WEIGHT MATRIX = PATTERN OF ACTIVATION

Michael G. Dyer April 1988
Margot Flowers CSD-880026
Yih-Jih Alan Wang






Weight Matrix = Pattern of Activation
Encoding Semantic Networks as Distributed Representations
in DUAL, a PDP Architecture®

Michael G. Dyer
Margot Flowers
Yih-Jih Alan Wang

Al Lab, CS Department
University of California
Los Angeles, CA 90024

ABSTRACT

Using the insight that WMx = PoA (i.e. that weight matrices and patterns of activation are two
sides of the same coin), we have designed and implemented DUAL, a PDP memory management
architecture to encode and manipulate a symbolically specified semantic network as a virtual,
distributed, directed graph in a PDP architecture. DUAL consists mainly of two PDP networks.
The STM network functions as a working memory to temporarily hold all of given node’s
associations, while the LTM network functions as a long term memory for the entire semantic
network. The process of encoding causes DUAL to discover distributed representations for all
nodes in the semantic network. As a result, nodes with similar associational links are merged and
generalized. The DUAL architecture allows us to manipulate the virtual semantic nctwork at a
symbolic level, while at the same time retaining many of the robust features (of learning,
generalization, graceful error degradation, etc.) associated with PDP networks.

1. MOTIVATION and APPROACH

Namural language processing (NLP) systems must manipulate very abstract forms of knowledge, e.g. the goals, plans
and beliefs of narrative agents. Consider just a fragment of the knowledge needed to understand, and answer questions
about, the following narrative segment:

John promised to watch the baby for Mary. John decided to read a book. The baby crawled outside and fell
into the swimming pool.

Q: Why did Mary accuse John of being irresponsible?
A: John had agreed to protect the baby from harm, but the baby nearly drowned.

The necessary background knowledge (informatly stated) includes:

<x promise y that z> implies

<x communicated to y that x has goal G(x), satisfied by z>

<y communicated to x that y has goal G'(y), to be agent for x>
<after communications, y believes that G(x) and x believes that G'(y)>
<x watch y for z> implies

<x attends eyes(x) to y and if possible act A(y) can cause harm to y,

then x performs act B to block A>

<x can know act A(y) by atending eyes(x) to A(y)>
<babies cannot swim and may drewn in water>
<possibility of drowning(x) threatens preservation of health goal>
<irresponsible(x wrt y)> implies <promise by x followed by goal failure for y>

* This research is supported in part by a coniract with the JTF program of the DoD, monitored by JPL, and by a grant
from the ITA Foundation. The simulations were carried out on equipment donated by Hewlett Packard.



The traditional approach to the NLP representation problem is to hand code symbolic structures in a Von Neumann
architecture, instantiate instances of such structures and then bind them through symbolic operations. While the
behavior on limited texts is impressive, the resulting complexity of knowledge interactions and the fragility of such
systems is well known (Dyer 1983). Connectionists hope to overcome these problems through automatic leaming

of distributed structures.

1.1. Approaches to Encoding Abstract Knowledge in Connectionist Architectures.
Faced with the task of encoding such abstract forms of knowledge, we can take any of several approaches:

1. Brute Force Training: E.g., create thousands of sample narratives, in which a character acts irresponsibly. Feed
them to your favorite ANS (artificial neural system) and perform your favorite adaptive algorithm, e.g. such as back
error propagation (BEP) over a multi-layer PDP network. Hope that a notion of “irresponsibility” will magically
emerge. Unforiunately, the search space is much too complex. Even humans can only leam about promises,
agency, danger, responsibility etc. after having built up intermediate knowledge structures based on prior stages of
learning.

2. Delay: Wait for neuroscientists to figure out what the brain is doing past the level of surface sensory filtering.
This approach, while advocated by some neuroscientists, is unappealing to those interested in exploring theories of
abstract semantics, planning and reasoning. Besides, an exploration of the functional/logical constraints imposed by
NLP tasks, coupled with architectures to perform these tasks, could supply the theoretical framework needed for
neuroscientists to form reasonable hypotheses concerning semantic processing in the brain. Imagine that, say, an
old DEC-10, with its virtual memory, multi-tasking operating system, etc. had been sent back to the pre-
computational times of the 1940's. Imagine that neuroscientists attempted to form theories of its function by
sampling electrons flowing through, say, its bus while observing its input/output behavior for various tasks. What
would have been their chance of forming a reasonable theory? How much more complex the task must be when it
is the human brain under study.

3. Symbolic Neuro-Engineering: This approach takes the following steps: (a) Specify task-related knowledge
structures (KSs) and processes symbolically, using known knowledge engineering techniques in Al, (b) encode these
KSs into a distributed form within an architecture composed of ANS modules, and (c) use the adaptive capabilities of
each ANS module to remove the initial fragility of the KS originally input. This approach allows one to
incorporate the synthetic, task-driven orientation of Al knowledge engineering with the bottom-up, analytic approach
that dominates in the neurosciences.

1.2. Observation: WMx = PoA

The symbolic neuro-engineering approach motivates one to find techniques for creating distributed knowledge
structures. The approach we will describe in this paper is based on an observation by the third author, namely:

An entire, multi-layered PDP network, or any network representable as a weight matrix (WMx), can be
transformed into a pattern of activation (PoA) in the input layer of a larger network. Likewise, the PoA
output by one network can be used to dynamically construct another network (WMx).

This fundamental relationship can be exploited in many ways. We describe one example below.

2. TASK: Encoding Semantic Networks in PDP Networks

Semantic networks (SNs) are standard ways of representing abstract knowledge. Let us consider a concrete example
for discussion -- the knowledge implicit in the following fragment of text:

John was thirsty. He got a glass and went to the refrigerator. John drank some milk.

A simplified, partial SN to capture the essence of this knowledge appears in Figure 1. Here, nodes postfixed with a
"1" are instances of more general nodes. These instances represent the actual events and goals created as a result of
conceptual analysis of the input text. The other nodes represent background knowledge needed to analyze the text.
This example is greatly simplified, with portions missing.



m instan m
e T - G

object . .
C_uQup > instan
isa CINGEST-1_2 : CE.THIRST-1

actor
nglish-gen

inside CORASPL actor ,cw,
sBject enable
QCONTAINERD .
ipside
- instan l english-gen ’m english-gen @
Centon” instal

Figure 1. A simplified, partial example of a semantic network.

The careful reader may notice a number of potential problems with it, including: (1) Back pointers: An ISA link
(from an item to its class) is generally considered unproblematic (e.g. we can easily recail that a dog is an animal)
but what about the INSTAN link, (from a class to all of its instances)? Clearly, access 10 instances should be
handled in a more sophisticated manner (¢.g., spreading activation or discrimination structures can be incorporated
into a SN). (2)Varigbles: Instance nodes encode specific acts or events, but must be linked to general nodes, which
encode rules. The encoding of general rules requires variables. For example, the knowledge that INGEST(ACTOR,
LIQUID) achieves the goal of §-THIRST(ACTOR) requires that both ACTOR and LIQUID act as variables, and be
bound to their instances. This problem can be partially handled by representing named links themselves as nodes.
(3) English Generation: The English-gen link should be attached only to prototypes (not to instances), but we have
done this in the figure for simplicity.

Since we are attempting to show how any SN can be embedded in a PDP network, we will finesse these issues here
(which are issues of organization and representation at the knowledge level, not the encoding level). For our
purposes here, a SN is a directed graph of nodes {...A;...} and named links {...r;...}. It can be represented pictorially
(Figure 2a) or as a case frame (Figure 2b):

(A (rC) (sD)
B (C) (sDy
(C D))
D O

(b)

Figure 2: Two ways to represent a SN, (a} graphical representation, and
(b) case frame representation.



3. OVERVIEW of DUAL ARCHITECTURE

The essence of our approach is to maintain two PDP networks, STM and LTM {(each with input, output, and a
hidden layer). STM acts as a short term memory and encodes link-node pairs associated with a given node in the SN.
LTM acts as a long term memory and encodes an entire SN. These networks are illustrated in figure 3.

length(QUTPUT)=n lcngﬂi(OUTPU"I‘}=N 1+N2
1engthw0vMﬁx11)=N1 —
[/ HIDDEN 7 [/, HIDDEN HANDLE) 7777
1engmw(wMN¥2)=N2 length(HANDLE)<H=n
length(INPUT)=m f length(INPUT)=N1+N2
(a)ST™ (b) LTM

Figure 3. DUAL Architecture, (a) the STM, and (b) the LTM.

STM contains m input and n output units, connected by N1 weights to the hidden units and N2 weights 1o the
output units. $ is an entire matrix containing N = N1 + N2 weights. LTM consists of N input units. Thus, the
complete weight matrix (WMx) of STM is the input to LTM as a pattern of activation (PoA), LTM acts as an
autoassociator. LTM has H hidden units (H=n). Then, a pattern of activation over these hidden units, which we
term a handle, is used to retrieve an S from LTM. Thus, LTM functions as a method of compressing a number of
S's into a single, long term memory weight matrix.

In addition to STM and LTM, DUAL contains a Lexical Memory (LXM). This memory is used to access SN nodes
via lexical nodes (e.g. "John", "milk", "drink™). DUAL also contains a memory of handles (HM). In general, LXM
associates lexical items with SN nodes. HM holds handles as retrieval cues to LTM. STM holds ail (rj A;) link-
node pairs associated with a given SN node A; and LTM holds the entire semantic network as a set of autoassociated,
STM weight matrices.

4, ENCODING METHOD

Links: Each link (r;) is represented as an arbitrary, hand-encoded PoA over the input units in STM. In the current
version of DUAL, these activity patterns remain unchanged during processing. A set of orthogonal representations
is used, in order to minimize interferences, since we want to keep links discriminated.

Nodes: Each node (A;) is represented by its handle and these PoAs vary dynamically as the SN is encoded. The
encoding process involves iterating over all nodes until a consistent set of handles have emerged. In the process of
encoding, DUAL discovers distributed representations for the nodes of the SN, representations consistent with the
desired operations over the SN. To encode an entire symbolic SN (with nodes A)... Ap and with links ry... i) into
LTM, one performs the following four steps (described informally):

1. ENCODE-NODE(A))-- to encode one node A; of SN into STM: Let all of (rj Ay) link-node pairs associated with
A, be encoded into STM, using standard BEP techniques (Rumelhart and McClelland 1986, chapter 8, pp. 327-329),
where the input pattern is r; and the training pattern (output) is the cwrent handle for Ay. Initially, the
representation of each Ay is represented by an arbitrary PoA, The resulting weight matrix will be S;.

2. SL-TRANSF(S;) -- transfer §; to LTM by encoding S; on LTM's input units and by running BEP over LTM
with S; as the training pattern on its output. Update the resulting (new) handle h in HM.



3. LOAD-LTM -- Iterate ENCODE-NODE and SL-TRANSF for all SN nodes: As cach node is encoded in STM,
foreachlinkrj.trainSTMtorespondmmecmenthandle(poimedtobyrj)andmmuansfermeres:nung St

LTM.

4. NORMALIZE -- lterate steps 1-3 above until the SN has stabilized, i.e. the representations for the nodes
(handles) are stable,

The algorithm specifies first iterating over all nodes before updating their representations. In fact, a more dynamic
method could be used, whereby nodes are selected at random and their representations upgraded until convergence.

To retrieve the value of link r; for node A; (with handle h;), we do LS-TRANSF(h;, ry): (1) Use the handle h; over
the hidden units in LTM and use the associative retrieval properties of LTM to produce an output 5;. (2) Transfer S;
to STM by setting all weights in STM to equal activation values specified in Si. (3) Clamp the PoA for r; into the
input units of the STM, and a PoA similar to hy, the handle of the corresponding node Ay, will result in the output
units, if (£j, Ag) is a valid association for A;.

In a Von Neumann architecture, a unique address can be assigned initially to each node; whereupon the pointer fields
for each link can be trivially specified. In DUAL, the representations for each node (A;) are constantly changing as
the representations of the nodes in each link-node pair (associated with Aj) undergo changes. This process occurs
because each link must supply a handle for rerieving an entire weight matrix. In DUAL, each handle points to its
own, virtual PDP network, encoded within another network (i.e., LTM).

5. EXPERIMENTS

To traverse the SN, the operation LS-TRANS is employed. For instance, the questions below can be answered,
using the SN in Figure 1:

Q1: Is John a female? Q2: Who was drinking?
Al: No. John is a male. A2: John.

One executes the following steps respectively for these two questions:

(1) "John"-->LXM-->handle hvjghn", (1) "drink"-->LXM-->handle h-dzing",

(2) LS-TRANSF(hvjohn", 'instan’) (2) LS-TRANSF(h" drink", instant’)-->hingest,
~>hhuman., (3) LS-TRANSF(hingest, 'instan’)-->hingeal.

(3) LS-TRANSF(hpumani . 'gender’) (4) LS-TRANSF(hingest1, ‘ator)-->hpymant.
—->hrale. (5) LS-TRANSF(hpyman1, english-gen)-->hohn"

We have performed some initial experiments on DUAL. Two are describcd below. The first one verifies
experimentally that the approach described in sections 2-4 works, and briefly examines its retrieval accuracy for
various capacities. The second experiment illustrates the nature of the node representations developed during
normalization of the SN.

5.1. Accuracy/Capacity Experiment

Once LTM has been constructed, the next step involves retrieving the WMx representation (for a given node and its
link-node associations). Due to the nature of PDP networks, a certain degree of inaccuracy is likely to be introduced
into these values. Thus, one thing to determine is how the weight matrix representation, recalled from the L'TM
intemnal representation, performs for retrieval in STM. The effectiveness of a particular recalled WMx is determined
by the accuracy of the output from the STM as compared to the original weight matrix. We have attempted to
determine this in three different tests. In each test case, the average number of link-nodes associations for each
concept chunk was five. Due to space limitations, we describe only a portion of our results regarding capacity from
the first test.

Capacity Test: This test is designed to find the limit of LTM in terms of the number of STM weight matrices (5;)
it can hold while maintaining a satisfactory retrieval accuracy rate. While setting the width of each link to 8 bits, we
varied the number of S;'s from 10 to 60, with an interval of 10. In each case, we calculated the average relative error



rate of the original sets of weight matrices right after STM was trained, and of the sets of weight matrices retrieved
after LTM was trained. The resuits are presented in Table below.

Width of Number of Relative Ermror Rate Relative Error Raie
Property/Value Nodes Before LTM Storing After LTM Storing
8 10 1.98% 2.37%

8 20 1.41% 5.96%
8 30 1.79% 22.81%
8 40 2.03% 29.06%
8 50 2.08% 32.98%
8 60 2.39% 30.28%

Tabte 1: Capacity Test Data

Based on our initial tests, we feel that the WMx = PoA approach in DUAL is a promising one. Clearly, more
extensive experiments are needed, including comparisons to human memory performance.

5.2, Experiment in Developing Distributed SN Node Representations

The resuits of this experiment show that DUAL discovers distributed representations of the SN nodes input to the
system and that these representations arc formed to facility the demanded retrieval tasks (i.e. traversing links in the

SN).

Similar Nodes are those with similar link-node associations. Before normalization, similar nodes may be represented
by very different handles although they are computing similar link-node associations. After normalization, (step 4 in
Section 4), however, similar nodes will converge to similar handles. For example, nodes A and B in Figure 2 are
similar. Figure 4 illustrates the initial and final representations for all the nodes of the SN in Figure 2. Here,
similar nodes (A and B) form handles closer to each other than non-similar nodes, say, AandC.

0w >

(a) Before Normalization (b) After Normalization

Figure 4. Representation Developed by DUAL for the SN in Figure 2

6. DISCUSSION: Generalization and Robustness Without Microfeatures

In the connectionist philosophy, every concept should be collectively represented by an activation pattern over all
units. Specific high-level meanings should not be associated with each input, output or hidden unit; otherwise every
unit will become a representation of a valid concept by itself. This result contradicts our goal of distributivity.
However, since we are dealing with high-level symbolic manipulations, we need to retain a means of accessing
specific information about various aspects of each concept (that is, features or properties of a concept).

Microfeatures have been suggested to allow PDP systems to represent high-level concepts while still permitting the
networks to generalize over their inputs by having their encodings share microfeatures. However, there are three
major problems with microfeatures: (1) Inapplicability -- Many microfeatures will be inapplicable for various
entities. For example, the microfeature say, METAL = aluminum, copper, etc., will not be applicable for
representing people. This requires having a huge number of microfeatures specified ahead of time, with most of
them indicated as negative or not-applicable. It seems counterintuitive to represent a person or a building in terms of
what they are not. (2) Tokens vs Types -- It is awkward to distinguish a specific instance from a general concept



using the microfeature approach. For example, the representations for a car, John's car, a convertible,'a bmken car,
and an antique car must all be differentiated in terms of microfeatures. In the case of "John's cat_", it might seem
sufficient to have some "ownership” microfeatures, but what do they look like? Must we establish an ownership
microfeature for each of the possible owners, so that "my car" and "John's car” can be distinguished? If so, not only
will we soon be short of enough microfeatures to go around but also each of the "owned by John" and "owned by
Bill" microfeatures will begin to look more and more like a localist node. If we do not do this, then how can we
solve with microfeatures the problem of representing distinct cars owned by different people? We need a
representation mechanism that encodes concept specific information and avoids encoding inapplicable features or
properties of the concept. In addition, we want to keep the representations of similar concepts similar. (3) Flatness
-- Vectors of microfeatures are flat, i.¢. they lack the ability to represent recursive and constituent structures. Such
structures are necessary to capture grammatical regularities and conceptual relationships, as in "John told Mary that
Bill thought Mary wanted to be kissed.”

DUAL solves these representation problems by using patterns of activation to represent links that function as
normal property names in Al systems. In a semantic network, the node pointed to by a link is interpreted as the
value of that property. Only relevant properties (and their values) are associated with a given node. While only a
small number of the relevant properties need be used per node, the potential number of different properties
representable in a PoA can be very large. By using PoAs also to represent nodes, we solve the type-token problem,
since a given PoA can represent a unique person, event, plan instance, object, etc. We also solve the problems of
constituent and recursive structures since a semantic network with labelled links can represent such structures
directly. At the same time, as we have seen in section 5.2., the representations of these unigue objects are fully
distributed and objects sharing similar links end up converging to similar pattems of activation.

7. RELATED and FUTURE WORK

7.1. Touretzky and Hinton's Models

Hinton and Touretzky (1985) have also addressed the problem of encoding semantic relations in a PDP architecture.
In their case, instead of using a dual network approach, they encode the link r; from A; to Ay as a triple (A; 1j Ay).

As a result, the entire semantic network can be encoded in a single PDP network. !

At this point, it is not clear exactly what the relative advantages and disadvantages of these two approaches might be.
The interference effects are different. When (A rj Ay) is input in their model, it interferes immediately with all
other triples in memory. In DUAL, an (rj Ay) pair can be added to STM without interfering with other node
associations in LTM. Of course, once SL-TRANSF occurs, the resulting STM WMx will interfere with other
weight matrices in LTM. We are currently designing experiments to see what the differences in interference effects
may be.

In Touretzky and Hinton's 1985 model, the representations of each node and link have an equivalent epistemological
status. That is, each node and link is treated as a symbol and is represented as a vector of microfeatures. We have
already discussed the disadvantages of microfeatures. Nor does their model attempt to dynamically alter the input
representations of these symbols to discover distributed representations. In DUAL, distributed representations
facilitate the symbolic operations being applied on them.

Touretzky and colleges (Touretzky, 1987; Touretzky and Geva 1987) have more recently developed a model, DUCS,
that encodes knowledge in terms of frames, with slots and fillers. Frame notations are equivalent to semantic
networks with nodes and labelled links, In DUCS, the representation for slots and fillers are fixed ahead of time and
are not allowed to vary dynamically.

To have a slot in one frame F1 point to another frame F2, DUCS make use of the notion of a "reduced description™.
A "reduced description” for F2, in DUCS, is a subset of the units, able to retricve F2, in the relevant slot in F1.
Traversing a 'pointer’ from one frame to another is similar in spirit to DUAL, which accesses a set of node
associations from a given handle. However, we feel that the notion of WMx=PoA is more general. Instead of using

1 Touretzky and Hinton also have various short term (or working) memories in their system, but these modules are used
for other purposes, e.g. to represent bindings or trigger production rules.



a subset of the units for retrieval, DUAL compresses an entire WMXx (using PoA=WMXx) and then accesses the handle
to retrieve and decode that compression from LTM.

7.2. Pollack's Cascaded Networks

Pollack (1987) describes a a different architecture and task domain, but employs an approach similar in spirit to our
own. His cascaded PDP networks consist of a single layer of perceptrons (the context network) connected by
multiplicative weights to a 3-layer PDP network (the function network)., The cascaded model allows one to transfer
entire weight matrices between each network. Using his cascaded approach, Pollack shows speed up over BEP (in a
single PDP network) for various versions of the parity problem. Pollack also argues, on intuitive grounds, that an
approach that allows one to build a weight matrix in one pass, and then use it in another, simplifies the problem
space by a version of "divide and conquer". Pollack also shows how a cascaded architecture can learn syntactic
grammars for NLP and speculates that more complex NLP problems may require a context network with more than a
single layer of connections. For our task, LTM must possess hidden units to allow compression of an entire STM
weight matrix into the handle that other nodes in the semantic network can 'point’ to.

7.3. Future Work

DUAL is being extended in various directions. First, the current version of DUAL serves as an independent
component in a host system which itself works mainly at the symbolic level. We need to systematically replace
symbolic processes with PDP components. As stated earlier, more extensive experiments on DUAL's performance
are needed, along with comparisons to human memory. One drawback of all models that manipulate a single (A;, 1;,
Ay) relationship at a time is that they run sequentiaily at the knowledge level. This sequentiality is avoided, for
example, in marker parsing systems (Charniak, 1986) which operate over all nodes of a SN in parallel.
Unfortunately, marker passing systems are symbolic and localist. We are currently exploring ways to increase
parallelism for DUAL at the knowledge level.

8. CONCLUSIONS

Using the insight that WMx = PoA (i.e. that weight matrices and patterns of activation are two sides of the same
coin), we have designed and implemented DUAL, a PDP memory management architecture to encode and manipulate
a symbolically specified semantic network as a virtual, distributed, directed graph in a PDP architecture. DUAL
consists mainly of two PDP networks. The STM network functions as a working memory to temporarily hold all
of given node's associations, while the LTM network functions as a long term memory for the entire semantic
network. The process of encoding causes DUAL to discover distributed representations for all nodes in the semantic
network. As a result, nodes with similar associational links are merged and generalized. The DUAL architecture
allows us to manipulate the virtual semantic network at a symbolic level, while at the same time retaining many of
the robust features (of learning, generalization, graceful error degradation, etc.) associated with PDP networks.

REFERENCES

Charniak, E. A Neat Thecry of Marker Passing, Proc. of the National Conference on Artificial Intelligence (AAAI-86),
Philadelphia, PA, 1986.

Dyer, M. G. In-Depth Understanding. Cambridge, MA: MIT Press, 1983,

McClelland, J. L. and Kawamoto, A. H. Mechanisms of Sentence Processing: Assigning Roles to Constituents of
Sentences. in Parallel Distributed Processing, Vol. 2. MIT Press/Bradford Books, Cambridge, MA, 1986.

Pollack, J. B. Cascaded Back-Propagation on Dynamic Connectionist Networks. Proc. of Ninth Annual Conference of
the Cognitive Science Society, Seattle Wash. 1987.

Rumelhart, D. E. and McClelland, J. L. Leamning Internal Representations by Error Propagation. Rumelhart &
McClelland. Parallel Distributed Processing. Cambridge, MA: MIT Press/Bradford Books, 1986.

Touretzky, D. S. and Hinton, G. E. Symbols among the neurons: details of a connectionist inference architecture.
Proc. of International Joint Conference on Artificial Intelligence (UUICAI-85), Los Angeles, CA, 1985.

Touretzky, D. S. Representing Conceptual Structures in a Neural Network. Proc. of IEEE First International Conference
on Neural Networks, San Diego, CA, 1987.

Touretzky, D. S. and Geva §. A Distributed Connectionist Representation for Concept Structures. Proc. of the Ninth
Annual Conference of the Cognitive Science Society, Seautle, WA, 1987,



