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ABSTRACT

This paper deals with the task of finding an optimal solution to a set of variables con-
strained by a network of compatibility relationships. The paper shows that the optimization task
does not require an exhaustive search among all consistent solutions but rather can be incor-
porated naturally into the process of finding consistent solutions. In many problem instances the
interaction between the objective function and the constraints does not add any computational
complexity to the task of finding a consistent solution, and when it does, the additional complex-
ity can be estimated before the solution is attempted and be used to decide between an exact or a

heuristic approach to optimization.
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1. Introduction

Traditionally, decision problems have been formulated as optimization tasks on
probabilistic knowledge-bases such as statistical tables or influence diagrams. In several
Al applications it is useful to express knowledge in terms of categorical constraints
among facts and events rather then conditional probabilities. For example, resource limi-
tations, temporal and spatial relationships, class hierarchies and concept definitions are
stated as black-and-white constraints which allow a limited set of feasible solutions. This
abstraction enjoys the advantage of descriptive simplicity because it requires fewer
parameters; a model can be specified naturally and qualitatively, and the representation
often 1chds to somewhat simpler inference procedures. For example such categorical
abstraction, called compatibility relation, is the backbone of Shafer-Dempster formalism,

which aims at processing evidence when a complete probability model is unavailable.

To handle inferences subject to qualitative constraints, a representation scheme
called "constraint network” have been developed, which facilitates the control of solution
strategies by the logical properties of the constraints. By recognizing substructures for
which effective algorithms are available, the network representation enables one to deter-
mine how problems should be decomposed. Works on constraint processing has so far
focused on the task of finding feasible solutions [Mackworth, 1984, Haralick, 1980,
Dechter, 1987a], because in some applications of Al preferences play only a minor role

and finding one feasible solution suffices.



However there are applications where preferences cannot be ignored. In vision
we seek the most likely interpretation of a scene given visual clues and semantic con-
straints on objects and their relationships. In non-monotonic logic, we seek a minimal
theory that is compatible with evidential sentences. In planning, one normally faces
options leading to conflicting goals and seeks a sn-atcgy_that maximizes the overall utility
of consequences, subject to resource and feasibility constraints. It is, therefore, essential

to develop algorithms that find an optimal solution, not merely a satisficing one.

This study extends the applications of constraint networks to include optimization
task, especially distributed optimization. The paper treats the optimization of linearly
decomposed criteria functions over a set of constrained variables. We provide an
efﬁcicnt. algbrithm that exploit the structure of each problem instance and give simple

criteria for assessing its worst case complexity.

A constraint network.involve.s a set of n variables, X ={X,,...,X,}, and a set
of constraints. A constraint C;(X;, - X;) is a subset of the Cartesian product
Ryx«-- xR,-J, where X;, ..., X; is an arbitrary subset of variables and R, represents the
domain of variable X,. The tuples of a constraint specify all the sinultaneous assign-
ments of values to the variables of the constraint which are, as far as this constraint is
concerned, legal. An assignment of values to all the variables of the network such that
all the constraints are satisfied is called a solution. The term constrain; satisfaction
problem (CSP) describes the computational task of finding either one solution or the set

of all solutions of a given constraint network.



When a network possesses more than one solution, a natural extension of the con-
straint satisfaction problem is to identify the solution, or solutions, which are ‘‘best’
according to some criterion. In this paper we provide a procedure for finding a consistent

solution which maximizes the value of a criterion function of the form:

f@= Tfitx) M
ieT

Where - T =({12,.,t} is a set of indices, designating subsets of variables
x1x2 ...X% ... X% x is an instantiation of all considered variables, while x' is the
instantiation x restricted to variables in a subset Xi of X. The functions fi(x") are the
components of the criterion function, also called an objective function, and are specified,
in general, by means of stored tables. We focus first on the special case when the domain
of values are real numbers and the objective function is a simple utility function of the
form:

n
U(xl,....x,,)= ZW,'X,' 2}

i=l

The algorithm, to be presented in section 3, is an adaptation of non-serial
dynamic programming methods [Bertele, 1972] to the cas.e of categorical constraints, and
relies on the theory of databases [Beeri, 1983]. It is guided by the network structure of
each problem instance, and its complexity, for the case of utility function (2), does not

exceed the complexity of finding an arbitrary solution.

Section 2 discusses the structural properties of constraint-networks and defines
the class of acyclic CSPs. In section 3 we present an efficient scheme for finding a max-

imum utility solution given that the problem is an acyclic CSP. In section 4 we extend



the approach to objective functions whose components are contained within the CSP’s
constraints. Section 5 generalizes the scheme to any objective function and any CSP,

section 6 provides a complexity analysis and section 7 provides concluding remarks.

2. Structure of constraint-networks

The structure of a constraint network, represented by a graph, has two forms,
called primal and dual.. The primal-constraint-graph represents variables by nodes
and associates an arc with any two nodes residing in the same constraint. The dual-
constraint-graph, represents each constraint by a node and associates a labeled arc with
any two nodes that share at least one variable. The dual constraint graph can be viewed
as the primal graph of an equivalent constraint network, whcre each of the constraints of
the original network is a variable (called a c-variable) and the constraints call for equality

among the values assigned to the variables shared by any two c-variables.

Consider, for example, a CSP with variables A ,B,C,D ,E F and constraints on
the subsets (ABC),(AEF), (CDE), and (ACE), and assume that the the domain of each
variable is the set {0,1,2). The constraint for the variable subset (ABC') is given in Table
1; it imposes an order on the 3-t1}plcs and can be expressed concisely as
Cupc ={(a.b.c)lasbsc}. The same cénslraints apply also to the subsets (AEF) and
(CDE). The constraint for the variable subset (ACE)is Cycp =((a,c.e)lasc<e}, and
is given explicitly in Table 2. Figures 1(a) and 1(b) depict the primal and dual

constraint-graph of this problem, respectively.
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Figure 1. A primal and dual constraint graphs of a CSP

A constraint is considered redundant if its elimination from the network {and the

possible removal of the corresponding redundant arc from the constraint graph) does



not change the set of all solutions. In the dual constraint graph it is easy to identify redun-
dant arcs and remove them from the graph, since all constraints are equalities. Any cycle
for which all the arcs share a common variable éonMs redundancy, and any arc having
all of the variables in its label common in some cycle, can be removed. The graph result-
ing from such removal of arcs is called a join-graph, and the corresponding network is

an equivalent representation of the original network.

For example, in figure 1(b), the arc between (AFE) and (ABC) can be eliminated
because the variable A s common along the cycle
(AFE }—A —(ABC Y—AC —(ACE —AE —(AFE), so the consistency of the A vari-
ables is maintained by the remaining arcs. By a similar argument we can remove the arcs

labeled C and E, thus turning the join-graph into a join-tree (figure 2).
ABC

AC

ACE CDE

Figure 2. A Join-Tree

A CSP which possesses a join-tree, is said to be acyclic. Solutions for acyclic
CSPs can be derived efficiently. If there are p constraints in the join-tree, each with at

most / subtuples, the CSP can be solved in O(pl -logl) [Dechter, 1987a).



3. Finding a best utility solution for join-trees

Let xg denote a tuple in the constraint § (S, @, R, etc,, will stand for variable
subsets as well as for the constraints provided for them.). If Q is a variable-subset of §
then let (xg |Q) denotes the projection of xg orn Q. For example, the projection of
xsgr =(0,1,0) on EF is the subtuple (1,0). The utility of a subtuple is the restriction of

the utility function (2) to the tuples’ variables.

The join-tree of an acyclic CSP can be made into a directed tree by designating
one of the nodes as the root, orienting all edges from the root outward, and identifying
the set of child nodes and one parent node for each of the non-root. Let S, ..., S; be the
children of a constraint §, and let Tg denote the subset of variables in the subtree rooted

at S (see figure 3).

Figure 3



With each tuple xg of C we associate a value, v(xs), which is equal to the utility
of the best instantiation for variables in Ty compatible with xg. Consistency in this case -
simply means that the projection of the partial solution on the variables in § is equal to
xg. Clearly, the max-v-value associated with the tuples of the root node is the utility of
the optimal solution of the entire network. It is easy to see that for any parent node, S,

and it children, §, . . ., S;, the v -values satisfy the following recurrence:
vixg)={ulxr,) | (xp, 1S)=xg and for every i, v(xr,|§;)=max (vixs). @

Namely, the partial solution with the highest utility in Ts compatible with a tuple of S is
composed of those sub-tuples of its child nodes having the highest value among those
that are consistent with it. The reason that we can take the best iri each child to find a
globaliy optimal solution is that the join-tree property guarantees that all the variables

which are shared by the children appear in their parent.

This recurrence suggests that the computation of the v-values can be performed
from the leaves to the root, recursively. Values of leaf-nodes-tuples are their utility
values. A node will compute its v-values only after all its child-nodes have computed
their owns. For each tuple xg the parent node chooses from each child node a consistent
maximum-value tuple, finds a partial solution in its subtree which is combosed of these
sub-tuples, computes its utility, and associates this value with xg. During this process the
tree can also be made directional-arc-consistent [Dechter, 1987a}, namely, tuples of a

constraint which cannot be extended to a solution can be eliminated.



As an example consider the join-tree of figure 2. ACE is chosen to be the root of
the tree, while ABC, AEF, and CDE are its child nodes. Suppose that the utility func-

tion is given by:
u(a,b.cd.e.f)=6a+5h+dc+3d+2e+f @)

Figure 4 displays the computation of the values associated with each tuple of the root
node ACE (given in Table 2). Consider for instance the tuple (0,1,2). This tuple is con-
sistent (w.r.t. equality corisu'aints) with only two tuples of ABC, namely, (0,0,1) and
(0,1,1), with one tuple ((0,2,2)) of AEF, and with two tuples ((1,1,2) and (1,2,2)) of
CDE . The values of these leaf tuples are their utility values (indicated in parenthesis),
and the highest value (starred in the figure) will be chosen. The utility of tuples of ABC
,derived by. restricting (4) to the variables {A ,B,C }, are given by u(a,b,c) = 6a+5b+4c
yielding utility of 4 to the tuple (0,0,1) and utility 9 to the tuple (0,1,1). Similarly the util-
ity of a tuple of AEF is computed by u(a.e.f)=6a+2e+f etc. Thus, tuple (0,1,1) of
ABC , tuple (0,2,2) of AEF, and tuple (1,2,2) of CDE are selected. The solution, com-
posed of these subtuples, is (ABCDEF =011222) whose utility is 21. Similarly each
tuple of ACE is associated with a value, and the highest value (27) is achieved for tuple

(1,1,2) with a corresponding solution ABCDEF = 111222,

10



=={> ABCDEF=011222, v=21 ABCDEF = 000112, v=7

ABC AEF CDE ' ABC AEF CDE

mssnis>  ABCDEF = 000222, v=12 ABCDEF = 111222, v=27

ABC AEF CDE

Figure 4

4. Extension to a general objective function within acyclic CSPs

When the objective function is generalized to be a function of the form (1) with
the restriction that each function component is contained within at least one constraint in
the acyclic CSP, we say that it obeys the containment requirement w.r.t. the CSP. The
extension of the previous scheme to a general objective function that satisfies the con-

tainment requirement is straightforward.

Consider the constraint problem of figure 2, together with a new objective func-
tion given by: f(a,b,c,d,e,f)=f1(a,b)+f2(c)+f3(a.c,e)+f4(a,f). The
function’s components are defined via tables and will not be specified here. Here, fis
defined for variables {A ,B } which are contained in constraint ABC, f, is defined over
{C ) which is contained in ABC, ACE and CDE, f 5 is defined over (A,C,E) contained

in ACE and so on. Having this property, each function component can be associated

11



with one of the constraints that contains it, and correspondingly, the functional value of
each tuple of a constraint can be computed using the function components which were
assigned to it. For instance, in our example, the components f ; and f, can be assigned
to constraint ABC and therefore each of its tuples will be associated with the function
value: f(a,b,c)=f(a,b)+f,(c). Similarly, tuples from (ACE ). and (AEF) are
assignec?: fla,ce)=fala,c.e), fla.ef)=fsaf) respectively. Since tuples from
(CDE ) were not assigned any function component they will be assigned a constant func-

tion value of "0".

Let us denote by f,s the objective function components which are assigned to
constraint S (e.g., f qancy=S10a.0) +f2(c)). As before, with each tuple xg of a con-
straint S, v (xg ) stands for the optimal value of f ffs of a subtuple in T¢ which is compati-
ble with x, (see figure 3). The computation of this values for a tuple of S given the
values of all subtuples in his child constraints and given that it is consistent with at least

one tuple in each of its child nodes is:

vixg)=fs(xg) + max vix S
(xs)=f5(xs) E _ SN 1S S (xs,) &)
If x,. is not compatible with any tuple of one of its neighboring constraint it should either

be eliminated or assigned a negative value which will not enable its inclusion in any

solution.

The computation of the v-values will be performed from leaves to root recur-
sively as in the case of the utility function. Values of leaf constraints are their assigned
restricted objective function. To make the computation of a parent’s values based on its

child’s values more efficient, each child can project its tuples on the variables common to

12



itself and its parent, i.c. the variables that label the arc between them, and associate each
projected tuple with the maximum values among the corresponding child tuples. Namely,
a child node will go over its tuples, project each on the labeled variables and associate
with the projection the highest value seen so far. If the projected relation is sorted,
searching for a tuple can be reduced to logarithmic complexity rather then a linear one.
Thus, if the number of tuples associated with each constraint is bounded by ¢, projecting
the constraint of a child constraint on its outgoing arc and associating the projected tuples
with their maximum §alues is bounded by O (t-logt). The parent constraint, for each of
its own tuples will look for the projected tuples that match it. Since the projected con-
straint is sorted this search takes O (logt), and since it is done for each tuple the overall

complexity is O (¢-logt) as well. Thus the whole communication between a child and its

-parent is bounded by O (¢-loge). Since in acyclic CSPs there are at most n constraints (n

being the number of variables), the overall computation is bounded by O (n ¢ -logt).

5. The general case

In general, the CSP is not necessarily acyclic and the objective function’s com-
ponents do not obey the contai;lment requirement. Consider the following constraint
problem. The variables are denoted by 4 ,B,C.D.E and the constraints are (AB), (BC )s
(BD), (DE), (AD), and (CE). The objectve function is:
f@bcdey=filab)+fyb.c)+fsbde) The primal and the dual constraint

graphs are depicted in figure 5a and 5b respectively.
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Figure 5
It can be easily verified the the problem is not acyclic (i.e., the graph of figure Sb does
not possess a join-tree). Also, the function component f 5 is not contained in any given
constraint. To deal with such cases we use the tree-clustering scheme presented in
{Dechter, 1987b] while modifying it to account for the structure iméoscd by the objective
function in addition to structure associated with the constraints themselves. We do that
by augmenting in the primal graph of the constraint problem, arcs which are imposed by
the components of the objective function. Namely, any two variables residing in the
same function component will be connected in the primal graph, and the resulting graph
will be called the augmented primal graph. In our example figure 5c depicts the aug-
mented primal graph in which the arc (B ,E) is added to account for component f 4 in the

objective function.

The tree-clustering scheme will transform é general constraint optimization prob-
lem into an equivalent acyclic CSP with an objective function that satisfies the contain-
ment requirement. Once this transformation is applied, the rest of the problem can be
solvéd using the scheme presented in sections 3 and 4. A summary of the tree-clustering

scheme is given next.
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A CSP is acyclic iff its primal graph is both chordal and conformal [Beeri, 1983].
A graph G is chordal if every cycle of length at least four has a chord, i.e., an edge join-
ing two nonconsecutive vertices along the cycle. A primal graph is conformal if each of

its maximal clique corresponds to a constraint in the original CSP.

The clustering scheme is based on an efficient triangulation algorithm {Tarjan,
1984] which transforms any graph into a chordal graph by adding edges to it. The maxi-
mal cliques of the resulting chordal graph are the clusters necessary for forming an acy-

clic CSP.

The triangulation algorithm consists of two steps:

L. Compute an ordering for the nodes, using a maximum cardinality search.
2. Fill-in edges between any two non-adjacent nodes that are connected via nodes
higher up in the ordering. ‘

The maximum-cardinality-search numbers vertices from 1 to n, in increasing* order,
always assigning the next number to the vertex having the largest set of previously num-

bered neighbors, (breaking ties arbitrarily). Such ordering will be called m-ordering.

If no edges are added in step two, the original graph is chordal, otherwise the new filled
graph is chordal. Tarjan et. al. give a maximum cardinality search algorithm that can be
implemented in O (n+deg) where n is the number of variables and deg is the maximum
degree. The fill-in step of the algorithm runs in O (n+m’) when m ’ is the number of arcs
in the resultant graph. There is no guarantee that the number of edges added by this pro-

cess is minimal, however, since for chordal graphs the m-ordering requires no fill-in, the

* the order here is the reverse of that used in Tarjan et. al. and was changed to simplify the presentation.
Such ordering will be catled m-ordering.
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fill-in required for non-chordal graphs, is usually small.

The above theory suggests the following clustering procedure for CSPs:

1. Given a CSP and its primal graph, use the triangulation algorithm to generate a
chordal primal graph (if the primal graph is chordal no arc will be added).

2. Identify all the maximal cliques in the primal-chordal graph. Let C.....C, be all
such cliques indexed by the rank of its highest nodes.

3. Form the dual-graph comresponding to the new clusters and identify one of its
join-trees by connecting each C; to an ancestor C; (j <i) that contains all vari-
ables that C; shares with its ancestors [Maier, 1983].

4. Solve the constraint-satisfaction subproblems defined by the clusters Cy, ..., C;,
(this amounts to generating higher-order constraints from the lower-order con-
straints intemnal to each cluster, i.c., listing the consistent subtuples for the vari-
ables in each cluster).

In order to transform a constraint optimization problem into an acyclic CSP that
its objective function satisfies the containment requirement we will use the augmented
primal graph rather then the primal graph as an input to the clustering scheme. Consider-
ing our example of figure 5, the augmented primal graph (see figure 5c) is already chor-
dal, however, the maximum cliques do not correspond to the original constraints. The
maximal cliques (ABC), (BDE ) and (BEC) constitute an acyclic scheme whose join-tree
is given in figure 6. Each cluster should be solved as a separate CSP and the components

of the objective function, now satisfying the containment requirement, can be assigned to

this new constraints.
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Figure 6

The complexity of the clustering scheme is domina_ltcd by step 4 which requires
the solution of the clustered CSPs. If r is the size of the maximum cluster then its solu-
tion is bounded by O (k") when k bounds the number of values in the domain of each
variable. The space complexity is also bounded by O (k™) which is the size of the new
constraint associated with the new cluster. The maximum size of clusters generated can
be easily determined by computing the width of the ordered augmented primal graph
resulting from the triangulation algorithm. The width of an ordered graph is the max-
imum width of each of its nodes, and the width of a node is the number of nodes con-
ncctedl to it which precedes it in the ordering. Let d denotes any ordering of the vari-
ables, and W* (d) denotes the width of the graph resulting from the fill-in procedure. It
can be shown that the size of the maximum clique, which is also the size of the maximum
cluster, is W*(d). Thus, the overall complexity of the clustering scheme is bounded by
0 (de %). Finding the ordering d for which W* (d) is minimal is an NP-complete task
[Arnborg, 1987.] and the m-ordering suggested in this paper is dnc possible heuristic

which provides good results.
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The overall computation of our algorithm which is a composed of the clustering
scheme and the optimal solution of acyclic CSPs with an objective function that satisfies
the containment requirement, is given by:

O Uk"* @)+ 0(t"1ogt"
where ¢ is the maximum number of tuples in each constraint of the clustered CSP. Since

t < k%" @) we get that the complexity is bounded by O (k¥* (),

The nice feature of associating the complexity analysis with the structure of the
problem is that we can isolate the additional computation imposed by the optimization
task. Comparing the width resulting from processing the primal graph and the aug-
mented primal graph give us an upper bound on this additional complexity. Let W*, be
the width of the processed ﬁﬁmai graph, while W*, be the width of the processed aug-
mented primal graph (note that different orderings may be used in the two graphs).
Since

PLL ;kw*,{kw*. —W‘,}

a

W *P . The above

we see that the optimization multiplies the power of the exponent by

ratio can be consulted to decide whether or not to look for real optimal solution or to be
satisfied with heuristic algorithms which will find good but not necessarily optimal solu-

tions.

7. Conclusions

This paper shows that finding an optimal solution for a CSP need not necessarily

involve an exhaustive search among all consistent solutions but can be incorporated
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naturally iq;o the process of finding a consistent solution. In many problem instances the
interaction between the objective function and the CSP do not add any complexity bur-
den on the task of finding a consistent solution, and when it does, the additional computa-
tion complexity can be estimated ahead of time and be used to decide between exact or a

heuristic approach to optimization.
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