 such that for all e € N, the
ordering of terms in e satisfies a preordering of the taxonomy T.

Notice that a preordering traversal of a tree is one in which a node is traversed first before its subtrees. We still
have one dimension of freedom left. The different orders by which the subtrees are traversed constitutes different
normalized answers. However, we choose not to distinguish between those, since answers like

"all managers and ail engineers” or

"all engineers and all managers"

apparently makes no difference to a user. The ordering of subtrees has basically this kind of flavor. Thus, we as-
sume that any expression in the normalized answer set is equally good.

4. Extensions

A collection of concepts relative to a domain D does not necessarily fall into a strict (tree} taxonomy. In
other words, for two concepts, it may neither be the case that their intersection is empty nor one is the subset of the
other. For example, consider two job categories of the employees of a company: computer scientist and electrical
engineer. It is not surprising that some employees belong to both categories, whereas others belong exclusively to
one category. In fact, if enough members belong to the intersection, it is quite natural to form another concept, say,
computer engineer, so that we can denotate them collectively as an aggregate. A simple extension beyond the strict
(tree) taxonomy leads us 1o consider a join-semilattice of concepts [5).

Definition 4.1 A partially ordered set (poset) P,< is a join-semilattice if and only if for any pair elements
x,y € P, there is a unique element z € Psuchthatx<zand y<z, and forall u e P, if x < u and y < u, then
ZS U

In our case, each element in the poset P is a concept and the partially ordered relation < is taken as the subser C re-
lation, That is, for C,C, € P,Cy s Cyifand only if C; c Cs.

If we substitute the strict (tree) taxonomy with the more general join-semilattice of concepts, and still con-
sider the same two criteria for optimal expressions, it is easy to show that term uniqueness no longer holds. Again
we treat individuals as concepts with single elements for uniformity and simplicity. Consider the join-semilattice of
concepts as shown in Figure 2. The filled nodes represent the extensional answer.

Cq

C3 Ca C G Cg ©Cg Gy

Figure 2 A Join-Semilattice of Concepts

It is not difficult to see that +C ,—C3+C+C, is an optimal expression as well as +C7—Cg+C 4+Cs. In this particu-
lar example, in fact, none of the terms in these two optimal expressions is the same. Thus, Theorem 3.1 is not al-
ways true under a join-semilattice of concepts.

Without worrying about the term uniqueness in optimal expressions, we would like to know whether any
optimal expression can be obtained through an efficient algorithm. By efficient, we mean an algorithm whose ume
complexity function is O (p (n)) for some polynomial function p, where n is used to denote the input length. Unfor-
tunately, we are able to show that the problem at hand belongs to the class of NP —complete problems [6]. No
efficient algorithm has been found for any problem in this class.

Let us restate our problem in terms of a decision problem. The extensional answer A to a query is simply a
subset of singleton concepts. Analogous to Definition 2.2, we define classifiability as follows.

Definition 4.2 An extensional answer A is classifiable by a join-semilattice L iff the greatest upper bound of
L contains UA.

Here is the decision version of our problem.

MINIMAL EXPRESSION

INSTANCE: An extensional answer A 1o a query classifiable by a join-semilattice L and a bound B € Z*
(where Z* denoles the positive integers).

QUESTION: Is there an expression e such that £(e) = UA and the number of terms in ¢ is no more than B?

Clearly, if we could find a minimal expression for A classifiable by L in polynomial time, we could also solve the
associated decision problem described above in polynomial time. All we need to do is find the minimal expression,
determine the number of terms involved, and compare it with the given bound B. Thus, the decision problem can be
no harder than the corresponding optimization problem. If we could demonstrate the MINIMAL EXPRESSION
problem is NP-complete, we would know that its optimization problem is at least as hard.

Theorem 4.1 MINIMAL EXPRESSION is NP-complete.

A join-semilattice is still a somewhat general structure. In the next Section, we are able to show that the same prob-
lem under a restricted join-semilattice still remains NP-complete, and thus, Theorem 4.1 follows.

5. Multiple Taxonomies

Consider again the query
<xiemployee | @ylannual_pay) salary (x,y) Ay > 30,000>.
Suppose all managers and nearly half of all engineers satisfy the query, and the number of engineers is large. Then
our expression would consists of a single concept manager and a long list of individual engineers. Now assume
further that an employee’s salary is related to his education level and it so happens that all and only the engineers
that have master degrees earn more than 30,000. Apparently, the best answer, then, to the above query is
"all managers and all engineers with master degrees".

Notice that there are three concepts in the expression. Of the three concepts involved, the first two, manager and
engineer, may belong to, say, a job category taxonomy, whereas the third one, master, may belong to an education
level taxonomy. In-this Section, we are concerned with finding optimal expressions whose concepts are not restrict-
ed 10 a single taxonomy, but can, possibly, come from different taxonomies.

To express the set of "all engineers with master degrees”, we introduce the notion of a composite concept.

Definition 5.1 Let T; (1<i<k) be a set of taxonomies and C; be a concept of T;. Then the tuple
<Cy, +++,Cy> is a composite concept over k taxonomies. We also referred to each C; as a simple concept.

If C, of T, denotes the set of engineers and C, of T, denotes the set of masters, we use the composite concept
<C;,C3> to denote the set of all engineers with master degrees. As is true for all concepts, a composite concept

represents a set of individuals; but, instead of being defined inherently as in simple concepts, it is given in terms of
other simple concepts.

Definition 5.2 Let <C,,---,C,> be a composite concept over k taxonomies. The extension of
<Cq,+,Cp> is defined as : r)“C,-.
<3

The collection of composite concepts that we are dealing with is not arbitrary. Their relationships with one another
can be derived from the following definition.

Definition 5.3 The direct product P, - - - P, of k posets P;, 1 <i <k, is the set of all wples <x,, -+ - x> with
x; € P;, partially ordered by the rule that <x;, ' ,x> <<y, -,%> if and only if x; <p y; for all
i(1<i<k).

If the partial order relations are taken as the subsumption relations, it is not difficult to see that our definition of com-
posite concepis satisfies the ordering introduced by Definition 5.3 and our collection of composite concepts over k
taxonomies corresponds to the direct product of the k taxonomies.

With the meaning of composite concepts defined, we can form expressions in terms of these composite
concepts, and consider the optimality of such expressions. Notice that expressions are still defined the same way as
in Definition 2.3 with the simple concepts being replaced by composite concepts. To distinguish such expressions,
we sometimes referred to them as expressions over k taxonomies. Again, we would like to know whether any op-
timal expression can be obtained through an efficient algorithm. To this end, we first ook at a decision version of a
simpler problem,

MULTIPLE-TAXONOMY EXPRESSION

INSTANCE: An arbitrary number of taxonomies, T; (1 <i < n), an extensional answer A classifiable by each
taxonomy T;, and a positive integer K.

QUESTION: Is there an expression e over a taxonomies, such that E(e) = A and the number of terms in e is no
more than K?

If we could demonstrate the MULTIPLE-TAXONOMY EXPRESSION problem is NP-complete, we would know
that its corresponding optimization problem, namely, finding a minimal expression under multiple taxonomies, 1s at
least as hard.

Theorem 5.2 MULTIPLE-TAXONOMY EXPRESSION is NP-complete.
Proof: See Appendix B.

Next we study the relationship between the MINIMAL EXPRESSION problem and the MULTIPLE-
TAXONOMY EXPRESSION problem, Taxonomies are not arbitrary posets, they are posets with ree structures.
But the direct product of two non-trivial taxonomigs, that is, those with more than one node, is no longer a taxono-
my. A simple example illustrates this in Figure 3. Nevertheless, the direct product of any number of taxonomies i
still a join-semilattice.

Theorem 5.3 The direct product LM of any two join-semilattices is a join-semilattice.

Figure 3 A Direct Product of two Taxonomies

Proof: For any two elements <x,,y;>, <x3,¥2> in LM, there exists <x,y> € LM such that x is the least
upper bound of x, and x,, and y is the least upper bound of y, and y,. Thus, by definition of direct
product, <x;,y,> S <x,y > and <x;,y2> £ <x,y>.

Moreover, every other upper bound (u,v) of the two <x;,y,> and <x,,y,> satisfies x; S u, x2 5 u
and hence, by definition of least upper bound, x < u; likewise, y Sy v, and 50 <x,y > < <u,v>. This
completes the proof that any two elements in LM have a unrique least upper bound and therefore, LM
is join-semilattice.

Corollary 5.1 The direct product of any number taxonomies is a join-semilattice.

Proof: Sinc;c a taxonomy is a join-semilattice, this follows trivially from Theorem 5.3.

Thus any arbitrary instance of the MULTIPLE-TAXONOMY EXPRESSION problem can be restated in form of
some instance of the MINIMAL EXPRESSION problem. Since the MULTIPLE-TAXONOMY EXPRESSION
problem is NP-complete, so is the MINIMAL EXPRESSION problem and Theorem 4.1 follows.

In this Section, we show that the general problem of oblaining optimal expressions over k taxonomies is in-
tractable. This does not, however, mean that responses like

*all managers and all engineers with master degrees”

are not obtainable. Recall that our main reason for introducing multiple taxonomies is that concepts in a single tax-
onomy do not necessarily characterize the set of individuals in the extensional answer well enough; that is, long list
of individuals may still remain in the optimal expression. Such situation occurs when, say, nearly half of the indivi-
duals in a certain concept satisfies the query and the total number of individuals in the concept is large. A plausible
solution is to further classify these individuals by another taxonomy, obtain an optimal expression for them over that
taxonomy and integrate it with the original expression to form a combined expression. Or we may also look at it
from the point of view of a grafted taxonomy.

Definition 5.1.1 Let 7 be a taxonomy and L be a leaf concept of T such that L is classifiable by another tax-
onomy T,. Then T formed by grafting T at L is called a grafted taxonomy. In T, the labels of all the con-
cepts which originally belonged to T, remain unchanged, and all those which originally belonged to T, except
the root have the form <L,C>, where C is a concept of T,

Notice that <L,C> is actually a composite concept. Since a grafted taxonomy is still a taxonomy, all our results in
Section 3 remain valid. In particular, we can obtain an optimal expression for an extensional answer A over a graft-
ed taxonomy T.

6. Conclusions

We have considered the problem of providing abstract responses to database queries. They are given in
terms of expressions of pre-defined concepts with exceptions allowed. Two criteria are defined as measures of the
goodness of such expressions: (i) the minimum number of terms condition; and (ii} positive terms preferred over
negative terms. We call an expression for a response satisfying the two criteria an optimal expression. Under a
strict taxonomy of concepts, we are able to show that any optimal expression have exactly the same set of terms.
Moreover, an algorithm for obtaining such expressions falls naturally out of its inductive proof. Generalizing the
strict taxonomy of concepts to a join-semilattice of concepts, optimal expressions no longer share the same set of
terms, and no efficient algorithm for obtaining such expressions can be found. Under multiple taxonomies, again,
the general problem of obtaining an optimal expression is intractable, though, grafted taxonomy, involving multipie
taxonomies in a more restrictive sense, can be considered.

Our definition of optimal expression is, by no means, the only way by which the goodness of an abstract
response could be measured. Other reasonabile criteria include putting a bound on the maximum number of negative
terms in the expression, and assigning weights to concepts at different levels in a taxonomy.

Throughout the paper, we assume the extensional answer set is given a priori. An interesting question is
how much the finding of optimal expressions can be integrated with conventional query processing and, as a result,
abstract responses obtained more efficiendy.

APPENDIX A

Here we demonstrate that expressions (ct) e, * - - €;, and By -R eif‘ -+ + g% cannot have the same number of posi-
tive and negative terms.

To show this, we compare each pair of terms ej, and e in ¢t and B respectively. Recall that Il denotes the number
of terms in an expression. Consider the following cases:

L. if lez® | > let® | then
el =et? = §; e}, and f* has an extra positive term over €k,
2. if lex® 1 = 1€}¥ | then
e? = i and e has one more term but less negative terms than ef,.
3. if leg®1+1=1ei* 1 then
ef?* = ex® and e has less negative terms than ey,
4. otherwise ez | +2= lef’ | and thus

el = ;" and €3, =—S; 3" and e}, has an extra negative term.
Assume that o and B can have the same number of positive and negative terms and there are w case 1, x case 2,y
case 3, and z case 4. If a and B have the same number of terms,
w+x+l=z M.
The + 1 comes from —R in B. If the expressions have the same number of negative terms,
x+y+z51 (In

Again the 1 on the right hand side of the inequality comes from —R in B. Furthermore, by our definition of taxono-
my, n = 2, that is,

w+x+y+z22 {1

Since w, x, y and z are all natural numbers, it should be obvious that no solution can satisfy (I}, (fI) and (IIT) simul-
taneously. Contradiction. Thus, expressions o and p cannot have the same number of positive and negative terms.

APPENDIX B
Theorem 5.2 MULTIPLE-TAXONOMY EXPRESSION is NP-complete.

Proof: It is easy to see that MULTIPLE-TAXONOMY EXPRESSION e NP since a non-deterministic algorithm
need only guess an expression e and check in polynomial time whether £{e) = A and has the appropriatc
number of terms.

The remaining part of the proof involves the transformation of some already known NP-complete problem
to our problem and showing that the transformation can be done in polynomial time. Below we define the
MINIMUM COVER problem which is known to be NP-complete (7). And then continue with a construc-
tion that transform MINTMUM COVER to MULTIPLE-TAXONOMY EXPRESSION.

MINIMUM COVER
INSTANCE: Collection C of subsets of a finite set S, positive integer K < |C.

QUESTION: Does C contain a cover for S of size K or less, i.e., a subset C* ¢ C with 1C’l £K such that
every element of § belongs to at least one member of C*?

Our transformation basically follows that of the proof that the MINIMAL DISJUNCTIVE NORMAL
FORM problem is NP-complete [8]. Let § = {s;, - - - ,s,) be a finite set, C = {cy, - - - ,ca) be a collection
of subsets of S, and a positive integer K <m be an instance of MINIMUM COVER. We must construct
taxonomies T; (1 i < n"), an extensional answer A classifiable by each taxonomy T;, and a positive in-
teger K’ such that an expression for A has no more than K’ terms if and only if C has a cover of size K or
less.

First, we construct n 3-concept taxonomies T; (1 € i € n), with r;’s as the roots, and x; and x; as the only
successors for each root. Taxonemies T,,; and T,,, are also 3-concept taxonomies, with p,p; as their
roots, and y,,y;” and y,,y,’", respectively, as their successors. They are named differently because, as we
will see later, they serve different purposes. We will be dealing with composite concepts over n’ (=n+2)
taxonomies. For convenience, we will refer to them as composite concepts and those which compose of
no root concepts as base concepts.,

For each element 5; € S, we associate it with a base concept
W = <Xy, X Y Y2
For each ¢; € C, we associate it with a composite concept
X Sy € ¢
Q;=<z;, 25, ¥1,y2> where z;, =
Fy 53 € Cj

It should be clear from Definition 5.3 that if 5; € c;, o < €2;; but there are base concepts © < €Q; such that
w=w; for all i (1<i<n). Let D be a subset of all base concepts such that @ € D iff 0 <€Q; for some
jA<jsm)and w+w; foralli (1 <i<n). Define

Doen = (<21, ' 20y 1u¥2™> | @= <2y, ++,2,,Y1,¥2> € D and number of non-primed x’s is even)

Qven = [<21, C Lz Yapa> | <zq, 00 :zn-y11)"2'> € Dcvcn}

Doga = (<21, " * sz Y1 ¥2> | @ =<2y, **,2,,¥1.¥2> € D and number of non-primed x’s is odd }

Qody = (<21, """ zaup1,y2> | <21, 70" Zni¥15¥2> € Dous)

Notice that every base concept in D,,., (D,4) is contained exactly by one composite concept in Q. ven
(Q,4). Moreover, every base concept in D is also contained by exactly one composite concept in either
Q,en O Q,44. The even-odd arrangement and the involvement of two more taxonomies, T,,; and T, .5,

are to ensure that each newly introduced composite concept has to be included in a minimal expression if
uD c A .

Let us compiete the construction by specifying the extensional answer A and K’
A=U{D D pen W Dpgg U (0 1 lsiSn]}
K =K + DI

Since our construction basically follows that from [3], we omit showing that the transformation can be
done in polynomial time.

We claim that there is an expression for A with no more than K" terms if and only if C has a cover of size K
or less. Before we show this, let us note an important observation: any expression ¢ for A has an
equivalent expression e’ such that le’l < lel and te’l has no negative terms. The proof of this is some-
what lengthy, we refer the readers to [9] for details. With this observation, negative terms ¢an be ignored
from here on.

Suppose C has a cover of size K or less. We can form an expression e, such that for all composite con-
cepts Q€ Quuen 'V Dpggy + is a term in e;. Notice that &(e)= (D UD,., v Doy} and
leg | = | Qpen! + 10421 = D). Now all that remains of A is U{w; | 1<i<n}. Recall that w; <Q; if
s; € ¢;. Since C has a cover of size K or less, we can form an expression e, with no more than X’ terms.
Thus, there exist an expression e = e e, for A such that le| is no more than K’ =K + 1D terms.

Suppose an expression ¢ for A has no more than K’ terms. By the way of construction, e, must be part of e
and le|| = IDI. Finally, for each +€; in e, we pick the corresponding ¢, for the cover C’. Thus there is
cover C’ with size K =K’ - ID| or less.

Acknowledgements

The authors would like to thank D. Stott Parker for many helpful suggestions. This research was carried out as part.
of the Tangram project at UCLA and was partially supported by the Defense Advanced Projects Agency under con-
tract No. F29601-87-K-0072.

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(91

References

Imielinski, T., "Intelligent Query Answering in Rule Based Systems”, J. Logic Programming, Vol4, No.3.
September 1987,

Porto, A., "Semantic Unification for Knowledge Base Deduction", Foundations of Deductive Databases
and Logic Programming, Minker, J.(ed.), August 1986.

Corella, F., "Semantic Retrieval and Levels of Abstraction”, Expert Database Systems, Kerschberg, L.
(ed.), Benjamin Cummings, New York, 1985.

Lassez J.-L., Marriott K., "Explicit Representation of Terms Defined by Counter Examples”, J. Automated
Reasoning 3, 1987.

Ait-Kaci, H.; "Type Subsumption as a Model of Computation”, Expert Database Systems, Kerschberg. L
(ed.), Benjamin Cummings, New York, 1985.

Garey, M., Johnson, D., Computers and Intractability - A Guide to the Theory of NP-Completeness, Free:
man, New York, 1979.

Karp, RM., "Reducibility among combinatorial problems”, Complexity of Computer Computations.
Thatcher J.W. (ed.), Plenum Press, New York, 1972.

Gimpel, I.F., "A Method of Producing a Boolean Function having an Arbitrarily Prescribed Prime Imph-
cant Table", IEEE Trans. Computers, Vol.14, No.3, 1965.

Shum, C.D., Muntz, R., "Abstract Responses”, Technical Report, Computer Science Department, Universi-
ty of California, Los Angeles, October, 1987.

