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ABSTRACT

This paper explores the role of influence diagrams as a representation of conditional independence relation-
ships. We show that influence diagrams offer potynomially sound and complete inference mechanisms for inferring
conditional independence relationships from a given causal set of such relationships. As a consequence, d-
separation, a graphical criterion for identifying independencies in an influence diagram, is shown to uncover more
valid independencies thea any other criterion. In addition, we employ the Armsirong property of conditional in-
dependence to show that the dependence relationships displayed by an influence diagram are inherently consistent,
i.e. every influence diagram represents all conditional independencies embodied in some distribution and non other.

INTRODUCTION AND SUMMARY

Networks cmpioying directed graphs have a long and rich tradition, starting with the geneticist Wright
(1921). He developed a method called park analysis (Wright, 1934] which later on, became an established
representation of causal models in economics (Wold, 1964), sociology [Kenny, 19791, [Blalock, 1971] and psychol-
ogy [Duncan, 1975]. Influence diagrams represent another component in this tradition (Howard and Matheson,
1981}, [Shachter, 1988) and [Smith, 1987]. These were developed for decision analysis and contain both event
nodes and action nodes (our definition excludes action nodes). Recursive models is the name given to such net-
works by statisticians seeking meaningful and effective decompositions of contingency tables [Lauritzen, 1982],
(Wermuth & Laurizzen, 1983], (Kiiveri ct al, 1984]. Bayesian Belief Networks (or Causal Networks) is the name
adopted by Pearl for describing networks that perform cvidential reasoning ([Pearl, 1986a]). This paper establishes
a clear semantics for these networks that might explain their wide usage for representing probabilistic knowledge
and as metaphors for decision and evidential reasoning,

Influence diagrams are viewed as an economical scheme for representing conditional independence rela-
tionships. The nodes of an influence diagram represent variables in some domain and its topology is specified by a
list of conditional independence judgements elicited from an expert in this domain. The list designates parents to
cach variable v by asserting that v is conditionally independent of all its predecessors, given its pareats {in some to-
tal order of the variables). This input list implies many additional conditional independencies that can be read off
the diagram. For example, the diagram asserts that, given its parents, v is aiso conditionally independent of all its

*This work was partially supported by the National Science Foundation Grant #IRI-861015S. "Graphoids:- A
Computer Representation for Dependencies and Relevance in Automated Reasoning (Computer Information
Science)”,



non-descendants [(Howard and Matheson, 1981]. Additionally, if § is a set of nodes containing v's parents, v's
children and the parents of those children, then v is independent of all other variabies in the system, given those in
S [Pearl, 1986b]. These assertions are examples of many valid consequences of the input list i.e., assertions that
hold for every probability distribution that satisfies the conditional independencies specified by the input. If one
ventures to perform topological transformations (¢.8.. arc reversal or node removal [Shachter, 1988]) on the di-
agram, caution must be exercised to ensure that each transformation does not introduce extraneous, invalid indepen-
dencies, and/or that the number of valid independencies which become obscured by the transformation is kept at a
mimimurm. Thus, in order o decide which transformations are admissible, one should have a simple graphical cri-
terion for deciding which conditional independence statement is valid and which is nov

1.

This paper deals with the following questions:

What are the valid consequences of the input list ?

2. Whata:ethevalidconsequmcesofd\cinputlistmatcanbemdoﬂ'thediagun?
3. Are the two sets identical?
The answers obtained are as follows
L A statement is a valid consequence of the input set if and only if it can be derived from it using Dawid's
[1979) axioms. Denoting by /(X , Z, Y) the statement: " the variables in X are conditionally independent
of those in Y, given those in Z*", we may express these axioms as follows:
Symmetry (1a)
IX,ZN=21(Y,2.X) .
Decomposition (l.b)
IX,.ZYuW)=IX,Z,Y) & I(X,.Z,W)
Weak Union (l.c)
IX,Z,YOW)=IX,ZuWw.Y)
Contraction (14
IX.ZUuY WY&EIX,Z.Y)=2IX,Z.YUuW)
2, Every sisement that can be read off the diagram using the d-separation criterion is a valid consequence of
the input list [Peart & Verma, 1987].
The d-separation condition is defined as follows [Pearl, 1986b]: For any three disjoint subsets X, Y, Z of
nodes in the diagram, Z is said w0 d-separate X from Y, denoted / (X, Z, ¥)p, if there is no path from a
node in X to anode in ¥ along which: 1. every node that delivers an arrow is outside Z, and 2. every node
with converging arrows either is in Z or has a descendant in Z (the definition is elaborated in the next sec-
tion).
3. The two sets are identical, namely, a statement is valid [F AND ONLY [F it is graphically-validated under

d-separation in the diagram.



The first result establishes the decidability of verifying whether an arbitrary statement is a valid consequence of the
input set. The second result renders the d-separation criterion a polynomially sound infezence rule, i.e., it runs in po-
lynomial time and certifies only valid statements. The third renders the d-separation criterion a polyromually com-
plete inference rule, i.e., the diagram constitutes a sound and completz inference mechanism that identifies, in poly-
nomial time, each and every valid consequence in the system.

The results above are true only for causal input sets i.c., those that recursively specify the relation of each
variable to its predecessors in some (chronological) order. The general problem of verifying whether a given condi-
tional independence statement logically follows from an arbitrary set of such statements, may be undecidable. Is
decidability hinges on whether Dawid's axioms are complete i.e., whether these axioms are powerful enough
derive all valid consequences of an arbitrary input list. The completeness problem is treated in (Geiger & Pearl,
1988] and completeness results for specialized subsets of probabilistic dependencies have been obuained. All ax-
ioms encountered so far are derivable from Dawid's axioms, which suggests that they are indeed complete. Result-
1 can be viewed as yet another completeness result for the special case in which the input statements form a causal
set. This means that applying axioms (1.a) through (1.d) on a causal input list is guaranweed to generate all valid
consequences and non other. Interestingly, resuit-2 above holds for any statements that obey Dawid’s axioms, not
necessarily probabilistic conditional independencies. Thus, influence diagrams can serve as polynomially sound
inference mechanisms (possibly not complete) for a variety of dependence relationships, e.g., partial correlations
and qualitative database dependencies.

[n the preceding sections we refer to influence diagrams conjuncted with d-separation as DAGs (Directed
Acyclic Graphs).

SOUNDNESS AND COMPLETENESS

The definition of d-separation is best motivated by regarding DAGs as a representation of causal relation-
ships. Designating a node for every variable and assigning a link between every cause (o each of its direct conse-
quences provides a graphical representation of a causal hierarchy. For example, the propositions "It is raining” (),
“the pavement is wet” (B) and "John slipped on the pavement” (y) are well represented by a three node chain, from
a through B to v it indicates that either rain or wet pavement could cause slipping, yet wet pavement is designated
as the direct cause; rain could cause someone to slip if it wets the pavement, but not if the pavement is covered.
Moreover, knowing the condition of the pavement renders “stipping” and "raining" independent, and this is
represented graphically by a d-separation condition, /(t, 7)B)p , showing node a and Pseparated from each other
bynode}cﬁAssummat"brokmpipe' (8) is considered another direct cause for wet pavement, as in figure 1. An
induced dependency exists between the two events that may cause the pavement o get wet: "rain” and "broken
pipe”. Although they appear connected in Figure 1, these propositions are marginally independent and become
dependent once we leam that the pavement is wet or that someone broke his leg. An increase in our belief in either
cause would decrease our belief in the other as it would "expiain away" the observation. The following definition of
d -separation permits us (o graphically identify such induced dependencies from the DAG (4 connoted "direction-
al"y.

Definition: If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said to d-separate X from Y,
denoted / (X, Z, Y)p , iff there is no bi-directed path from a node in X t0a node in ¥ along which every node which
delivers an arrow is outside Z and every node with converging arrows either is or has a descendant in Z. A path
satisfying the conditions above is said to be active, otherwise it is said to be blocked (by Z). Whenever a statemen:
I(X,Z,Y)p holds in a DAG D, the predicate /(X ,Z,Y) is said to be graphically-verified {or an independency),
otherwise it is graphically-falsified by D (or a dependency).



In figure 2, for example, X = {2} and ¥ =3} are d-separated by Z = {1}; thepath 2 ¢~ 1 = 3 isblocked by 1 ¢ Z
while the path2 54 « 3 is blocked because 4 and all its descendents are outside Z. Thus 7(2, 1, 3) is graphically-
verified by D. However, X and Y are not 4- scparated by Z° = (1, 5} because the path 2 — 4 - 3 is rendered ac-
tive: learning the value of the consequence S, renders its causes 2 and 3 dependent, like opening a pathway along the
converging arrows at 4. Consequently, 7 (2, {1,5},3) does not hold and is therefore graphically-falsified by D .

(Y

() (8) © (3)
.
gml O

Definition: IfX.Y.andZmmreed.isjoimmbselsofvuiablesofadisuibution?.thenX and ¥ are said to be
conditionaily independent given Z, denoted (X, Z, ¥)p if P(X | Z,Y)=P(X | Z) for all possible values of X, ¥
and Z.I(X,Z,Y), is called a (conditional independence) siatement. A conditional independence statement & log:-
cally follows from a set I of such statements if & holds in every distribution that obeys L, in which case we also say
that ¢ is a valid consequence of X,

Ideally, o employ a DAG D as a graphical representation for dependencies of some distribution P we
would like to require that for every three disjoint sets of variables in P (and nodes in D) the fotlowing equivalence
would hoid

IX.2,Y), ff IX,Z2.Y) 2

This would provide a clear graphical representation of all variables that are conditionally independent. When equa-
tion (2) holds, D is said 10 be a perfect map of P . Unforunasely, this requirement is often to strong because there
are many distributions that have no perfect map in DAGs. The spectrum of probabilistic dependencies is in fact so
rich that it cannot be cast into any representation scheme that uses polynomial amount of storage ([Verma, 1987]).
Geiger {1987] provides a graphical representation based on a collection of graphs (Muiti-DAG3) that is powerful
enough (o perfectly represent an arbitrary diswribution, however, as shown by Verma, it requires, on the average, an
exponential number of DAGs. Being unable to provide perfect maps at a reasonable cost we compromise on graphs
that represent each and every dependency of P, acknowledging the fact that some independencies would escape
representation.

Definition: A DAG D is said 10 be an /-map of P if for every three disjoint subsets X, ¥ and Z of variables the fol-
lowing holds:

l(xoziy)ﬂ = I(X.Z.Y)p

The natwral requirement for these I-maps is that the number of undisplayed independencies be minimized.



The task of finding a DAG which is a minimal I-map of a given distribution P was solved in (Pearl & Ver-
ma, 1987). Their algorithm consists of the following steps: assign a total ordering d to the variables of P . For each
variable i of P, identify 2 minimal set of predecessors S; that renders independent of all its other predecessars (in
the ordering of the first step). Assign a direct link from every variable in S; to i. The resulting DAG is an [-map of
P, and is minimal in the sense that no edge can be deleted without destroying its I-mapness. The input list L for this
construction consists of n conditional independence swatements, one for each variable, all of the form
13, 8;, Ugy=S;) where Uy, is the set of predecessors of i and S; is a subset of Uiy that renders i conditionally in-
dependent of all its other predecessors. This set of conditional independence statements is called a causal input list
and is said o define the DAG D. The term "causal” input list is derived from the following analogy: Suppose we
order the variables chronologically, such that a cause always precedes its effect. Then a causal input list selects from
all potential causes of an affect i a minimal subset that is sufficient o explain i, thus rendering all other preceding
events superfluous. This selected subset of variables are considered the direct causes of i and therefore each is con-
nected to it by a direct Link.

Clearly, the constructed DAG represents more independencies than those listed in the input, namely, all
those that are graphically verified by the d-scparation criterion. (Pearl & Verma, 1987] analysis guarantees that all
graphically-verified statements are indeed valid in P i.e., the DAG is an I-map of P. However, this paper shows
that the constructed DAG has an additional property; it graphically-verifies every conditional independence state-
ment that logically follows from L (i.e. holds in every distribution that obeys L). Hence, we cannot hope 10 im-
prove the d—-separation criterion to display more independencies, because all valid consequences of L (which
defines D) are aiready captured by d-separation.

The three thecrems below formalize the above discussion.

Theorem 1 (soundness) [Pearl & Verms, 1987]: Let D be a DAG defined by a causal input list L. Then, every
graphically-verified statement is a valid consequence of L.

Theorem 2 (Pearl & Verma, 1987]: Let D be a DAG defined by a causal input list L. Then, the set of
graphically-verified statements is exactly the closure of L upder axioms (1.a) through (1.d).

Theorem J (completeness): Let D be a DAG defined by a causal input list L. Then, every valid consequence of L

is graphically-verified by D (equivalently, every graphically-falsified statement in D is not a valid consequence of
L).

'I'heﬁrsttwodleaemsmmmaeneﬂdmmethitdinuwmthuﬂwyholdforevuydependamre-
lationship that obeys axioms (1.a) through (1.d), not necessarily those based on probabilistic conditional indepen.
dence (proofs can be found in [Verma, 1986]). Among these dependence relationships are partial correlations
((Pearl & Paz, 1986]) and qualitative dependencies ([Fagin, 1977], [Shafer at al, 1987]) which can readily be shown
to obey axioms (1). Thus, for example, the transformation of arc-reversal and node removal ([Howard & Matheson,
19811) can be shown valid by purely graphical consideration, simply showing that every statement verified in the
transformed is also graphically-verified in the original graph. Theorem 1 guarantees that a DAG displays only valid
statements. Theorem 2 guarantees that a DAG displays all staiements that are derivable from L via axioms (1). The
third theorem, which is the main contribution of this paper, assures that a DAG displays all statements that logically
follow from L i.c., the axioms in (1) are complete, capable of deriving all valid consequences of a causal input list.
Moreover, since a statement in a diagram can be verified in polynomial time, theorem 3 provides a compiete poly-
nomial inference mechanism for deriving all independency statemnents that are implied by a causal input set.



Theorem 3 is proven in the appendix by actually constructing a distribution P & that satisfies all conditional
independencies in L and violates any statement o graphically-falsified by D. This distribution precludes g from be-
ing a valid consequence of L and therefore, since the construction can be repeated for every graphically-faisified
statement, none of these statements is a valid consequence of L .

We conclude by showing how these theorems can be employed as an inference mechanism. Assume an
expert has identified the following conditional independencies between variables denoted 1 through 5:

L=(12,1,@),1(3,1,2), 14,23, 1), 1(5.4,123))

{the first statement in L is trivial). We raise two questions. First, what is the set of all valid consequences of L 7
Second, in particular, is 7(3, 124, 5) a valid consequence of L ? For general input lists the answer for such ques-
tions may be undecidable but, since L is a causal list, it defines a DAG that graphically verifies each and every valid
consequences of L. The DAG D is the one shown in figure 2. Therefore, the DAG constitutes a dense representa-
tion of all valid consequences of L. To answer the second question, we simply observe that /(3,124,5) is
graphically-verified in D. A graph-based algorithm for another subclass of statements, called fixed contex: siate-
ments, is given in [Geiger & Pearl, 1988]. In that paper, results analogous to theorem | through 3 are proven for
Markov-fields; a representation scheme based on undirected graphs ([Isham, 1981], [Laurizen, 1982]).

EXTENSIONS AND ELABORATIONS

Theorem 3 can be restated to assert that for every DAG D and any dependency G there exist a probability
distribution P, that satisfies D’s causal input set L and the dependency . By theorem 2, P, must satisfy all
graphically-verified statements as well because they are all derivable from L by Dawid’s axioms. Thus, theorems 2
and3guannwcdweximeofadisuibudon?,ﬂmsaﬁsﬁunﬂmphicaﬂy verified statements and a single
arbitrary-chosen dependency. The question answered in this section is the existence of a distribution P that satisfieg
all independencies of D and all its dependencies not merely a single dependency. We show that such a distribution
exists, which legitimizes the use of DAGs as a representation scheme for probabilistic dependencies; a model build-
er who uses the language of DAGs to express dependencies is guarded from inconsistencies.

The construction of P isbosedonmeAnnsumg:ropmyofcmdiﬁomlindepmdmce.

Definition: Conditional independence is an Armstrong relation in a class of distributions P if there exists an opera-
tion @ that maps finite sequences of distributions of P into a distribution of P, such that if & is 2 conditional in-
dependence statement and if P; i=1..a are distributions in P, then o holds for ®(P; 1 i=1.n} iff o holds for each
P,‘.

The notion of Armstrong relation is borrowed from database theory ([Fagin 1980]). We concentrate on two
families of diswributions P: All distributions, denoted PD and strictly positive distributions, denoted PD*. Condi-
tional independence can be shown to be an Armstrong relation in both families. The construction of the operation ®
is given below, however the proof is omitted and can be found in ([Geiger & Pearl, 1988]).

Theorem 4 ([Geiger & Peard, 1988]): Conditional independence is an Armstrong relation in PD and in PD*.

We shall construct the operation ® for conditional independence using a binary operation ®” such that if
P =P,® P, then for every conditional independency statement o we get



-1

®'P, obeys ¢ if P,obeys cand P,obeys G. (5)
The operation ® is recursively defined in terms of @ as follows:
@{P; li=l.n }=((P,@P,)®P,)® P, ).
Clearly, if ®’ satisfies equation (5), then @ satisfies the the requirement of an Armstrong relation, i.e.
P obeys ¢ iff Y P obeys o
Therefore, it suffices (0 show that ®” satisfies (%),

Let £, and P, be two distributions sharing the variables Xy, .xe. Let Ay, -+, A, be the domains of
Xy, ", X, in P, and letan instantiation of these variables be a,, - - - , a, . Similarly, let B, - - - , B, be the domains
of xy, - ,x, inPyand B, -, B, an instantiation of these variables. Let the domain of P =P @ P; be the pro-
duct domain A B,,---,A,B, and denote an instantiation of the variables of P by aiBi. -, @aB.. Define

P @’ P, by the following equation:

P(ﬂlﬁhaa.ﬁz-'”-ﬂnﬂu)=?1(al-0-2-""0-)‘?2(31»32-"'-3.)-

The proof that P satisfies the condition of theorem 4 uses only the definition of conditional independence and can be
found in [Geiger & Pearl 1988). The adequacy of this construction for PD* is due o the fact that ® produces a
strictly positive distribution whenever the input distributions are strictly positive.

Theorem S: For every DAG D there cxists a distribution P such that for every three disjoint sets of variables X, ¥
and Z the following hoids;

IXZY)y o IXZY)

Proof: Let P =® (P, | o is adependercy ina DAG D } whuef',isadisu'ibuﬁonobeyingn_l]independenciesof
D and a dependency o. By theorem 3, a distribution P , always exists. P satisfies the requirement of theorem S be-
causeitobeysonlysmznwmsthatholdinevayP,mdtlmememdyﬂnmveﬁﬁedbyD.D

The construction presented in the proof of theorem 5 leads 0 a rather complex distribution, where the
domain of each variable is unrestricted, It still does not guarantee that a set of dependencies and independencies
representedbyDAGsismlizableinamaelinmedclassofdisuibudonsmhunmnﬂonhosedeﬂnedonbixwy
variables. We conjecure that these two classes of distributions are sufficiently rich w0 permit the consistency of
DAG representation.
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APPENDIX

Theorem 3 (completeness): Let D be a DAG defined by a causal input list L. Then, every valid conse-
quence of L is graphically-verified by D .

Proof: Leto=1/(X,Z,Y) be an arbitrary graphically-falsified statement in D. We construct a distribution P 4 that
satisfies all conditional independencies in the input list L and violates o. This distribution prectudes ¢ from being 2
valid consequence of L and therefare, every valid consequence of L must be graphically-verified in D ,
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From the definition of d -separation, there must exist an active path between an element ¢ in X and an ele-
ment f in ¥ that is not d-separated by Z (i.e. a bi-directed path. Ensuring that 2, violates the conditional indepen-
dency I (a, Z, B). denoted o, guarantees that also ¢ is violated because any distribution that renders X and ¥ condi-
tionally independent muss render each of their individual variables independent as weil (axiom (1.b)).

P4 is defined in terms of a simplified DAG D,. This DAG is constructed by removing as many links as
possible from D such that o remains unverified in D ,. This process clearly preserves all previously verified state-
ments but caution is exercised not to remove links that would render & graphically-verified in D 5 We will conclude

the proof by constructing a distribution P, which satisfies all graphically-verified statements of D, (hence also
those of D ) and violates o,

Let ¢ be an active path (by Z) between c and B with a minimum number of head-to-head nodes (i.e. nodes
with converging arrows) denoted, left to right, A, A, ,....h,. Let z; be the closest (wrt path length) descendent of 4;
in Z and let p; be the directed path from 4; to z; (if A € Z thenz; = k). We define D 4 to be a subgraph of D con-
taining only the links that form the paths p;'s and the path ¢. We make two claims about the topology of the resyit-
ing DAG. First, the paths p; are all distinct. Second, for any i, ; is the onty node shared by p; and q. The resulting
DAG is depicted in figure 3 (note that some nodes, including nodes of Z, might become isolawed in D 4).

()

ONONOR®)

Figure 3

Proof of claim l:Asmm,byconmdiction.tlmdmmtwopamsp;mpj (i <j) with a common node
Y. Under this assumption, we find an active path beaween a and f} that has less head-to-head nodes then ¢, contrad-
icting the minimality of the latter. If y is neither 4; nor 4; then the path (a, &;, 7, 4;. B) is an active path (by Z); Each
of its head-to-head nodes is or has a descendent in Z becanse it is either ¥ or a head-to-head node of ¢. Every other
node lies either on the active path g and therefore is outside Z or lies on p; (p;) in which case, since it has a descen-
dent v, it must also be outside Z. The resulting path contradicts the minimality of ¢ since both A; and h; are no
longer head-to-head nodes while ¥ is the only newly introduced head-to-head node. If y= A; then, using similar ar-
guments, the path (a, &;, ¥, B) (see figure 4), which has less head-to-head nodes then ¢, can readily be shown active
( the case v= k; is similar).

Figure 4
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Proof of claim 2: Assume p; and ¢ have in common a node y other then h; and assume w.Lo.g that it lies
between A; and B. This node is not a head-to-head node on ¢ because p, isdisﬁnct&omauothap,-'s.l'henodcv
cannot beiong 10 Z because otherwise ¢ would not have been active, Thus, the path (a, h; v.p) must be an active
path which contradicts the minimality of ¢ (figure §).

Figure 5

In the following discussion we call a path containing no head-10-head node a regular path. Let Pybea
normal distribution with the following covariance matrix I"

0 There exists no regular path from node i 10 node J
F={py) py= p' There exists a regular path of length | between node i and node J &)

Since D, is singly connectaed there cxist at most one path between any two nodes. Any value of p satisfying
0<n - p?< 1 would render I" positive definite and therefore a valid covariance matrix, We claim that this distribu-
Lionsat.isﬁaallindependmciesofD,nndviolnul(u..Z.B).Toevalml(u,Z.B)weﬁmt‘omuwpojectionof
P 5 on the variables &, B and Z. Since P,isnomal.mispmjecdmisahomnmlandincommmixisamb
rnatrixr'ofrdmcmpondstothevariableaa.BandZ.'I'hemmenll(a.Z.B)holdsinP,iﬂ'dct(I"d)=0
where "o is a submatrix of I obtained by removing the a-th line and the B-th column ([Milier, 19641). Both "
and T'qp are given below. The matrix I” is a tri-diagonal matrix whose off main-diagonal elements are integer
powetsofpa-zeros.’mecolummandlinesoﬂ"mpmdlothe_followingordﬂ-ofvnrihbles:u.:l.....z..ﬁand
thenalloma-vuiabluofz(seeﬁg3).lhus.fmmple.thewtmp"locatedat(ll)mr'isd\ecotre!aﬁonfacta
between o and 7, because these variables are the first two in the above order. The integer i, is the length of the path
betweenaandz,.i,ismelengthonhepamtetwemz,mdz,andsom.'rheco:mdonofr'a‘isbasedonuu
observation that the location (¢, B) in I" is (1, k+2) where & isﬂ\enmnbeofhead-m-hendnoduofq.

.

17000 P 1 p* 0
P" l. pn 0 0 0 p,'.l pi.

=10 p" 1 p"0 Fap= 10 0 g 1
0 05p"10 0 00 1t
0 0001

(‘Ihesemauices:egivenfocdxecaseoftwolud-w-headnocbsandasingleaddiﬁomlisolawdnodeon,t.heir
general form is obvious). Clearly, det (T"q) = o* (k 20) and therefore chosing p # 0 guarantees that / (a, Z, B)
does not hold in P ,.
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[t remains to show that every graphically-verified statement in D, is satisfied by P ,. We assign a total ord-
er d on the nodes of D, consistent with the partial order determined by D,. We show that the n statements that
form the causal input list that defines D , are satisfied in P 4. Theorem | ensures that all other graphically verified
statements are valid consequences of this input list and therefore would ali be satisfied in P4 In what follows we
use the tag of a node as its name. Let 7(i, §;, Uyy-S;) be astaement of L where S; are the parents of i and U ; are
all the variables preceding i in the order 4. By the topology of D ,, S; contains no more then two nodes.

Assume S, is empty. This implies that { is not connected via a regular path (o either of its predecessors.
Hence, by the construction of T, Py =0forevery j e Uiy, and therefore the statements / (i, &, JjYholdin P, How-
ever, in normal distributions, the correlation between single variables determines the dependency between the sets
containing these variables because the following axiom holds.

(Composition-Decomposition)

IX,Z,Y UW) <=> I(X,2,Y) & [(X,Z,W) @)
Accol’dmgly. l(l . D, U(”) holds in Pﬂ' and this statement is emﬂy equai wl{, S,- . U(;)—S,') since S.' is cmpty.

Assume S; consists of a single node h. In light of axiom (4) it is enough to show that for every
J € Uy=h the statement (i, & /) holds in P, If exists a path from j 10 £, it must pass through 4. Therefore, by
definition (3) of T, since A ismeonlypatemofi.meeqmlityp,-, =Pu Py must be satisfied. This equality is a
necessary and sufficient condition under which /(i , &, Jj} holds in any normal distribution in which Py are the corre-
lation factors {(in particular, P ,).

Assume §, = (g,h} (sec figure 6). Again, it is enough 10 show that /(i, (g ,4},/) holds in P, for every
J € Uyy=S;. Construct the covariance matrix for the variables g, A, i and j (the columns of the matrix correspond
10 this order). By equation (3), Pgi =P Pu =p and py, = 0. The resulting matrix is given below,

1 0 p oy

0 1 p ooy
) ™

P P 1 py

Py Py Py 1

Figure 6

The statement / (i, {g .4} i) hoids in this distribution i the submatrix T;’ is singular, i.e.



13

1 0 o
d1 (0 1 pl=0
Py Px Py

([Miller, 1964]) or equivalently, p; = (py; +p,,) - p.

The latter equality, however, holds for all possible selections of a node j;Ifjis notconnected to i viaa
regular path, i.e. p; =0, then it is not connected through a regular path to either of i 's parents and therefore both
Py and py are zero. If j is connected through a regular path of length { to & (similarly when connected to 4 ) then it
is connecied 1o its son i with a path of length {+1 and is not connected t0 i s other parent, in which case p; =p'*!,
Py =P'. Py =0and therefore the above equality holds. CL



