Computer Science Department Technical Report
University of California

Los Angeles, CA 90024-1596

1

COMMENTS TO "A SYSTOLIC ARRAY FOR COMPUTING BA

Jaime H. Moreno July 1988
Tomas Lang CSD-880048

Comments to “A Systolic Array for Computing BA™'”

Jaime H. Moreno and Tomas Lang”
Computer Science Department
University of California Los Angeles
3680 Boelter Hall, Los Angeles, Calif. 90024

Abstract

An algorithm and a systolic array for computing BA™! was presented in {1], where A and
B are n by n and p by n matrices, respectively. Such an array computes BA-l'in(4n+p-2)
time units using n(n + 1) processing elements (PEs). In this correspondence, we apply a graph—
based method for the design of systolic arrays to such algorithm. We systematically derive the
array in [1] and another array that also performs the computation in the same time but using
only [%n(n + 1) + pn] units. For p < %(n + 1), our array uses fewer PEs than the array in {1].
Moreover, our array exhibits throughput (n + 1)~*, high utilization of PEs, and (n+2p) 1JO
ports, while the array in [1] has lower performance for these measures.

1 Introduction

In [1], Comon and Robert introduced a systolic array of n{n + 1) elementary processors that
computes BA~! in (4n 4 p — 2) time steps, where A is a dense (non-singular) n by n matrix, and
B is a dense p by n matrix. Moreover, such an array can be directly extended to compute the
vector Y = BA~'R, where R is a vector with n components. These computations arise frequently
in signal processing applications, as described by Comon and Robert and other researchers [2,3,4].
The algorithm used in [1] is shown in Figure 1.

In this correspondence, we apply a grapli-based method for the design of systolic arrays [5] to
the algorithm in Figure 1. Such method uses a fully-parallel dependency—graph as the description
of the algorithm and performs transformations on the graph to derive an implementation. We
derive the array in [1] and another array that computes the algorithm in the same time but using
only [4n(n + 1) + pn] units. Moreover, this new array exhibits throughput (n 4+ 1)~ and requires
(n 4 2p) I/O ports, while these measures are (n + p)~! and 2n respectively for the the array in [1].

*J. Moreno has been supported by an IBM Computer Sciences Fellowship. This research has also been supported
in part by the Office of Naval Research, Contract NO0014-83-K-0493 “Specifications and Design Methodologies for
High-Speed Fault-Tolerant Algorithms and Structures for VLI

Fork=1ton
begin
k k-1
o) = 1/¢%)
Forj=1ton,j#k

(k) _ _ (k) (k-1)

Crj = ck)kckj
Fori=(k+1)to(n+p) o | 4 n 1| F -l
begin cl = B , Ct= D , D=BA
Forj=1ton,j#k

k) _ Gk=1) L (k-1 (R),

(
€ ik Chkjo

ij
k k—1) (k
CSk) =c£k)C.(wc)§
end

end
Figure 1: Algorithm to compute BA™!
2 Systolic arrays for computing BA™!

Figure 2 depicts the fully-parallel dependency-graph for the algorithm in Figure 1, where A is
a 4 by 4 matrix and B is a 2 by 2 matrix. Such graph is obtained by tracing the execution of
the sequential algorithm in Figure 1 (i.e., symbolic execution of the algorithm that tracks what
variables are used and when). This graph is not suitable for an implementation, because it exhibits
broadcasting of data, bi-directional data flow, too many nodes and O(n?) I/O bandwidth.

We first transform the fully-parallel dependency-graph in Figure 2 into a tri-dimensional graph.
We refer to such tri-dimensional graph as a “multi-mesh dependency-graph.” To achieve such
transformation, we replace broadcasting by transmittent data [6], remove bi-directional data flow
by moving nodes to one side of the sources of broadcasting, and add delay nodes so that depen-
dencies are strictly between neighbor nodes. Specific procedures for these transformations have
been previously described [5]. The resulting graph, shown in Figure 3, consists of parallel meshes
of nodes that are dependent, although such meshes do not have the same number of nodes.

According to our graph-based method, we now transform the multi-mesh dependency-graph
into a two—dimensional graph (i.e., a mesh-dependency graph) by collapsing parallel paths of the
graph onto single nodes. Each path is collapsed onto a different node. In other words, nodes in
a path of the graph are grouped into a single node whose functionality and computation time are
given by the primitive nodes. Such grouping can be regarded as projecting the three-dimensional
dependency—graph onto a two—dimensional graph along any of the three dimensions. Consequently,
there are three alternatives while performing such grouping, one in each dimension, leading to arrays
that exhibit different performance measures as discussed below. Those measures are a consequence
of the quantity and type of primitive nodes that are collapsed onto a single node. For example, if
all groups have the same number of primitive nodes, then the resulting array will exhibit optimal
utilization,

We present now two alternative groupings, along axes X and Y. Grouping along the Z-axis is

[R%]

a|12 a113 al4 ,é
821 g,nzz | 223 d 224 'gb
; E gl
[]
é é [b
l3l1 a/32 a}s a/34 :f
X .
a4 042 a4l ad4
Fy ya ya ya
b1 bi2 g b13 % b14
L i z £
b21 a11 {822 aiz2 | 823 d13 | 224 d1a
d21 d22 d23 d24
- 7 -

Figure 2: Fully-parallel dependency-graph for computing BA™!

1/x

ad1 a42

1
b11 b12

-

b21 b22

B o ol . e

a43

T

b13

Ol

L

LH
o

]

h23

|
— L}H d12
add4 _r‘ Ep .
‘L(ﬂ - A ‘
o o O
L P _’_ L y -j y
o
iy A .. i
1S
d21 d22
bt4 !
LR,
L L
ol o
T o
R '
b24
- deiay

Figure 3: Multi-mesh dependency-graph for computing BA™!

d13

d23 [d24

significantly less efficient so that it doesn’t merit discussing it here.

2.1 Grouping along Y—axis

The first alternative that we consider consists of grouping nodes in the multi-mesh dependency-
graph by vertical paths, that is, each vertical path in the graph is collapsed onto a different node.
The resulting graph is shown in Figure 4a, which leads to the array shown in Figure 4b. This
array corresponds to the one proposed by Comon and Robert. The performance of such an array
is discussed later.

2.2 Grouping along X-axis

A second alternative consists of grouping nodes in the multi-mesh by horizontal paths, that is,
each horizontal path in the graph is collapsed onto a different node. The graph obtained from
such grouping is shown in Figure 5a, which can be mapped onto the array shown in Figure 5b.
Performance of this array is described below.

2.3 Comparison of the arrays

Table 1 summarizes the characteristics and performance of the two arrays derived here. From such
table, we conclude that the array derived from grouping nodes along the X-axis, shown in Figure 5,
has better performance measures than Comon and Robert’s scheme (obtained by grouping along
the Y-axis) because of the following reasons:

e It computes the algorithm in the same number of steps but using fewer units (if p < n/2).
Such improvement is achieved by having all cells highly utilized, while this is not the case in
Comon and Robert’s scheme.

o Throughput of the array while computing successive instances of the algorithm (i.e., compu-
tation of the algorithm for different sets of data), is independent of p.

o Lower I/O bandwidth.

However, Comon and Robert’s scheme has the advantage that it can compute BA-1 for suc-
cessive matrices By, Ba,... on the same array, without modifications. Such a case corresponds to
extending the multi-mesh graph shown in Figure 3 along the Y-axis so that added nodes become
part of existing groups when grouping along the Y-axis. This is in contrast to grouping along the
X-axis, where the added nodes lead to more cells (successive matrices B should be handled as a
partitioning problem in such a case, as mentioned below).

The graphs in Figures 4a and 5a are also suitable for partitioning the algorithm (i.e., computing
a large problem on a small size array), using the partitioning method described in [7]. However,
for this case the graph derived from grouping along the X-axis is more convenient because of the
identical computation time of all nodes.

di1 d12 d13 d14
d21 d22 d23 d24

ol oL o]

E g h 1x
] w B -
[l =e
D c+nb
H

a1): al2 a1l al4d delay
a2 az22 823 a24
adt a32 a3l 234
ad1 a42 a4l a44 . .
b1t b12 613 bi14 (a) Grouplng along Y-axis
b21 b22 523 b24
024
b23 b14
b22 b13 244 i
b21 b12 aa3 834 1/x
b11 242 833 a24 B -ev
841 a32 a2l al4 [=»
a31 a22 213 -] cend
a1 'z o o B ety
¥ ¥ ¥ ¢
—— _’aq:hq'_.
¥ ¥ ¥
a'-.. ., _.Eacba _.EETDDD _'.%"'un
v v ¥ ¥
Y ﬁ% Ry [[,
- [y ¥ ¥ ¥
A 1B LS R
v v v v
-- -- .- d24
(b) Systolic array - ine :33 a14
d21 di12

di1

Figure 4: Grouping nodes along Y-axis

dit

di12

d13
/ d14

d21
d22
d23
d24

all
al2
alld
ald

a21
a22
a23
a24

a3l
al2
a3l
ad4

ad1
asd2
adl
ad4

b11
b12
b13
bt4

b21
b22
b23
b24

(a) Grouping along
X-axis

A 1:x [T b
E -ab D c+ab
. delay

(b) Systolic array

?”2 1/x m]ll ab
E -ab I:l cs+ab

delay

d11
~» b ! e d12
d13
di4
¥

v
T ool
d24

d21

B
[, d22

Figure 5: Grouping nodes along X-axis

Table 1: Performance measures of systolic arrays to compute BA™!

Y-axis X-—axis

(Comon - Robert)

Computation time dn+p-2 dn+p-—2
Throughput (n+p)t (n+1)71!
Number of cells n(n+1) zn(n+1)+pn
I/O ports 2n n+2p

T . n{n+2p+1 2
Utilization Fnritmrs) Ay !
Cells complexity 3 types 2 types

1/z,[-ab,c+ ab),ab | [1/z, —ab},[c+ ab, ab]

3 Conclusions

We have applied a graph-based method for the design of systolic arrays to an algorithm that
computes BA~!. We have systematically derived two systolic structures for such algorithm, among
them one previously proposed by Comon and Robert. We concluded that the array shown in
Figure 5 has better performance than Comon and Robert’s scheme.

This exercise has shown that the application of a graph-based design method for systolic arrays
is powerful, producing results that are new and more efficient than others devised in ad-hoc man-
ners. Moreover, such arrays are systematically derived giving consideration to a set of performance
measures.

References

{1] P. Comon and Y. Robert, “A systolic array for computing BA~l” IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. ASSP-35, pp. 717--723, June 1987,

[2] H. Kung, “Why systolic architectures?,” IEEE Computer, vol. 15, pp. 3746, Jan. 1982.

[3] H. Ahmed, J. Delosme, and M. Morf, “Highly concurrent computing structures for matrix
arithmetic and signal processing,” IEEE Computer, vol. 15, pp. 65-82, Jan. 1982.

[4] J. Speiser and H. Whitehouse, “Parallel processing algorithms and architectures for real-time
signal processing,” in SPIE Real-Time Signal Processing IV, pp. 2-9, 1981.

[5] J. Moreno and T. Lang, “Design of special-purpose arrays for matrix computations: preliminary
results,” in SPIE Real-Time Signal Processing X, pp. 53-65, 1987.

[6] S. Kung, VLSI Array Processors. Prentice Hall, 1988.
[7] J. Moreno and T. Lang, “Graph-based partitioning of matrix algorithms for systolic arrays:
application to transitive closure,” in International Conference on Parallel Processing, 1388.

