IMPROVING CLAUSE ACCESS IN PROLOG

D. Stott Parker March 1988
Thomas W. Page, Jr. CSD-880024
Richard Muntz






Improving Clause Access in Prolog
D. Stott Parker
Thomas W. Page, Jr.
Richard Muntz

UCLA Computer Science Dept., Los Angeles, CA, USA 90024-1596T
ABSTRACT

One of the weakest aspects of Prolog is in its access to clauses. This weakness is lamentable as it makes one of
Prolog’s greatest strengths, its ability to treat programs as data and data as programs, difficult to exploit. This paper
proposes modifications to Prolog and shows how they circumvent important problems in Prolog programming in a
practical way. For example, the proposed modifications permit Prolog programs that perform efficient database
query (join) processing, coroutining, and abstract machine interpretation. These modifications have been used suc-

cessfully at UCLA, and should be easy to implement within any existing Prolog system.

1 Introduction

Systems that have descended from DEC-10 Prolog (6] and C-Prolog [5] contain a host of predicates for accessing
clauses in the Prolog database (assert, retract, abolish, clause, record, findall, eic).
These extra-logical features have been added to Prolog out of necessity, without an accompanying theory to guide
the soundness of their semantics. Consequently, it is difficult or inefficient to program tasks such as the following in
Prolog:

= ¢collect clauses of a predicate in a list (e.g., a relational database select operation)

= coroutine search through clauses of several predicates (e.g., a merge join)

- find the n™ clause of a predicate (e.g., for generalized clause selection with SLD resolution [3] )

« wrile interpreters with proper meta-level clause access [7].

The next section proposes simple extensions to the Prolog ref mechanism and clause predicate. Section 3 shows
how these extensions help circumvent the above difficultics in a practical way. A summary of future directions fol-

lows.

T This work performed under the TANGRAM project, supported by DARPA contract F29601-87-C-0072.



2 Alternative Clause Access Proposals

There are several kinds of access to clauses that we might want. The current mechanism (¢lause/2) provides
backiracking access. Recursive access would be available with a list or stream interface. Zaniolo has proposed a
simple cursor mechanism for Prolog that permits database-like navigational access to clauses [8). We may also
wish to view a clause as an array of terms and a predicate as an array of clauses. Each of these views requires a

mechanism to name clauses, and access to the clause ordering information.
2.1 Extended Reference Mechanism

We propose extending Prolog with basic reference primitives. Every clause has associated with it a name called its

ref. Clause ordering is made explicit by the participation of refsinthe £irst_ref and next ref relations.

is ref(+Ref) Succeeds if Ref is a clause reference, and fails otherwise.

first_ ref(+PredName,+Arity,~Ref) Returns Ref of the first clause for predicate PredName/Arity.

next_ref(+Ref,—NexiRef) Given the Ref of a clause, returns NextRef, the ref of the next clause.
Fails if Ref currently points at the last clause of a predicate.

Table 1: Reference primitives.

2.2 Meta-circular Clause

The idealized three-line Prolog meta-interpreter
prove (true).
prove((A,B)) :— prove(A), prove(B).
prove (G) :— clause(G,B), prove(B).
illustrates the power of Prolog in describing its own basic opcration. With this interpreter both the goals

prove (true) and prove (prove (true)) succeed. It is not well-known, however, that the goal

?— prove{prove (prove(true))).

fails with this interpreter!T This goal fails because clause is not defined meta-circularly, a needless deficiency,
When clause is repaired to include

clause (clause(H,B),true) :— clause(H,B).

¥ The interpreter also fails to respect cuts or builtin predicates, of course.



the goal succeeds as it should. That is, elause should be defined meta-circularly as follows:
clause(H,_} :— var(H), !, error(’clause/2: first arg must be nonvar’).
clause (clause(H,B) ,true) :— !, clause(H,B).
clause(H,B} :— functor(H,P,A), first ref(P,A,R), clause ref(H,B,R}).

clause ref(H,B,R) :— instance((H:-B),R).
clause ref(H,B,R) :— next ref(R,8), clause_ ref(H,B,S).

3 Discussion

The simple additions to Prolog proposed above can facilitate the implementation of a number of important program-

ming tasks.

3.1 Collecting Clauses

Prolog implementations of bagof, setof or f£indall typically use assert (or record) to capture bind-

ings before they are undone by backtracking. Since assert is expensive, often requiring several milliseconds to

execute, these predicates become quite expensive to use. This is frustrating if, for example, all we need to do is ac-

cumulate a list of the clauses of a predicate, as for computing aggregates (min, max, sum, etc.). The implementation
clauses (P,A,L) :— functor(H,P,A), findall((H:-B), clause(H,B), L).

is unnecessarily slow. The same situation arises when implementing the relational database ‘‘select”” operator,

which extracts all rows from a table satisfying a given predication.

Using the ref mechanism, we can implement clauses without use of assert,orof findall, setof,ecic.:

clauses (P, A, [C|L]) :— first ref(P,A,R), !, instance(C,R), clauses after(R,L}.
clauses(_,_,[]).

clauses_after (R, [C|L]) :— next ref(R,S8), !, instance(C,S), clauses after(s,L).
clauses after(_, []).
Note that clauase can be easily defined in terms of clauses:

clause (H,B) :— functor(H,P,A}, clauses(P,A,L), member((H:-B),L).



3.2 Coroutining

There is no way to do real coroutining in most Prolog systems. Suppose that p/2 and gf2 are relational database
predicates (tables) whose clauses are stored in sorted order. With the Prolog goal *‘?7- p(X,Y¥), q(Y,2Z).”
processing of the clauses for p/2 and g/2 cannot be interleaved in any order but that determined by backtracking.
Prolog systems supporting coroutining as an atdded feature have been proposed e.g. [1], but in ordinary Prolog sys-
tems the fact that backtracking is the only control mechanism for clause selection prevenis interleaved execution of

goals.

This shortcoming generates consternation among database workers, since it means that standard Prolog is incapable

of performing merge scans — one of the most commeon efficient techniques for processing joins.

The difficulty in implementing merge joins using backiracking for control, like the difficulty in collecting clauses, is
that backtracking undoes bindings. Merge joins are easy to implement using the next_ref mechanism, The two

predicates can be stepped through in arbitrary order, under control of the program using next_ref.
3.3 Selection of the n* Clause

The standard clause retrieval mechanism cannot support general SL.D resolution as defined in [3]. SLD resolution
rests on the use of a search rule to choose a particular clause for resolution at any given point. When done depth
first, the search rule reduces to an ordering rule. Selection functions that operate by choosing a clause by number

cannot be written in current Prolog without asserts.

The same problem is encountered, for example, when implementing the spy debugging predicate in Prolog. Since
spy (p/2) requests tracing to be activated whenever p/2 is called, a common implementation is to have spy
modify the definition of p/2 by adding a new first clause that calls the tracing package with itself as an argument.
Unfortunately, this solution requires the tracer to ignore the first clause for p/2, and it is not obvious how this is
best done. (Typically an assert is used to signal that the clause has been entered already and should subsequent-

ly fail when executed.) Selecting the n™ clause is easy using next ref,



4 Conclusions and Future Directions

It is understandable how refs have come to hold a second-class status in Prolog, as they bear little connection with
predicate logic. Nevertheless, it should be evident from the brief presentation here that many problems related to
clause access in Prolog remain open, and a proper theory of refs and clause access could have important practical

benefits. Note that refs by themselves do not require special additions to logic.

A central issue in such a theory concerns modifications. The ability to modify the next_ref relation directly is
desirable, It would, for example, give us the ability to reorder clauses (e.g. to sort a table) without requiring whole-
sale retracts and asserts of the entire table. The semantics of simultaneous modification and retrieval of a predicate
are not obvious [4]. Lindholm and O’Keefe suggest a semantics and an implementation via timestamps for dynamic
Prolog code [2]. However, while their mechanism delivers logical semantics for clause assertion and deletion, it is

not naturally applicable to clause reordering, unless reordering is viewed as retracting and asserting in order.

Like the meta-circular extension above, further extensions of clause would be useful for writing interpreters.
One extension is to permit elause to execute guards of predicates itself. That is, the user-defined clause

P(X) - qx), !, x(X).

where g (X) is a guard, could be stored under clause cssentially as

clause (p(X),r(X)) :— gq(xX), !.

under appropriate user control. This approach [7] enormously simplifies the writing of interpreters, since cuts then
have their intended effect, and the idealized three-line interpreter may be sufficient — avoiding the need for an inter-

preter that respects cuts,

Another important possible extension comes from permitting clauses to be partially ordered by a variant of
next_ref, rather than being totally ordered as usual. An immediate application of this extension lies in support-
ing deductive databases with recursive rules, a topic of great recent interest. Processing of queries that use rules
such as

ancestor(X,Y) :— parent(X,Y).

ancestor(X,Z) :— parent(X,Y¥Y), ancestor(Y,Z).

requires sophisticated analysis of the recursion, careful maintenance of temporary results of the query, and so forth,



If we permit a variant of next_xef (o capture the partial order of ancestry among persons, this effort may be un-
necessary. That is, the variant of next_ref can essentially store the contents of the parent relation, but pro-
vide very efficient access to information through use of refs. It seems that next_ ref itself should not be changed
to partially order the clauses of a predicate, since this change necessitates backtracking to access all of the clauses.

Avoiding backtrack access was one of the reasons for introducing next_ref in the first place.

A final observation is that refs relate directly to indexing. A very useful generalization would be to have
next_ref comprise multiple indices for a predicate, which yield clauses in different orders, perhaps sorted on

different arguments. Clearly there are many avenues for future developments here.
5 Acknowledgements

We thank Lewis Chau, Carl Kesselman, Brian Livezey, and Sanjai Narain for helpful comments,



(1]

(2]

131
(4]

(5]

{61

(7]

(8]

References

Clark, K.L. and F.G. McCabe, ‘“Control facilities of IC-PROLOG,”’ in Expert systems in the
microelectronic age, ed. D, Michie, Edinburgh U. Press (1979).

Lindholm, Timothy G. and Richard A. O’Keefe, *‘Efficient Implementation of a Defensible Se-
mantics for dynamic Prolog Code,”” pp. 21-39 in Logic Programming: Proceedings of the
Fourth International Conference Volume 1, ed. Jean-Louis Lassez, The MIT Press, Cambridge,
Massachusetts (1987).

Lloyd, I., Principles of Logic Programming, Springer-Verlag, New York (1984).

Moss, C., “‘Cut and Paste — defining the impure Primitives of Prolog,”” pp. 686-694 in Proc.
Third International Conf. on Logic Programming, Lecture Notes in Computer Science #225, ed.
Ehud Shapiro, Springer-Verlag, London (July 14-16, 1986).

Pereira, Fernando, David Warren, David Bowen, Lawrence Byrd, and Luis Pereira, C-Prolog
User’ s Manual Version 1.4.d.edai.

Pereira, Fernando €. N., Luis Moniz Pereira, and David H. D. Warren, “User’s Guide to
DECsystem-10 PROLOG,”” , Department of Artificial Inteligence, University of Edinburgh,
Edinburgh, Scotland (September 1978).

Porto, A., ‘“Two-Level Prolog,” Proc. Conf. on Future Generation Computer Systems, Notth-
Holland (1984).

Zaniolo, C., *‘Prolog — A Database Query Language for All Seasons,”” pp. 219-232 in Expert
Database Systems, ed. Larry Kerschberg, Benjamin/Cummings, Menlo Park, CA (1986).



