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ABSTRACT

Some properties of influence diagrams are examined in light of d-separation, a sound and com-
plete criterion for identifying the independencies represented by influence diagrams. An axiomatic char-
acterization of d-separation is presented and used to develop the necessary and sufficient conditions for
the entailment and equivalence of influence diagrams. In addition, several previous results are re-
examined in terms of d-separation.

INTRODUCTION

Influence diagrams are directed acyclic graphs which represent sets of conditional independence
statements. They may be used in decision analysis, evidential reasoning and statistical modeling [Ho-
ward and Matheson, 1981; Pearl, 1986; Smith, 1987]. d-Separation is a graphical criterion for identifying
independencies represented by influence diagrams. It is sound when used with influence diagrams based
upon semi-graphoids [Pearl and Verma,. 1987]. That is, if the independence statements used to design an
influence diagram obey the axioms of semi-graphoids (see Table 1), then every independence that d-
separation identifies is correct. Examples of semi-graphoids are the conditional independence relation-
ship in probability theory or embedded multivalued dependencies (EMVD) in relational databases [Fagin,
1977). Further if all that is known is that the independence statements obey the properties of semi-
graphoids, or else, that they are based upon some probability distribution, then d-separation is complete
with respect to the specification set [Geiger and Pearl, 1988]. That is, d-separation will correctly identify
every possible independence statement which follows from the information used to design the influence
diagram.

A dependency model is a set of conditional independence statements of the form / (X,2Z2,Y). The
statement / (X, Z, Y) specifies that the values of the variables in the set X are independent of the values of
the variables in the set ¥ once the values of the variables in the set Z are known. A semi-graphoid is any
dependency model which obeys the axioms of Table 1. These axioms, common to MOst every conven-
tional definition of conditional independence, are very similar to the axioms of Generalized Conditional
Independence [Dawid, 1979; Smith, 1987] second axiom is omitted. In an alternate treatment of semi-
graphoids the first two axioms are omitted, and only statements about mutually exclusive sets of variables
are considered. Under this restriction, generalized conditional independence and semi-graphoids are
equivalent. The differences between these two treatments are merely cosmetc, since no substantial use is
made of the first two axioms.

* This work was supported in part by the National Science Foundation Grants #DCR 85-01234 and #IRI 86-10155



Reflexivity XgZ=I1X, 2, Y)
-Relative Disjunction I(X,Z,Y)=XNYCZ

Symmetry IX,Z,N=I1{Y.Z,X)

Decomposition IX,ZYWY=I(X, Z, )

Weak Union X, ZYW)= (X, ZY, W)
Contraction X, ZNAIX,ZY, W)= 11X, Z, YW)

Table 1: semi-graphoid axioms

Since a perfect representation of an arbitrary semi-graphoid, probabilistic dependency model, or
relational dependency model (EMVD) requires exponential space on average [Verma, 1987] it is neces-
sary to settle for a partial representation. The influence diagram used in conjunction with d-separation is
a good partial representation for these classes of dependency models.

D-SEPARATION AXIOMS

The definition of d-separation is algorithmic: two sets of nodes X and Y are d-separated given a
third set Z if and only if there is no active bi-directed path from a node in X to a node in Y. A path is ac-
tivated by a set Z if every node with converging arrows either is or has a descendant in Z and every other
node along the path is not in Z. Further there is considered to be a vacuous path from a node to itself, and
this path is only de-activated by the very same node. This algorithmic definition is good in that it insures
computability, but it is theoretically awkward. An axiomatic definition would help shed light on the
structure of d-separaton.

It is straightforward to show that d-separation obeys all the axioms of semi-graphoids, but the
complete set of axioms, listed in Table 2, are a bit more complex and dubious to discem.

Chordality I(x, 2w, )ALz, xy, w) =1 (x, 2, y)vi(x, w, ¥)
Weak Transitivity [(X,Z, NAIX, Zw, ) =X, Z, w)vi(w, Z,Y)
d-Transitivity IX.Z )=
xeX,yeYorzel, ye X
[xeZvyel}
or
( {x#y} ]
and
{ Y 3 I(x,Zy,a)vI{, Zx.y)Va—bva-f—b]c}L
abellcel
and
{v (@, Zx,y)vx+av [ §Ux+WAx—WIa]}
ae U/ >

Table 2: d-separation axioms (lower case variables represent singletons)

The first two axioms are well known [Pearl, 1986], whereas the last most complex axiom is best posed ip
terms of adjacency and conditional adjacency. A direct consequence of the acyclicity of influence di-



agrams is that adjacency is equivalent to non-d-separability, as stated in the following lemma:

Lemma: Two nodes aand b of an influence diagram are adjacent, written @ —b, if and only if there is no
set S not containing a or b which d-separates a and b.

Proof: If a and b are adjacent, then the path consisting of the link between them will serve to connect
them, and cannot be deactivated by any set of nodes except those sets containing either aor b. If a and b
are not adjacent, then the set S of the parents of @ and b will not contain either node and will serve to
deactivate any paths between the nodes. Any path between the nodes which has an outward pointing arc
on either end will be trivially deactivated by S. Any path between the nodes which has both ends point-
ing inward must contain at least one head to head node. Consider the head to head node on the path
which is closest to @. There is a directed path from a to this node, and for the path to be active, either this
node or one of its direct descendents must be in S. This node in § cannot be a parent of a (otherwise there
would be a directed loop) so, either it is a parent of b or the path is not active. If it is a parent of b then
there is a directed path from a to b. Analysis of the head to head node closest to b leads to the conclusion
that either there is no active path between a and b or there is a directed path from b to a. Since there can
be no directed loops, there must be no active path between a and b given S thus a and b are d-separable. O

This lemma can be used to define the term adjacency with respect to general dependency models.
Thus, if a and b are variables of some dependency model M, then they are adjacent in M, written aTb, if

and only if they are not independent in M given any set that does not contain a or b.

A natural extension of adjacency is conditional adjacency. For any three variables @, b.and c of a
dependency model M, a and b are conditionaily adjacent given ¢, written aTb|c if and only if once c is

given, a and b can not become independent, i.e. aand b are not independent given any set which does not
contain a or b but does contain ¢. Graphically, for some influence diagram D,a ~D—b|c whenever a and b

are the common parents of ¢ or some ancestor of ¢, ora and b unconditionally adjacent in D. This obser-
vation leads to the following lemma relating adjacency, conditional adjacency and head to head nodes.

Lemma: For any three nodes a, b and ¢ of an influence diagram, a+b and g —b|cifand only if aand b
are the non-adjacent common parents of some node d which is either equal to ¢ or is an ancestor of ¢.

Proof: Assume a —b|c then, by definition, any set along with ¢ will activate a path between a and b,
even the empty set. Thus there is a path between a and b which can be activated by ¢ alone, but this path
must not be active given onty the empty set since a--b. Therefore there must be a head to head node d
on this path, and it must either be equal to c or be an ancestor of ¢. Furthermore d must be a descendent
of both a and b, otherwise. there would be a set which separates d from either @ or b, and this set along
with ¢ would then serve to separate a from b which would contradict the assumption that a—b|c. The
converse follows trivially from the definitions of adjacency, conditional adjacency and d-separation. (J

d-Transitivity is best understood in the contrapositive: if X and Y are not d-separated, then there
must be a path between them. If there is a head to head node on the path, then the third part of the nght
side of the axiom holds, where a and b are the non-adjacent common parents for the head to head node.
And if an arc on either end points outward, then the fourth part of the right hand side holds. The
parenthesised portion of this part ensures that the last arc is not compelled to point inward. The first two
parts correspond to the 'base-steps’ of reflexivity and relative decomposition. At least one of the parts ap-
ply for any path. This exhaustiveness is the basic principle behind the proof of completeness of the ax-
joms for d-separation.



Theorem 1: The axioms of Table 2 are a sound and complete characterization of d-separation.

Proof: The proof of squndness is straight forward from the definition of d-separation. The proof of com-
pleteness entails the construction of an influence diagram which perfectly represents any dependency
model that satisfies the axioms. To construct such an influence diagram, simply place an arc between any
two nodes whose corresponding variables are not separable in the dependency model. Then orient the
arcs in the following manner, first for any three nodes which satisfy the three properties, a —c, ¢ —b and
a--b and a—b|c, orient the two such that a ¢ and b —c. Finally orient any remaining arcs in any
fashion such that no new non-adjacent parents are created. Weak transitivity insures that no arc will re-
ceive two directions in the first orientation phase, and chordality ensures that the second phase can be
completed. It remains to show that any influence diagram generated by this algorithm is a perfect map of
the dependency model.

(D-mapness) Consider an arbitrary non-separation -/ (X, Z, Y) in the influence diagram. It must
be the case that there is a path from some node in X to some node in ¥. Induction on the length of the
path in conjunction with d-transitivity will yield that X and Y must be dependent given Z in the original
model. Any path either contains a head o head node or an outward link on an end, thus can be broken
into one or two shorter paths (possible of length zero corresponding to base steps) these along with the
only if direction of the d-transitivity axiom complete the induction. )

(I-mapness) Consider an arbitrary separation /(X, Z, Y) in the influence diagram. This time up-
ward induction and the if direction of the d-transitivity axiom are used to show that the corresponding
statement must be in the original model. Suppose that 7 (X, Z, ¥) is not in the original model, then one of
the two consequents of the d-transitivity axiom must be false. In either case there is one or two indepen-
dence statements which must be false, and inductively mean that certain paths must exist. These paths
along with the corresponding links will imply that there is a path between X and Y which is activated by Z
in the influence diagram. This contradictory to the hypothesis, so the independence must hold in the ori-
ginal model. O

INFLUENCE DIAGRAM ENTAILMENT

The complexity of the d-separation axioms inhibits their direct practical use. In fact, they cannot
be used as a set of (computable) inference rules, nor do they help to solve the membership problem. But
the ideas behind the axioms do help to shed light on the structure of d-separation. One problem concem-
ing influence diagrams that has received much attention is that of entailment: determination of the condi-
tions under which one influence diagram entails another. The notions of adjacency and conditional adja-
cency permit a concise statement of the conditions for influenced diagram entailment.

Theorem 2: For any two influence diagrams, D and E over the same set of nodes N, D = E if and only if
all three of the following hold:

1. vV a—b = a—
abeN P E
2. ¥ a—blc = a—blc
a,bceN b E
— — —_ —blc v a—=b
3. a‘bgeNaEblc'AaDcx\ch:aD | .



Proof: The only if portion follows directly from the definitions, suppose that D = E. The first part must
hold, otherwise there would be a separation in £ of a and b, which would not hold in D. The same argu-
ment holds for part two.. The antecedent of part three implies that a and b are the head to head parents of
¢ in £, and that they are linked to ¢ in D. If they are not the head to head parents of ¢ in D, and they are
not linked in E, then they are separable in £ and not in D, thus part three must hold.

The if portion follows from induction on the a path in D. Suppose that one through three hold, it
is enough to show that every dependence in D is also in E to complete the proof. Let -~/ (X,Z,Y) be such
a dependence, then there must be a bi-directed path from some node x € X 1o some y & Y which is activat-
ed by Z. But this same path must exist in £ by part one. Further part two insures that any active head to
head node on the path in D is also an active head to head node in E. The only way that this path would
not be active in E is if it had a head to head node on it which was not on it in D, but part three curtails this
possibility, thus the dependency is in E. a

Corollary: For any two influence diagrams, D and E over the set of nodes N, D = E if and only if both of
the following hold:

1. V a—b & a—b
a,beN P E
2. VY a—b|c & a—b]c
abceN P £
APPLICATIONS

Theorem 2 clearly states the conditions under which sound transformations of influence diagrams
can be preformed. The first condition states that no arcs can be removed, thus only reorientation and ad-
dition of arcs are premitted. The second and third conditions concer non-adjacent common parents. The
second condition states that if a reorientation destroys a non-adjacent common parent triple then the
parents must be joined by a link. The third condition states that if a reorientation creats a new pair of
common parents then the pair must be joined by a link.

From this theorem, most results concerning manipulations of influence diagrams, e.g. arc reversal
and node removal [Howard and Matheson, 1981] are immediate. For example consider arc reversal: if an
arc is reversed, condition two implies that every set of nodes which were common parents but no longer
are must be joined by a link. Condition three dictates which new parents must also be linked (only those
which were created as a direct result of reversing the arc, and not those created by the addition of arcs).
Theorem 2 implies that the arc reversal algorithm of Howrd and Matheson is minimal in the number of
added arcs when only one arc is to be reversed, but that it is not minimal when several arcs are reversed.
Another result which follows immediately from theorem 2 is the lisence to add any arcs, which follows
directly since it does not violate any conditions of the theorem. The corollary to theorem 2 implies the
decomposition theorem of [Smith, 1987] which gives a sufficient condition for equivalence.

One major limitation of this theorem is that it only applies to diagrams over the same sets of
nodes. The [Howard and Matheson, 1981] result which gives a sufficient condition for removal of nodes
follows directly from the fact that leaf nodes (nodes with no descendents) can be removed along with
theorem 2. Leaf node removal follows from the definition of d-separation, thus to remove an arbitrary
node, simply reorient any links direct out of it (by use of arc reversal), then remove the node and any
links directed at it. If several arcs are reversed simultaneously, then an application of theorem 2 to main-
tain soundness will create a diagram with fewer links than the sequential application of the Howard and



Matheson method. This still may not be the most efficient diagram with the removed nodes as the deter-
mination of necessary conditions for general entailment remains an open problem.
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