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ABSTRACT

This paper presents a constraint network formulation of belief maintenance in dynamically
changing environments. We focus on the task of computing the degree of support for each pro-
position, i.e., the number of solutions of the constraint network which are consistent with it. A
proposition is said to be believed if it receives a non-zero support and its negation receives zero
support. The paper develops an efficient distributed scheme for calculating and revising beliefs
in acyclic constraint networks. The suggested process consists of two phases. In the first, called
support propagation, each variable updates the number of extensions consistent with each of
its values. The second, called contradiction resolution, is invoked by a variable that detects a
contradiction, and identifies a minimal set of assumptions that potentially account for the con-
tradiction. The support propagation phase is accomplished in a single pass through the network,
while the contradiction resolution process requires at most 4 passes. Thus, the impact of any
new input to the system can be propagated in at most 5 passes through the network. Extensions
of the scheme to general, non-acyclic networks, using a clustering approach, are also discussed.

*This work was supported in part by the National Science Foundation, Grant #DCR 85-01234



1. Introduction

Reasoning about dynamic environments is a central issue in Artificial Intelligence. When deal-
ing with a complex environment, we normally have only partial description of the world known
explicitly at any given time. A complete picture of the environment can only be speculated by
making simplifying assumptions which are consistent with the available information. When new
facts become known, it is important to maintain the consistency of our view of the world so that
queries of interest (e.g., is a certain proposition believed to be true?) can be answered coherently
at all times. Various non-monotonic logics as well as truth-maintenance systems have been dev-

ised to handle such tasks [Reiter1987, Doyle1979, De-Kleer1986b].

In this paper we show that constraint networks and their associated constraint satisfac-
tion problems provide an attractive paradigm for modeling dynamically changing environ-
ments. The language of constraint networks has the expressive power of propositional calculus
and was mainly developed for expressing static problems, i.e., that require a one-time solution
of a system of constraints representing all the available information (for example, picture pro-
cessing [Montanari1l974, Waltz1975] ). A substantial body of knowledge for solving such prob-
lems has been developed [Montanari1974, Mackworth1977, Freuder1982, Dechter1987b].

Structuring knowledge by means of constraint networks leads, as we will show, to
efficient algorithms for consistency maintenance and query processing. Indeed, truth-
maintenance systems often utilize algorithms found in constraint processing in general, e.g.,
dependency-directed backtracking, constraint propagation, etc. [Stallman1977, McAllester1980,
Doyle1979]. The use of constraint networks as the framework for modeling the task of dynamic
belief management, allows us to develop efficient processing algorithm built upon techniques
used in the solution of constraint satisfaction problems. Two characteristic features of these
techniques are that they are ‘‘sensitive’” to the structure of the problem so as to take advantage

of special structures, and that their pcrformance can be analyzed and predicted. Such theoretical



treatment is usually not available in current TMS research.

The remainder of the paper is organized as follows. Section 2 provides a brief review of
the constraint network model and discusses the problem of belief maintenance in its context.
The suggested belief revision process consists of two phases, presented first for singly connected
binary constraint networks. The first, support propagation, is described in Section 3, and the
second, contradiction resolution, is the subject of Section 4. In Section 5 the algorithm is
extended to acyclic networks. An example taken from the area of electronic circuit diagnosis is
worked out in Section 6. Section 7 discusses the extension of the algorithm to general networks,

and Section 8 contains a summary and some final remarks.

2. The Model

A coﬂstraint network (CN) involves a set of n variables, X |, ... ,X,, their respective
domains, R, ...,R,, and a set of constraints. A constraint C;(X; , -+ .X;) is a subset of the
Cartesian product R; x -+ - X R; that specifies which values of the variables are compatible with
each other. A binary constraint network is one in which all the constraints are binary, i.e.,
involve at most two variables. A binary CN may be associated with a constraint-graph in
which nodes represent variables and arcs connect those pairs of variables for which constraints
are given. Consider, for instance, the CN presented in Figure 1(a) (modified from [Mack-
worth1977] ). Each node represents a variable whose values are explicitly indicated, and each
link is labeled with the set of value-pairs permitted by the constraint between the variables it
connects (observe that the constraint between connected variables is a strict lexicographic order

along the arrows.)

A solution (also called an extension) of a constraint network is an assignment of values
to all the variables of the network such that all the constraints are satisfied. The (static) con-

straint satisfaction problem associated with a given constraint network is the task of finding one



Figure 1: An example of a binary CN

or all of the extensions. In this paper we focus on a related problem, that of finding, for each
value in the domain of certain variables, the number (or relative frequency) of extensions in
which it participates. We call these figures supports and assume that they measure the degree
of belief in the propositions represented by those values. In particular, we say that a proposition
is believed if it holds in all extensions (i.e., is entailed by the current set of formulas). The sup-

port figures for the possible values of each variable constitute a support vector for the variable.

A dynamic Constraint-Network {DCN) is a sequence of static CNs each resulting from
a change in the preceding one, representing new facts about the environment being modeled. As
a result of such an incremental change, the set of solutions of the CN may potentially decrease

(in which case it is considered a restriction) or increase (i.e., a relaxation).

Restrictions occur when a new constraint is imposed on a subset of existing variables
(e.g., forcing a variable to assume a certain value), or when a new variable is added to the system
via some links. Figure 1(b) shows a change occurring in the model of Figure la by adding vari-

able X ¢ and its associated (lexicographic) constraint. Restrictions always expand the model, ..,



they add variables and add constraints so that the associated constraint graph (representing the

knowledge) grows monotonically.

Relaxations occur when constraints that were assumed to hold are found to be invalid
and, therefore, may be removed from the network. However, it is not necessary to actually
remove such constraints in order to cause the effect of relaxation. This can be achieved by
modeling each potentially relaxable constraint in a special way which involves the inclusion of a
bi-valued variable whose values indicate whether the constraint is ‘‘active’’ or not (this model-
ing technique is used in the example of Section 6). Thus, we may assume, as is common in truth

maintenance systems, that constraints that are added to the system are never removed.

In the next section we present an efficient scheme for propagating the information neces-

sary for keeping all support vectors consistent with new external information.
3. Support Propagation in Trees

It is well known that constraint networks whose constraint graph is a tree can be solved
easily [Freuder1982, Dechter1985]. Consequently, the number of solutions in which each value
in the domain of each variable participates (namely, the support of this value), can also be com-
puted very efficiently on such tree-networks. In this section we present a distributed scheme for
calculating the support vectors for all variables, and for their updating to reflect changes in the

network.

Consider a fragment of a tree-network as depicted in Figure 2. The link (X,Y) partitions
the tree into two subtrees: the subtree containing X, Txy(X), and the subtree containing Y,
Txy(Y). Likewise, the links (X,U), (X,V), and (X,Z), respectively, define the subtrees Txy(U),
Txv(V) and Txz(Z). Denote by sx(x) the overall support for value x of X, by sx(x/Y) the support
for X = x contributed by subtree Txy(Y) (i.e., the number of extensions of this subtree which

are consistent with X = x), and by s}(y/-X) the support for ¥ =y in Txy(Y). (These notations will



Figure 2: A fragment of a tree-structured CN
be shortened to s(x), s (x/Y) and s(y/~X), respectively, whenever the identity of the variable is

clear.) The support for any value x of X is given by:

s(x)= I1 sx/Y), (1)
Y€X’'s neighbors
namely, it is a product of the supports contributed by each neighboring subtree. The support that

Y contributes to X = x can be further decomposed as follows:

s(x/Y)= Y, sp/-X), (2)

(x,y)eC(X.Y)
when C (X,Y) denotes the constraint between X and Y. Namely, since x can be associated with
several matching values of Y, its support is the sum of the supports of these values. Equalities

(1) and (2) yield:

s(x) = I1 siy/=-X). 3

( ) YeX's MigthrS(x‘y)e§(X‘Y) (y ) ( )

Equation (3) lends itself to the promised propagation scheme. If variable X gets from each
neighboring node, Y, a vector of restricted supports, (referred to as the support vector fromY

to X):

(SUII—X),- ‘e :S()’:/‘“X)),

where y; is in ¥’s domain, it can calculates its own support vector according to equation (3) and,



at the same time, generate an appropriate message to each of its own neighbors. The message X

sends to Y, 5 (x/=Y), is the support vector reflecting the subtree Tyxy(X), and can be computed by:

s(x/=Y) = Il Yy s@/-X). 4)
ZeX's mzigh.bors ' Z#Y(x‘z)ec (X,Z)

The message generated by a leaf-variable is a vector consisting of zeros and ones representing,

respectively, legal and illegal values of this variable.

Assume that the network is initially in a stable state, namely, all support vectors reflect
correctly the constraints, and that the task is to restore stability when a new input causes a
momentary instability. The updating scheme is initiated by the variable directly exposed to the
new input. Any such variable will recalculate and deliver the support vector for each of its
neighbors. When a variable in the network receives an update-message, it recalculates its out-
going messages, sends them to the rest of its neighbors, and at the same time updates its own
support vector. The propagation due to a single outside change will propagate through the net-
work only once (no feed-back), since the network has no loops. If the new input is a restriction,
then it may cause a contradictory state, in which case all the nodes in the network will converge

into all zero support vectors.

To illustrate the mechanics of the propagation scheme described above, consider again
the problem of Figure 1(a). In Figure 3a the support vectors and the different messages are
presented. The order within a support vector corresponds to the order of values in the originat-
ing variable, namely, message (8,1) from X3 to X represents (sx,(a/~X1) , sx,(b/-X ). Sup-
pose now that the system is forced by an outside change to restrict the value of X, to "b". In that
case X, will originate a new message to X3 of the form (0,1,0). This, in turn, will cause X3 to
update its supports and generate updated messages to X ;,X 4 and X 5 respectively. The new sup-

ports and the new updated messages are illustrated in Figure 3(b).
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Figure 3: Support vectors before and after a change

If one is not interested in calculating numerical supports, but merely in indicating
whether a given value has some support (i.e., participates in at least one solution), then flat
support-vectors, consisting of zeros and ones, can be propagated in exactly the same way, except
that the summation operation in (3) should be replaced by the logic operator OR, and the multi-

plication can be replaced by AND.
4, Handling Assumptions and Contradictions

When, as a result of new input, the network enters a contradictory state, it often means
that the new input is inconsistent with the current set of assumptions, and that some of these
assumptions must be modified in order to restore consistency. We assume that certain variables
of the network are designated as assumption variables which initially are assigned their default
values, but may at any time assigned other values as needed. The task of restoring consistency
by changing the values assigned to a subset of the assumption variables is called contradiction

resolution.



The subset of assumption variables that are modified in a contradiction resolution process
should be minimal, namely, it must not contain any proper subset of variables whose simultane-
ous modification is sufficient for that purpose. A sufficient (but not necessary) condition for this
set to be minimal is for it to be as small as possible. In this section we show how to identify, in a
distributed fashion the minimum number of assumptions that need to be changed in order to
restore consistency. Unlike the support propagation scheme, however, the contradiction resolu-
tion process has to be synchronized. Assume that a variable which detects a contradiction pro-
pagates this fact to the entire network, creating in the process a directed tree rooted at itself.

Given this tree, the contradiction resolution process proceeds as follows.

With each value v of each variable V we associate a weight w(v), indicating the
minimum number of assumption variables that must be changed in the directed subtree rooted at

V in order to make v consistent in this subtree. These weights obey the following recursion:

wiv)= min ~ w(), (5)
%(v,yU)EC(V.Y,-) Y

where {Y;} are the set of V’s children and their domain values are indicated by yj; i.e. y; is the

j* value of variable Y;, (see Figure 4).

v

n 2 min{wt, w3}

Y, Yy Y, Y;

Figure 4: Weight calculation for node v
The weights associated with the values of each assumption variable are "0" for the value
currently assigned to this variable, and "1" to all other possible values. For leaf nodes which are

not assumption variables, the weights of their legal values are all "0". The computation of the



weights is performed distributedly and synchronously from the leaves of the directed tree to the
root. A variable waits to get the weights of all its children, computes its own weights according
to (5), and sends them to its parent. During this bottom-up-propagation a pointer is kept from
each value of V to the values in each of its child-variables, where a minimum is achieved. When
the root variable X receives all the weights, it computes its own weights and selects one of its
values that has a minimal weight. It then initiates (with this value) a top-down propagation
down the tree, following the pointers marked in the bottom-up-propagation, a process which
generates a consistent extension with a minimum number of assumptions changed. At termina-
tion this process marks the assumption variables that need to be changed and the appropriate

changes required.

There is no need, however, to activate the whole network for contradiction resolution,
because the support information available clearly points to those subtrees where no assumption
change is necessary. Any subtree rooted at V whose support vector to its parent, P, is strictly
positive for all "relevant" values, can be pruned. Relevancy can be defined recursively as fol-
lows: the relevant values of V are those values which are consistent with some relevant value of
its parent, and the relevant values of the root, X, are those which are not known to be excluded

by any outside-world-change, independent of any change to the assumptions.

To illustrate the contradiction resolution process, consider the network given in Figure
5(a), which is an extension to the network in Figure 1(a) (the constraint are strict lexicographic
order along the arrows.) Variables X,, X¢ and X are assumption variables, with the current
assumptions indicated by the unary constraints associated with them. The support messages sent
by each variable to each of its neighbors are explicitly indicated. (The overall support vectors
are not given explicitly.) It can be easily shown that the value a for X5 is entailed and that there
are 4 extensions altogether. Suppose now that a new variable Xg and its constraint with X5 is

added (this is again a lexicographic constraint.) The value a of X g is consistent only with value b

10



of X5 (see Figure 5(!1)). Since the support for a of X 3 associated with this new link is zero, the
new support vector for X3 is zero and it detects a contradiction. Variable X3 will now activate a
subtree for contradiction resolution, considering only its value b as "relevant", (since, value a is
associated with a "0" support coming from Xg which has no underlying assumptions). In the
activation process, X4 and X5 will be pruned since their support messages to X5 are strictly
positive. X will also be pruned since it has only one relevant value ¢ and the support associated
with this value is positive. The resulting activated tree is marked by heavy lines in Figure 5(b).
Contradiction resolution of this subtree will be initiated by both assumption variables X¢ and
X7, and it will determine that the two assumptions X ¢ =c and X7 = ¢ need to be replaced with

assuming d for both variables (the process itself is not demonstrated).

Figure 5: Illustration of the contradiction resolution process
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Once contradiction resolution had been terminated, all assumptions can be changed
accordingly, and the system can get into a new stable state by handling those changes using sup-
port propagation. If this last propagation is not synchronized, the amount of message passing on
the network may be proportional to the number of assumptions changed. If, however, these mes-
sage updating is synchronized, the network can reach a stable state with at most two message
passing on each arc. Figure 5(c) gives the new updated messages after the system had been sta-

bilized.
5. Support propagation in acyclic networks

Acyclic constraint networks extend the notion of a tree-structured constraint network to
networks with constraints of higher arity. The equivalent of the constraint graph of binary net-
work in the more general case, called the primal constraint graph, consists of a node for each
variable and an arc for each two variables related directly by at least one constraint. Alterna-
tively, the network may be represented by a dual constraint graph, consisting of a node for
each constraint and an arc for any two constraints that share at least one variable. The dual con-
straint graph can be viewed as the primal graph of an equivalent constraint network, where each
of the constraints of the original network is a variable (called a c-variable) and the constraints

call for equality of the values assigned to the variables shared by any two c-variables.

For example, Figures 6(a) and 6(b) depict, respectively, the primal and the dual
constraint-graphs of a network consisting of the variables A,B,C,D,E,F, with constraints on the

subsets (ABC),(AEF), (CDE), and (ACE) (the constraints themselves are not specified).

Since all the constraints in the dual representation are equalities, any cycle for which all
the arcs share a common variable contains redundancy, and thus any arc such that each of the
variables in its label is a common variable in some cycle may be removed from the network.

The graph remaining after all such arcs have been removed is called a join-graph, and its

12
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Figure 6: A primal and dual constraint graphs of a CSP
corresponding network is equivalent to the original network.

For example, in Figure 6(b), ihe arc befwecn (AEF) and (ABC) can be eliminated because
the variable A is common along the cycle (AFE)—A —(ABC)—AC —(ACE)—AE —(AFE), so
the consistency of the A variables is maintained by the remaining arcs. Similar arguments can be
used to show that the arcs labeled C and E may be removed as well, thus transforming the dual

graph into a join-tree (see Figure 6(c)).

A Constraint network whose dual constraint graph can be reduced to a join-tree is said to
be acyclic. Acyclic constraint networks are an instance of acyclic data bases discussed at

length in [Beeri1983].

With this background in mind, it is easy to show how the support propagation algorithm
presented in the previous section for tree-structured binary networks can be adapted for use in
acyclic networks. This requires that the network be transformed to its ‘‘dual representation”

and that a joint-tree is identified. We outline the algorithm next.
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Consider the_ fragment of a join-tree, whose nodes represent the constraints C,

U,Us,U3,Uy, given in Figure 7.

U,‘ U3

(17 TE e 8))

Z

U, U,

Figure 7: A fragment of a join-tree
We denote by t¢ an arbitrary tuple of C. With each tuple, ¢, we associate a support number
5(t%), which is equal the number of extensions in which all values of ¢¢ participate. Let s(t° 1U)
denote the support of ¢t coming from subtree Tey(U), and let s |[-C) denote the support for
t“ restricted to subtree Ty (U) (we use the same notational conventions as in the binary case).

The support for ¢ is given by:

se) = Il s@CIUy. (6)
U € C’s neighbors

The support U contributes to ¢ can be derived from the support it contributes to the projection
of 1 on C U, denoted by t“c~y, and this, in turn, can be computed by summing all the sup-

ports of tuples in U restricted to subtree Tcy(U) that have the same assignments as ¢© for vari-

ables in C ~U. Namely:

s(t‘:tU)=s(:°chIU)= Y s 1-C). €))
oy =Femy
Equations (6) and (7) yield

14



s = I T sE*1-0). (8)

U e C's neighbors =t¢
Cry =t crw

The propagation scheme emerging from (8) has the same pattern as the propagation for
binary constraint. Each constraint calculates the support vector associated with each of its out-
going arcs using:

s(thcul-C)= 3 sEv1-0). ©

ey =" crw
The message which U sends to C is the vector

I CRIPNIE o)) (10)

where i indexes the projection of constraint U on C~U. Using this message, C can calculate its

own support (using (8)) and will also generate updating messages to be sent to its neighbors.

Having the supports associated with each tuple in a constraint, the supports of individual
values can easily be derived by summing the corresponding supports of all tuples in the con-

straint having that value.

Contradiction resolution can also be modified for join-trees using the same methodology.
This process will be illustrated in the next section where these algorithms are demonstrated on a
circuit diagnosis example. Support propagation and contradiction resolution take, on join-trees,
the same amount of message passing as their binary network counterparts. Thus, the algorithm
is linear in the number of constraints and quadratic in the number of tuples in a constraint (in
fact, due to the special nature of the ‘‘dual constraints’’, being all equalities, the dependency of
the complexity on the number of tuples ¢ can be reduced from t2 to tlogt, using an indexing tech-

nique).
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6. A Circuit Diagnosis Example

An electronic circuit can be modeled in terms of a constraint network by associating a
variable with each input, output, intermediate value, and device. Device variables are bi-valued,
having the value "0" if functioning correctly and the value "1" otherwise. There is a constraint
associated with each device, relating the device variable with its immediate inputs and outputs.
Given input data, the possible values of any intermediate variable or output variable is its
"expected value", namely, the value that would have resulted if all devices worked correctly, or

some ‘‘unexpected value’” denoted by "e". A variable may have more then one expected value.

Consider the circuit of Figure 8 (also discussed in [De-Kleer1986a, Davis1984,
Genesereth1984] ), cbnsisting of three multipliers, M{,M,,M3, and two adders, A; and A,.
The values of the five input variables, A, B, C, D, and F, and of the two odtput variables, F and
G, are given. The numbers in the brackets are the expected values of the three intermediate
points X, Y, and Z, and of the outputs. The relation defining the constraint associated with the
multiplier M, is given in Figure 9 as an example. Given the inputs and outputs of the circuit, the
objective is to identify a minimal set of devices which, if presumed to be malfunctioning, could

explain the observed behavior.

The dual graph of the constraint network corresponding to this circuit is given in Figure
10. This network is acyclic, as is evident by the fact that a join-tree can be obtained by eliminat-
ing the redundant arc (marked by a dashed line) between constraint (M,,B,D.,Y) and

(A12,2,Y,G).

Initially, when no observation of output data is available, the network propagates its sup-
port numbers assuming all device variables have their default value "0". In this case only one
solution exists and therefore the supports for all consistent values are "1" (the support propaga-

tion algorithm is not illustrated). The diagnosis process is initiated when the value "10" is
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) A=3___. X[6]
—1 M F= 10
Al |———>
B=2 [12]
C=2 -L
| Rl =
D=3—
AD G= 12
E=3 l— M3 [12]
Z[6]
Figure 8: A circuit example
M, A c b'¢
0 2 3 6 w=0
3 e w=1

Figure 9: A multiplier constraint

A

Figure 10: An acyclic constraint network of the circuit example
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observed for variable F which is different from the expected value of 12. The value "10" is fixed
as the only consistent value of F. At this point, the constraint (X,A 1,F.Y), which is the only one
to contain F, induces direction on the join-tree, resulting in the directed tree (rooted at itself) of

Figure 11, and contradiction resolution is initiated.

Figure 11: Weight calculation for the circuit example
Each tuple will be associated with the minimum number of assumption changes in the subtree
underneath it, and the c-variable will project the corresponding weights on the variables which
label its outgoing arc. In Figure 11 the weights associated with the arcs of the three leaf con-
straints (i.e., the multipliers constraints), are presented. They are derived from the weights asso-
ciated with their incoming constraints (see the weights in Figure 9). For instance, the weights
associated with X is w (X = 6)=0 since "6" is the expected value of X when M, works correctly
(which is the default assumption), and w (X = e) = 1 since, any other value can be expected only
if the multiplier is faulty. Next, the weights propagate to constraint (Y,G,A2,Z). This constraint
and its weights are given in Figure 12 (note, that G’s observed value is 12). The corresponding
derived Y’s weights are indicated on the outgoing arc of constraint (¥,G,A2,2Z) in Figure 11.
Finally, the weights associated with the root constraint (4,,X,Y,F) are computed by summing

the minimum weights associated with each of its child node. The tuples associated with the root

18



A z G Y Weights Faulty Devices
0 6 12 6 w=0 none

0 e 12 e w=1 M,

1 6 12 e w=1 A,

i € 12 £ w=2 M3& A,

Figure 12: The weights of constraint (¥,G,A,,Z)

constraint and their weights are presented in Figure 13.

Ay F X Y Weights Faulty Devices
1. 0 10 6 [ 4 2 (MJVA;)& Mz
2. 0 10 4 6 1 M,
3 0 10 e 4 3 Ml&Mz&(M3VAQ)
4. 1 10 6 6 1 A,
s. i 10 6 P 3 A& My & Myvay
6. 1 10 e P 4 A& Myd M, & (MyvAy)

Figure 13: The weights of constraint (A,F,X.,Y) (the root)
We see that the minimum weight is associated with tuples (2), indicating M, as faulty or (4),

indicating A | as faulty. Therefore, either A or M are faulty.

This example illustrates the efficiency of the contradiction resolution process when the
special structure of the problem is exploited. By contrast, handling this problem using ATMS

[De-Kleer1986b] exhibits exponential behavior. For more details see [Geffner1987,

Dechter1986.].

7. Support Propagation in General Networks

When the constraint network is not acyclic, the method of tree-clustering [Dechter1987a]

can be used prior to application of the propagation schemes described above. This method uses
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aggregation of constraints into equivalent constraints involving larger cluster of variables in such
a way that the resulting network is acyclic. In this, more general, case the complexity of the pro-
cedure depends on the complexity of solving a constraint satisfaction problem for each cluster

and is roughly exponential in the size of the larger cluster. For more details see [Dechter1987a].

8. Summary and conclusions

We presented an efficient propagation algorithms for support propagation and for
contradiction-resolution in acyclic dynamic constraint networks, and indicated how these algo-
rithms can be extended for a general network using the tree-clustering method. The propagation
scheme contains two components: support updating and contradiction resolution. The first han-
dles non-contradictory inputs a_nd requires one pass through the network. The second finds a
minimum set of assumption-changes which resolve the contradiction. Contradiction resolution
may take five passes in the worst case: activating a diagnosis subtree (one pass), determining a

minimum assumption set (two passes) and updating the supports with new assumptions (two

passes).

The computational difficulties associated with the presence of loops are not unique to our
constraint-network formulation but are inherent to the basic problem of consistency mainte-
nance. It will appear, under various disguises, in any formalism. The importance of network
representation, however, is that it identifies the core of these difficulties, estimates the expected
complexity, and provides a unifying theoretical underpinning that encourages the exchange of

strategies across domains.
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