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A practical class of constraint satisfaction systems operate on relazable
representations of the form N = f(N), where N is a set of variables, and
the declarative semantics is the set of instantiations of N which preserve the
equality. In general, relaxation provides a complete procedural semantics
for only a subset p of such representations. Of interest, then, is the set
of transformable representations & O p in which for each representation
M, € o there exists a determinable transformation T : a — p such that the
declarative semantics of M, is identical to that of T'(AZ,).

Relaxable representations for which (V) is a polynomial are transformable,
each corresponding to a transform of the form N = (f(N)N ")71'1+_1, where n
is a function of the degree and coefficients of the polynomial. This observa-
tion provides some intuition about more general transformations, applicable
to the implementation of powerful (complete over a superset of p) constraint
satisfaction systems.
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1 Constraint Satisfaction Paradigm

Constraint satisfaction is a modeling paradigm in which model representa-
tions are often easily generated, as noted in [9]. A formal generalization
of such model representations illustrates that while the intuitive declara-
tive semantics is appealingly simple, a correspondingly simple procedural
semantics is not complete.

1.1 Representations

Within the constraint satisfaction paradigm, model representations assume
the form of duples (x,~), where x is a constraint network and ~ is a goal.
Each constraint x;, an element of y, specifies the value of a function C;
on variables V; in terms of those variables, or in terms of (possibly zero)
other functions on subsets of those variables, for all possible instantiations.
The goal v implicitly specifies a subset of all possible instantiations by
restricting the function of a distinguished constraint C; to a value R.

C1(N1) = F1(N1, Cipr(N3), Cg1(Ne)s oy Crp1(Nn))
Co(N2) = Fa(N2, Cirga(Njr), Chrga(Nir), ooy Crrga( Nt ))

X =
Cm(Nm) = Fm(Nmy Cj”#m(Nj”)a Ck”;ém(Nk")a ey Cn”:,ém(Nn”))

where N; C Ny, N, C Ny, ..., N,C N
NJ‘! g Nz, Nkl - Ng, ey Nnr g Ng

err C Npw Npw € Nppy oy Ny C N,
7= {Ci(N) = R}
As an example, consider the representation for the real-valued, five-node,
linear Laplacian, bounded at one end by the value By, and at the other end

by the value Bg, where the value of each internal node is the average of the
values of its neighbors.



Cr{{X1, X2, Xa}) = Co({ Xy, Xo}) + Ca({ X1, Xa, X3}) + Ca({ X0, X3P )

. B X
Co({Xy, Xa)) = \xl - BrX

X1+ X
CS({X}, -’YZ;Xa}) = X2 — __LF
X;+ B
Cal{X2, Xs}) = ’xa_ X1+ B
\ J

7 = {C1({X1, X3, X3}) = 0}

Augmented representations comprise a subset of such model representa-
tions. They may assume the form of duples {x’, v}, where x’ is an augmented
constraint network and v is a goal as defined before. Each constraint y!, an
element of X/, specifies the value of a function C; on variables N, ; as defined
before, but also specifies a (possibly null) set of functions f;. Each function
fu, an element of f;, specifies the value of a single variable N in terms of
the variables NV, so as to commit the function C; to the value R;;.

Ci(Ni) = Fi(N;, Ci2i(N), Crgi( Ni), ooey Crgi (N ) )

' Ni = fa(Ni) = Ci(N;) = Ry
Xi N = fa(N;) = Ci(N;) = Ry

Naw = fun(N;) = Ci(N;) = Ry )

Relazable representations comprise a subset of augmented representations,
They may assume the form of duples {x’, 7) as defined before, but fur-
ther, for each variable Ny;, an element of N;, there must exist at least one
corresponding function of the form Ny = f(N;) = Ci(N;) = Ry, an ele-
ment of some f; for some x;, such that C}{N,) = Ry is sufficient to ensure
C1(N1) = R according to criteria dictated by Fy. Under this condition,
these corresponding functions can be consolidated into a single function of
the form N, = f(Ny) = C (V) = R.
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As an example, consider the relaxable representation for the LaPlacian
described earlier, where the set Ny is expressed as a vector.

Br+X, Xi1+Xs Xy+4 Bp
2 ? 2 ! 2

[X.hXQwXS] = = Cl([X11X21X3]) =0

In practice, constraint satisfaction systems typically restrict representations
to relaxable representations, e.g., [1,10], can be viewed this way.

1.2 Declarative Semantics

The inituitive declarative semantics Sy(M) for a model representation M
is the subset of all possible instantiations I simultaneously satisfying the
constraint network and the goal. For a relaxable representation M,, this
1s equivalent to the subset of all possible instantiations I satisfying the
consolidated function N, = f(N,) = C,(N,) = R.

SESIMYE M, & Ci(s)=R = s=f(s)

Definition of Declarative Semantics

1.3 Procedural Semantics

In practice, constraint satisfaction systems which restrict representations
to relaxable representations typically employ relaxation as the procedural
semantics Sp(M,, ¢, €, §) for a relaxable representation M,, where the initial
guess 8 is an element of all possible instantiations I, the allowable error € is
an element of some partially ordered domain D, and the distance function
6 maps pairs of instantiations from I x I to the domain D.



sel
ee D ==
6:IxI—>D

(s € Sp(M,, 5, e,6) F M, <= akzoja( ) PN < e A FR() =)

Definition of Procedural Semantics

1.4 Complete Procedural Semantics and
Convergent Relaxable Representations

A complete procedural semantics is one subsumed by the declarative seman-
tics. Equivalently, under an allowable error ¢ € D and distance function
6:IxI— D, acomplete procedural semantics assuming any initial guess
8" € I results in some value s for Ny satisfying s = f(s).

Iterative relaxation provides a complete procedural semantics for only the
set of convergent relaxable representations p, a subset of all possible relax-
able representations.

Myep
sel
Si{M)#0 = eeD == 0 £ 5,(M,,s' €8 C SuM,)
d:IxI—- D

Definition of Complete Procedural Semantics

2 Representation Transformation

In practice, non-convergent relaxable representations often arise; relaxation
provides a non-complete, and therefore inadequate, procedural semantics
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for such representations. Representation transformationis an abstract tech-
nique which addresses this problem. It can be combined with relaxation to
provide a procedural semantics complete over convergent and at least some
non-convergent relaxable representations.

In essence, if a relaxable representation M, cannot be identified as conver-
gent, an element of the set of identifiably convergent relaxable represen-
tations p C p, then perhaps M, is transformable, an element of the set
of transformable relaxable representations a, such that a transformation
function T : a — p can be determined and applied to M,, preserving its
declarative semantics Sz( MM, ).

(Mr Ea A Mr e[l CpcC O:) = 3T:a—~p |Sd(T(Mr)) = SJ(MF)

2.1 Approach for Determination of
Transformation Functions

One approach for the determination of an appropriate transformation func-
tion is to identify the component of the function f which causes N = f(N}
to be non-convergent, and then use that information to selet a function ¢
decomposable into a pair of functions g and § such that 7(g(s,8),8) = s,
and g(f(s), s) is identifiably convergent, and so is g(g(f(s), ), s).

s € Sy(Vy = f(Ny)) == s = f(s)

$ € Sqa(Ny = f(Ny)) == 9(s,8) = g(f(s),s)

8 € Sa(Ny = f(N1)) == g(g(s,8),5) = g(g(f(s),s),s)
8 € Sa(Ny = f(Ny)) == s = g(g(f(s),8),s)
8 € 84(Ny = f(N)) = s = t(s)



2.2 Polynomials

It is known from [8] that if the set of all possible instantiations I is par-
tially ordered, where L € I is the least element, then iterative relaxation
assuming an intial guess L is a complete procedural semantics for the set
of relaxable representations involving monotonic functions.

This result can be applied toward the determination of transformations
for relaxable representations involving polynomials over non-negative real
values. Following the just proposed approach, g(, s) is selected to be mul-
tiplication by s", where n is large enough to cause the influence of the
highest degree term of f(s) to overwhelm the influence of the lower degree
terms, resulting in a monotonic function. Then, g(-,-) is selected to be the
(n 4+ 1)** 1o0t. Since compositions of monotonic functions are monotonic,
g(g(-,-),-) is monotonic, and assuming an initial guess of s = L = 0 results
in s = #(s) as a convergent relaxable representation.

& = Ad8d+Ad_1Sd—1 + ...+ 418+ Ay
38" = (.4dsd + Ad_lsd“l + ...+ Ais+ Ao)s“
gntl — Ad8d+n + Ad_lsd—1+n + .4+ A151+n + Ags®

s = (Ad.sd‘*'“ + Ag_qyst-14n 4 o4 st g Aos")ﬁ
2.2.1 Example

The following parameters specify a non-monotonic sixth degree polynomial
and its corresponding monotonic transformation.

Ag=1865x10"11 Ay =_-1x10"8, 4, =127x 10~
A, = 0.065, A; = -10, 4o = 500

, A3 =—-4x10"%

d=6, n=15
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A Polynomial (d = 6) and its Transform (n = 15)

2.2.2 Transform Degree

The monotonicity of the transformed function ¢ ensures that any points
with zero derivative must be a point of inflection.

dt d°t
€] = (-&;(s)zo = F(s):ﬂ)



Solving for the minimum value of n which preserves this implication shows
that n is a function of the coefficients and degree of the original function f.
Though an appropriate minimum value of n always exists, its determination
may be impractically computationally complex. Employment of a non-
minimum value of n still preserves the implication.

3 Applications

Constraint satisfaction has been advocated in [4,11] as the modeling para-
digm of choice for realistic solid-body animation, and likewise in [6] for
automatic music composition. Investigation of transformation functions
for polynomials is not intended to lead to a constraint satisfaction system
for finding fixpoints of polynomials, but rather to gather intuition about
how representation transformation can be applied to interesting domains
such as animation and composition.

As an example, consider an animation preventing circular objects from
moving through each other. If (X;,,Y;) and (X jty Y;t) are the coordinates
of the centers of the respective objects 7 and j at time t, and B; and B,
are their respective radii, and d is the distance between their edges, then
the x-coordinate of object 7 can be expressed as a function of the other
variables.

L
Xie =+ ((Bi+ By +d)* — (Y — Yie)?)” + X

It is the relationship between the y-coordinates of the objects which ren-
ders the function non-monotonic, suggesting the existence of an appro-
priate non-monotonic-to-monotonic transformation function dependent on
this relationship. This prospect is being explored as part of a constraint-
satisfaction-oriented animation system development effort in [9].
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Conclusions

In the context of the constraint satisfaction modeling paradigm, representa-
tion transformation may prove a, practical improvement to the typically em-
ployed non-complete procedural semantics provided by iterative relaxation
for relaxable representations. The successful application to polynomials of
a proposed approach for determining transformation functions provides a
promising point of departure toward the discovery of transformation func-
tions for non-polynomial functions.
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