Computer Science Department Technical Report
Artificial Intelligence Laboratory
University of California
Los Angeles, CA 90024-1596

FORMING GLOBAL REPRESENTATIONS WITH EXTENDED
BACKPROPAGATION

Risto Miikkulainen June 1988
Michael G. Dyer CSD-880039

Forming Global Representations with
Extended Backpropagation

Risto Miikkulainen
Michael G. Dyer

April 1988

Technical Report UCLA-AI-88-7

FORMING GLOBAL REPRESENTATIONS WITH EXTENDED BACKPROPAGATION!

Risto Miikkulainen
Michael G. Dyer

Anificial Intelligence Laboratory
Computer Science Department
University of California, Los Angeles, CA 50024
risto@cs.ucla.edu, dyer@cs.ucla.edu

ABSTRACT

Representing concepts distributively provides several advantages over local representation, e.g. associa-
tions and generalizations directly arise from the representations and the system is robust against damage
and noise. Forming distributed representations is problematic. One approach is to classify the concept be-
forehand along several microfeatures and to represent each microfeature locally. The question remains as
how to determine the appropriate microfeatures. This paper presents an alternative to fixed microfeature
encoding. Meaningful global representations are developed automatically while leaming the processing
task. When the backward error propagation is extended to the input layer the representations of the input
items evolve to reflect the underlying relations relevant to the processing task. No microfeatures and no
discrete categorization can be seen in the resulting representation, all aspects of a concept are distributed
over the whole set of units as an activity profile. The representation is determined by all the contexts
where the concept has been encountered, and consequently it is also a representation of all these contexts.

1. INTRODUCTION

Representation of concepts is a key issue in natural language processing with neural networks. In the dis-

tributed approach different concepts are represented as pattems of activity over the same set of units.
Desirable properties are achieved: (1) it is possible to associate similar concepts and generalize properties
by sharing the same activity subpatterns, and (2) the system is robust against noise and damage [R86
Ch.3]. On the other hand, the representations are hard to build and process. In many systems they are
hand coded by classifying each concept along dimensions of microfeatures such as size, softness, mass,
animateness etc. Each microfeature is assigned a processing unit (or a group of units) and the
classification becomes a pattern of activity over the network [R86 Ch.19], [H81]. Obvious questions are
what are the relevant microfeatures and how are they determined?

The only way to avoid ad hocness completely is to let the activity patterns be formed by the network it-
self. The patterns do not necessarily have to implement a classification of the concept along any identify-
able features. In the most general case they are simply profiles of continuous activity values over a set of
processing units. This paper presents one such mechanism, where the representations are developed au-
tomatically while the system is learning the processing task. We call this process FGREP (Forming Glo-
bal Representations with Extended back Propagation).

2. DESCRIPTION OF THE FGREP PROCESS

The system is based on a basic three-layer backward error propagation network, with the dynamics of
[R86 Ch.8 pp.327-329]. The first goal, leamning the processing task, is achieved by adapting the connec-
tion weights according to the backward error propagation principle. The second goal, developing mean-
ingful distributed representations for the data, is achieved by extending the error signals to the input layer
and modifying the representations as if they were weights on connections coming in to the input layer.

IThis research was supported in part by an ITA Foundation grant and the JTF program of the DoD, menitored by JPL. The first
author was also supported in part by grants from the Academy of Finland, the Finnish Cultural Foundation, The Jenmy and Antti
Wihuri Foundation and The Thanks to Scandinavia Foundation, The simulations were carried out on equipment donated to
UCLA by Hewlett Packard.

In a sense, the representation of a concept serves as input activation to the input layer. The activation of
an input unit is identical to the corresponding component in the representation. In this analogy, the activa-
tion function of an input unit is the identity function and its derivative is one. The error signal can now be
computed for each input unit as a special case of the general error signal equation [R86 Ch.8 Eq.14]:

By = Thwyy. (1)
j

where 8, stands for the error signal for unit y in layer x, and w; is the weight between unit { in the input
layer angunit jin the first hidden layer. :

R R

Layer 0: Local c¢oncept units
{binary)

1n Representation R 4

* Q Layer 1: Input layer

Figure 1: Interpretation of representations

Imagine a O:th layer before the input layer, with one unit dedicated to each input concept (figure 1). In
this layer exactly one unit is active with value 1 at any time (the one corresponding to the current input},
the rest of the units have O activity. Each local unit is connected to all units in the input layer with
weights equal to the input representations. Extending back propagation weight change to these weights
can be interpreted as changing the representations themselves: @

Arg; =Mdy7cis

where r,; is the representation component i of concept ¢, 8y; is the error signal of the corresponding input
layer unit and 7 is the learning rate. Using this analogy, representation learning can be implemented as
an extension of the back propagation algorithm. There is a minor difference in the last step: while the
weight values are unlimited, the representation values are limited between the maximum and minimum
activation values of the units. The new activity value for the representation component i of concept ¢ is
obtained as

3

r.(t+1) =max[a;, minay, ra@EHNdyra(01),
where g; is the lower limit and g, is the upper limit for unit activation.

Instead of using the internal and local representation of concepts as input weights, we have chosen to
separate the representations from the network and treat them as global, extemal objects. This way the
same representations can be used in different parts of the network, both in the input and in the output.
The input layer can be divided into assemblies so that several concepts can be represented and modified
simultaneously. If the same concept occurs in several assemblies at the same time, the individual changes
are simply summed together. It is evident that the representation values need to be continuous. Individu-
al changes made in the process are small but converge in the course of time in a manner similar to the
weights. The representation is developed by a process which tends to improve performance in the pro-
cessing task. There is reason to believe that the representation will effectively code properties of the input
elements which are most crucial to the task.

3. EXAMPLE TASK: ASSIGNING ROLES TO SENTENCE CONSTITUENTS

In [R86 Ch.19] McClelland and Kawamoto describe a system which learns to assign case roles to sen-
tence constituents. The same task with the same data was used to test FGREP, mainly because it provides
a convenient comparison to a system using fixed microfeature encoding. The architectures and goals of
the two systems are compared in section 4,

Case role assignment means reading in the surface structure of the sentence and deciding on the semantic
relations of the sentence constituents. For example, in The man ate the pasta with cheese,
the sentence subject man is the agent of the ate-act, the object pasta is the patient and the with-
clause cheese is a modifier of the patient. Role assigment is context dependent: e.g. in The ball
broke the window the subject of the sentence is the instrument of the broke -act. In The ball
moved the same subject is the patient of a different act. Assignment also depends on the semantic pro-
perties of the concept. In The man ate the pasta with cheese the with-clause modifies the
patient butin The man ate the pasta with a spoonthe with-clause is the instrument of eat-
ing. In yet other cases the assignment must remain ambiguous. In The girl hit the boy with
the ball there is no way of telling whether ball is an instrument of hit or a modifier of boy.

The task was restricted to a small repertoire of sentences studied by McClelland & Kawamoto. The sen-
tences consisted of a subject, verb, object and a with-clause. The possible case roles were agent, act, pa-
tient, instrument, and modifier-of-patient. The data generators are depicted in table 1 and the noun
categories in table 2 (source: [R86 Ch.19]). The categorization is not visible to the system: it is only man-
ifest in the combinations of nouns that occur in the input sentences. To do the case role assignment prop-
erly the system had to figure out the underlying relations and code them into the representations.

TABLE 1: SENTENCE GENERATORS TABLE 2: NQUN CATEGORIES
Gener Sentence Frame Correct case roles Category Nouns
1. The human ate. agent human man woman boy girl
2. The human ate the food. agent-patient animal bat chicken dog sheep
3, The human ate the food with the food. agent-patient-modlf wolf lien
4, The human ate the food with the utensil, agent-patient-inatr predator wolf lion
5. The animal ate. agent prey chicken sheep
6. The predator ate the prey. agent-patient food chicken cheese pasata
carrot
7. The human broke tha fragile-ob]). agent-patient utensil fork spoon
B. Tha human broke the fragile-obj with breaker agent-patient-instr fragile-oby plate window vase
9. The breaker broke the fragile-obj. instr-patient nitter bat ball hatchet hammer
10. The anlmal broke the fragile-obi. agent-patlent vase paperwt rock
11. The fragile-obj broke. patient breakear bat ball hatchet hammer
paparwt rock
12, The human hit the thing., agent-patient possession bat ball hatchet hammer
13. The human hit the human with the possession. agent-patient-modif vase dog doll
14, The human hit the thing with a hitter. agent-~patlient-lnstr objact bat bkall hatchet hammer
15, The hitter hit the thing. instr-patient paperwt rock vase plata
windew fork spoocn pasta
16. The human moved. agent-patlent cheesa chicken carrot
17. The human moved the object. agent-patlent desk doll curtain
i8. The animal moved. agent-patlient thing human animal ocbiect
19. The object moved. patlent

3.1 System Architecture and Operation

System architecture is best explained in terms of figure 2, which shows the final stage of the simulation.
The figure is a snapshot of a real-time display of the process running on an HP 9000/350 workstation.

The header line displays the current input sentence. The top half of the display shows the current
representations of the concepts, i.e. the current state of the lexicon. The lower half shows the current state
of the network. The input and output layers of the network are divided into assemblies, each of which can
hold one concept representation at a time. An input sentence consists at maximum of four concepts: sub-
ject, verb, object and a with-clause. The actual input to the network is formed by loading the lexicon en-
try of each concept of the sentence into the input assembly corresponding to the syntactic role of the con-
cept. Each unit in the assembily is set to the activity value determined by the corresponding component in
the lexicon entry. The network is fully connected, i.e. there is a connection from each input unit to each
hidden unit and from each hidden unit to each output unit. The weights on the connections are displayed
as square matrices between the layers. The output layer is divided into five assemblies indicating the case
roles agent, act, patient, instrument and modifier. After the network has successfully learned the task,
each output assembly produces an activity pattern which is identical to the lexicon representation of the
concept that fills that role. The correct role assignment is shown at the bottom row of the display. This
pattern forms the teaching input to the network. The representation layer (above the input layer) contains
the new, modified representations after processing the current input. The unit activity values (in the in-

Current:| Phaze: | Cycla: S0 Input; 1559 FEta: 8,102088 The girl hit tha wowmn with the bell
: bald

ZQOHXMI

Reprea:
Input:

Liput
We 1 ghes

H1dden

Butput
Haighte

Qutput:
Teachs

Figure 2: Final state of the system

put, hidden, and output layers) and the representation values (in the lexicon, representation layer and
teaching input layer) range from zero to one and are coded as shades of gray from white to biack in the
figure. The weights are unlimited; the figure displays the interval [-1, 1] from white to black.

The process begins with the components of the representations uniformly distributed in the interval [0,1]
and the connection weights in the interval [-1,1]. A set of input sentences and their correct role assign-
ments are generated. The system cycles through the data set 50 times in a random order. Each sentence is
presented to the network and an output activation pattem is produced. The correct activity pattern is load-
ed into the teaching layer and error signals are formed for each output unit. The network propagates back
the error, changing weights according to the backward error propagation rules, and changing the lexicon
representation of the input concepts according to equations (1) and (3). Next time the same concepts oc-
cur in a sentence, their new representations are used in the input and in teaching. Gradually the network
converges to a set of representations and weights which facilitate appropriate performance in the case role
assignment task.

In this particular task the teaching input is made up from the input sentence constituents. This is by no

means necessary for leamning the representations. The required output of the network could be anything
and the FGREP method would work the same. As a matter of fact the convergence in a "pigeonholing”
task is slower than in a general task because the required output is changing as the representations
change.

Cycle; 22 Eta:

Figure 3: Representations have converged to reflect the categories
3.2 Developing the Representations

Figure 3 shows the representations developed by the system, organized according to the noun categories.
Starting from random representations, the similarity of the nouns belonging to the same category in-
creases until the changes begin to cancel out. This happens usually within the first 20 cycles. During the
remaining cycles, the representations are fairly stable while the task performance still improves. With
different initial representations, the final set of representations in general is different. The overall charac-
teristics of the representations and the performance of the system is approximately the same in all cases.

Some concepts belong exactly to the same categories and consequently occur exactly in the same con-
texts. They are indistinguishable in the data and their representations become identical. [man, woman,
boy, girl] forms one such equivalence class, [fork, spoon], [wolf, lionl, [plate, window],
[ball, hatchet, hammer], [paperwt, rock] and [cheese, pasta, carrot] others. If there
is at least one difference in usage of two nouns, their representations become different. The discriminating
input modifies one of the representations while the other one remains the same. Since each noun belongs
to several categories its representation can be seen as evolving from the competition between the
categories. This is clearest on the part of the ambiguous nouns chicken and bat, which on the other
hand are both animals, but chicken is also food and bat isa hitter. The representation is a
combination of both, weighted by the number of occurrences of each meaning. On the other hand, the fact
that there is a common element in two categories tends to make ail representations of the two categories
more similar. In other words, the properties of one concept are generalized, to a degree, to the whole
class.

A single unit does not play a crucial role in the classification of concepts. The fact that a concept be-
longs to a certain category is indicated by the total pattern of activity instead of particular units being on
or off. There are no identifiable microfeatures in this kind of representation. One should rather talk about
activity profile characteristics. Note that the categorization of a concept in figure 3 is formed outside the
system and is independent of the task, other categories and other concepts. The system iiself is not at-
tempting categorization, it is forming the most efficient representation of each concept for the particular
task. The representations of similar concepts become more alike, but this is a continuous process which
occurs in all categories and between all concepts at the same time,

3.3 Performance with the Learned Representations

The system was trained with an input set where two sentences from each sentence generator were
reserved. The performance in the role assignment task after 50 cycles was tested with two test sets: the
first one consisted of two sentences from each generator which were included in the training set, and the
second one consisted of the reserved sentences. The first test measures the association capabilities of the
system, while the second test measures the capability of the system to generalize into unfamiliar situa-
tions. The robustess of the representations was tested by removing the last n % of the units from each in-
put assembly and measuring the association and generalization capabilities of the damaged system.
Tables 3 and 4 present results for each sentence. The leftmost entry in each row of these tables identifies
the generator which produced the sentence (referring to table 1). The degrees of damage were 0, 25 and
50 percent, which means that 0, 3 and 6 units were removed from each input assembly. The figures indi-
cate the percentage of output units whose values were within 15 percent of the correct output value. More
detailed test runs are presented in [M87].

TABLE 3: FINAL PERFORMANCE (FAMILIAR SENTENCES) TABLE 4: FINAL PERFORMANCE (UNFAMILIAR SENTENCES)
Gener Input Damaget: 0.0 25,0 30.0 Gener Input Pamage%:; 0.0 25.0 50.0
1. man ate 81.7 6€6.7 &5.C 1. boy ate 5.0 66,7 63.3
1. girl ate Bl.7 66.7 65.0 1. woman ate B3.3 66.7 63.3
2. weman ate cheese 96,7 70.0 60.0 2, woman ate chicken 93,3 65.0 58.3
2, woman ate pasta 98.3 73.3 60.0 2, man ate chicken 95,0 66.7 58.3
3. woman ate chicken pasta 95.0 60,0 53.3 3. woman ate chicken carrot 91.7 66.7 :5.0
3. man ate pasta ¢hicken 85,0 70,0 48B.3 3. boy ate carrot pasta 91.7 66.7 50.0
4. girzl ate pasta spoon 93.3 71.7 65.0 4. man ate chicken fork 93.3 73,3 51,7
4, ooy ate chicken fork 93.3 75,0 53.3 4, woman ate carrot fork 91.7 73.2 58.3
5. dog ate 68.3 60.0 60,0 5. bat ata 71.7 56,7 56,7
5. sheep ate . 73.3 63.3 58,3 S. chlcken ate 75.0 65.0 61.7
6. lion ate chicken 81.7 61.7 53,0 6. wolf ate chicken 8.3 66,7 56,7
€. llon ata sheep 83.3 €5.0 58.31 6. wolf ate sheep 80.0 65.0 61.7
7. woman broke window %0.0 71,7 5B.3 7. girl broke plate g0.,0 71.7 5B.3
7. boy broke plata 40.0 78.3 B56.7 7. woman broke plate 88.3 70.0 56.7
8. man broke window bat 91,7 66.7 68.3 8. man broke vase ball 90.0 73.3 66.7
8. boy broke plata hatchet £8.3 68,3 65.0 B. girl broke vase hatchet 95,0 76.7 75.0
9. paperwt brocke vase 88,3 83.3 78.3 9, hammer broke vase 93.3 85.0 1.7
9, rock broke window BB.,3 78.3 63,3 9, ball broke vase 95,0 86,7 76.7
*10. bat broke window 71.7 66.7 51.7 *10. bkat broke vase 75.0 68.3 61.7
10, wolf broke vase 78.3 65.0 55.90 10, dog broke plate 73.3 68,3 53,3
il, vase broka 86.7 80,0 70,0 11. plate broke 81.7 80.0 73.3
il. window broke 80,0 5.0 75.9 11. plate broke 81,7 80.0 73.3
12, man hit paata 100.0 88,3 70.0 12. boy hit girl 95.0 91.7 68,3
12. girl hit boy 98,3 9%0.0 70.0 12. girl hit carrot 100.0 86.7 70,0
*13. man nit girl hatchat 83.3 70.0 51.7 *13, man hit boy hammer 80.0 1.7 46.7
13, woman hit man doll 90.0 76,7 656.7 13. boy nitc woman doll 3l.7 76,7 356.7
14, woman hit bat hammer 120.0 85,0 71.7 14, girl hit curtaln bkall 100.0 BS5.0 68B.3
*i4, girl hit womarn kall 80.0 80,0 70.0 14. qgirl kit spoon rock 98.3 78.3 63.3
15, hatchet hit pasta 98,3 90.0 B&.7 15. paperwt hit chicken B§.7 B5.0 #81.7
15. hammer hit vase 100.0 95.0 B86.7 15, rock hit plate 95.0 Bl1.7 70.0
16. man moved 88,3 73.3 75,0 16. boy moved 45,0 73.3 73.3
16. woman moved #5.0 73.3 71.7 16, girl moved 5.0 73.3 73.3
17. woman moved plate 9.3 73.3 70.0 17. man moved window 100.0 75,0 0.0
17. girl moved pasta 98.3 83.3 70.0 17. girl moved hammer 100.0 81.7 71.7
*18. chicken moved 71,7 61.7 1.7 18. wolf moved 71.7 6L.7 76.7
18, lion moved 75.0 60.0 70.0 18. sheap moved 65,0 61,7 71.7
19, dell moved 90.0 8C.0 71.7 19, paparwt moved 75.¢ 68.3 58.3
19, desk moved 95,0 81,7 80.0 19. hatchet moved 96.7 83,3 78.3
AVERAGESY 87.8 73.6 65.4 AVERAGE% B?7.3 73.3 64.7

The system leamned the correct assignment of most sentences. Difficulties arise in ambiguous cases (indi-
cated by '*"), where the system develops an intermediate output between the two possible interpretations,
as shown in figure 2. The system also performs poorly with the animal meanings of bat and
chicken. Because a vast majority of the occurrences of bat are hitters,and chicken is more
frequently food than animal, their representations become better hitter and foodthan animal.

Strikingly, there seems to be very little difference in performance between the familiar and unfamiliar
cases. The generalization capabilities of the system are exceilent. This is a result of the system’s tenden-
cy to develop similar representations to similarly behaving concepts. In a precoded, fixed microfeature
-based system, such as McClelland and Kawamoto’s, even though two concepts are equivalent in the in-
put set, their representations remain different. With FGREP approach the representations become more
similar, which means that generalization is necessarily stronger. Damage resistance is also very good.
Even with half the input units removed, the system gets 65% of the output within 15% of the comect
value. This is partly due to the general robustness of hidden-layer networks but also partly due to the fact
that the representation is not coded into specific microfeature-units, but is distributed over all units.

The behaviour of the system is fairly insensitive to the learning parameters and system configuration
parameters. Several different values of the leaming rate 1| within the range 0.01 - 5.0 were tried and also
increasing it in six steps from 0.01 to 0.5 (see [P86]). All these cases lead to essentially identical results.
The number of units in the representation and the number of hidden units are not crucial either: values as
low as 5 and as high as 100 were tested. If more hidden units are used, the task performance, generaliza-
tion capability and damage resistance improves slightly and the leamning in general is faster. Decreasing
the number of hidden units on the other hand lays more pressure on the representations, and a more uni-
form set of representations results. In general, the best results are obtained when the number of hidden un-
its is somewhat less than half the number of units in the input layer.

It must be noted that direct comparison of performance to McClelland and Kawamoto’s system is hard

because of the different architectures and goals. Percentage of correct units is not a very good perfor-
mance measure for their system since in all cases most of the output units should be off. Also, to leam
the representations properly the training set should be as large as possible, whereas if the representations
are predetermined, smaller training sets can well be used. Generalization capabilities as a function of
training set size have not been tested.

4. RELATED AND FUTURE WORK

In McClelland and Kawamoto’s system, the representations were hand coded as a collection of micro-
features and remained fixed throughout the experiments. The network consisted of two layers of binary-
valued units with the input and output layer both divided into assemblies. A concept was represented in
an input assembly as the outer product of the concept’s microfeature vector with itself. Each unit in an
input assembly stood for a conjunction of two microfeatures of the concept, and each unit stochastically
determined whether it was going to be on or off, biasing the decision according to the activation the unit
received from the two microfeature units. In an output assembly a concept was represented according to
the same principle, except that the outer product was formed of the concept’s microfeature vector and the
microfeature vector of its head concept. The weights between the fully connected input and output layers
were adjusted according to the perceptron convergence procedure. The primary goal of the experiment
was to teach the system to assign correct semantic roles to the concepts, based on their syntactic role and
the semantic context within the sentence [R86 Ch.19]. The system described in this paper, on the other
hand, is a three layer backward error propagation network with the error propagation extended to the in-
put layer. The units produce deterministic activation values between zero and one. Input and output con-
cepts are represented directly as vectors of these units. The initial representation is random and adapts
continuously to the input data. The main goal of the experiments was to show that microfeature coding is
not necessary. Meaningful global representations can be developed by the system itself while it is learn-
ing the processing task.

In [H86] Hinton describes a system which develops internal distributed representations of concepts. This
back propagation network consists of five layers: input, output and three hidden layers. The input and out-
put layers have exactly one unit dedicated to each input/output concept. The hidden layers next to the in-
put and output layers contain considerably fewer units, which forces these layers to form compressed dis-
tributed activity pattems for each input/output concept. Since both penultimate layers develop their ac-
tivity patterns independently, each concept has two different representations: one as input and another one
as output. It is possible to impose linear constraints on the input and output activity patterns and force

these to become the same [H87). This kind of system would develop representations very similarly to our
model. However, we have chosen to treat the representations as separate objects global to the system, in-
stead of local activity patterns in the internal layers. Our architecture reflects the eventual aim of using
the system as a building block in larger language understanding systems. Looking at the input representa-
tions, Hinton is able to identify some features of the input with particular units, while others do not have
any clear interpretation. Our results suggest, that in a more complex task, interpreting individual units is
not possible. The features of the concepts are in general distributed over the set of units, which also
seems to make the representation more robust against damage.

The prime direction of further work is to use the leaming of distributed representations as a building
block in higher level language understanding systems. Major issues include: (1) invariance versus adapta-
bility of the representations over changing data, (2) efficiency in the task performance versus portability
of representations between building blocks, (3) hierarchical versus independent building of deeper mean-
ings, and (4) hierarchical versus competition-based creation of sequentiality [M87].

5. CONCLUSION

The FGREP method provides an alternative to fixed microfeature encoding of concept representations.
With backward error propagation extended to the input layer, meaningful global representations develop
automatically while the system is leaming the processing task. There are no identifyable microfeatures
nor discrete categorizations in the resulting representation. All aspects of a concept are distributed over
the whole set of units as an activity profile, making the system particularly robust against damage. The
representation evolves to improve the system’s performance in the processing task and therefore
efficiently codes the underlying relations relevant to the task. This results in excellent association and
generalization capabilities. Using the leamed representations, the system is able to assign case roles
correctly, indicate degree of confidence when the sentence is ambiguous, and generalize correctly for un-
familiar sentences.

Our approach is based on the philosophy that concepts are defined by the way they are used. Leaming a

language is learning the usage of the language elements; language is a skill. The meaning of a concept is
encoded in its representation. This is defined by all the contexts where the concept has been encountered,
and it determines how the concept behaves in different contexts. The representation as well as the mean-
ing evolves continuously as more experience is gained. On the other hand, the representation carries a
memory trace of all the contexts that defined it. The more frequent the context, the stronger is the trace.
When a concept is encountered and its representation activated, a large number of expectations about the
context are immediately active with different degrees of confidence, corresponding to the memory traces.
As more concepts are input, the expectations created by the memory traces are amalgamated and the set
of possible interpretations narrows down. All this emerges automatically and continuously from the input
concept representations, and should tum out to be useful in larger language understanding systems,

REFERENCES

[H81] G. Hinton. Implementing Semantic Networks in Parallel Hardware, in Hinton & Anderson (eds.), Parallel
Models for Associative Memory, LEA Press, 1981,

[H86] G. Hinton. Learning Distributed Representations of Concepts, in Proc. of CogSci-86, 1986.

{H87] G. Hinton. Personal communication, 1987.

{M87] R. Miikkulainen & M. Dyer, Building Distributed Representations without Microfeatures, Technical Report
UCLA-AI-87-17, UCLA 1987.

{P86] D. Plaut, S. Nowlan, G. Hinton, Experiments on Back-Propagation, Technical Report CMU-CS-86-126, CMU
1986,

[R86] D. Rumelhart, J. McClelland and the PDP Research Group. Paralle! Distributed Processing, MIT Press,
1986.

