ON CONSTRAINT-ORIENTED ENVIRONMENTS
FOR CONTINUOUS SYSTEMS SIMULATION

Richard A. Huntsinger March 1988
CSD-880018

On Constraint-Oriented Environments for
Continuous Systems Simulation®

Richard A. Huntsinger
Computer Science Department
University of California, Los Angeles
Los Angeles, California 90024-1600

March 18, 1988

Sets of simultaneous differential equations and sets of queries on those equa-
tions are naturally expressible as constraint networks in the constraint set-
isfaction modeling paradigm. Further, relaxation enhanced to exploit typed
valued constraints provides a procedural semantics for such constraints
which in the best case reduces to propagation, and in the worst case per-
forms comparably to other paradigms. Accordingly, constraint satisfaction
is advocated as the paradigm of choice on which to base continuous systems
simulation environments.

Examples are presented illustrating constraint network characterizations of
continuous systems models, and their corresponding procedural semantics.

*Supported by Tangram project, DARPA Contract F29601-87-C-0072

1 Overview

Attractive modeling environments provide facilities for representing models
and making queries regarding the behavior of these models. Often queries
take the form, colloquially expressed, “Which parameter instantiations will
cause the model to behave in this desirable way?” The constraint satzs-
faction modeling pardigm has recently been adopted by various research
efforts as the basis for the development of such modeling environments, as

in [3].

The constraint satisfaction modeling paradigm operates on models repre-
sented as constraint networks, where a constraint network is comprised of
several constraints. Each constraint specifies a relationship between several
objects, which are temporally instantiated to various values. A constraint
is satisfied when the specified relationship applied to the values to which
the objects are instantiated is true.

For example, the constraint X(M(0) = X{(O(1) — X{9(0) specifies a rela-
tionship between the three objects X (0), X(@(1), and X‘9(0). When the
objects are instantiated to the values 5, 20, and 15, respectively, then the
constraint is satisfied because the relationship 5 = 20 — 15 1s true.

The constraint satisfaction modeling paradigm is generalizable to allow con-
straints to be typed and valued. A constraint is typed when it is associated
with some type value. A constraint is valued when its range is not restricted
to two truth values, but extended to some partial order reflecting degrees
of truth.

For example, the constraint X(0) = X©(1) — X(9(0) may be typed so
as to be associated with a type value of 1, 2, or 3. It may be valued so
as report the difference between the two sides of the equation, where a
difference of zero reflects the highest degree of truth.

In the context of this paradigm, the procedural semantics is an algorithm
which, when applied to a constraint network, attempts to instantiate ob-
jects to values such that the accumulated value of all of the constituent
constraint values is minimized.

[

There are two primary advantages of constraint satisfaction over competing
modeling paradigms.

1. Queries are naturally expressed.

2. A single procedural semantics handles all queries, so that construction
of specialized algorithms for certain queries is not required.

2 Enhanced Relaxation

Under consideration is the procedural semantics provided by relaxation,
which iterates as follows:

Step 1: Select an object which has not been selected more recently than
any other object.

Step 2: Acquire a function which returns a value for the selected ob-
ject given values for some other objects, such that the returned
and given values result in some constraint being satisfied. Typ-
ically the function is supplied by the modeler along with the
constraints.

Step 3: Instantiate the selected object to the valuation of the function
given the instantiations of objects on which it depends.

Relaxation can be enhanced to improve its performance by exploiting the
additional information provided by typed valued constraints. The simple
enhancement to relaxation is to replace the object selection criterion with
a function on the types and values of the constraints. The procedural
semantics is then succinctly captured in the following code:

while accumulated_value(C) > e do
C; + select typed_valued_constraint(C)
A X F + select_object & _funetion(C;)
A — evaluate(F)

endwhile

Relaxation on typed valued constraints has proved an appropriate procedu-
ral semantics in the graphics domain, as described in [5], where the degrees
of truth are analogized to energy quantities, and the iterative instantiation
of objects is analogized to the minimization of the energy of a system. The
examples discussed presently suggest that it may be equally appropriate in
the continuous systems simulation domain.

3 Constraint Network Characterization

Under consideration are continuous systems models expressible as sets of
m differential equations on m variables and their derivatives, where the
highest order derivative n; for each equation 1 is explicitly isolated.

Xomom, X=X,
X, = ¢, > SR Al A X,

;}£'7.1,“’{:'|,71—1)1 Xm("m_2), oy Xm(o)

Such sets are expressible as constraint networks in the following way. Each
equation ¢ can be equivalently expressed as a set of n;4-1 types of constraints
on (n; + 1)t; objects, where ¢; is the largest time of interest. n; of the
types correspond to the implicitly expressed knowledge that for each time
t| 0 < t < t; and each order d| 0 < d < n;, adjacently ordered variable
instantiations preserve the relationship X,(9(¢) = X4 41)— X0,

4

The remaining type corresponds to the explicitly expressed knowledge that
for each time t| 0 < ¢t < ¢4, variable instantiations preserve the equation .

Each object corresponds to some variable X,-(d‘)(t), where 0 < d' < n; and
0<t<t,.

4 Example: Initial Condition Problem

Figure 1 illustrates a single-variable, second-order differential equation ex-
pressed as a constraint network of three types of constraints. Boxes rep-
resent objects, circles represent constraints, and arrows indicate on which
objects the various constraints operate. The numbers in the circles indicate
the type of constraint:

Type 1: A constraint of the form XM (¢) = XO(t + 1) — XO(¢), where
0<t« ts

Type 2: A constraint of the form X®(¢) = X(¢ 4+ 1) — X{)(¢), where
0<t<ty

Type 3: A constraint of the form X@®(t) = $(X)(t), X{%(t)), where
0<t<ty

The degree of truth for each constraint is taken to be the difference be-
tween the valuations of the left and right sides. For example, the constraint
XM(0) = XO(1) — X(9(0), when objects X(1}(0), X(%(1), and X(9(0) are
instantiated to 5, 20, and 6, respectively, takes on a degree of truth of
11. Uninstantiated objects are avoided by instantiating them to some spe-
cial value unknown. A constraint which operates on at least two objects
instantiated to unknown takes on a degree of truth of veryfalse. A con-
straint which operates on one object instantiated to unknown takes on a
degree of truth of false. Here veryfalse is lower than false, and both are
lower than all other degrees of truth.

The select_typed.value_constraint function operates as follows.

5

X))

XM

X))

Figure 1: Single-veriable, Second-order Differential Equation

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Consider all constraints except those with degrees of truth of
veryfalse.

If there are any constraints being considered with degrees of
truth of false, then consider only those.

If there are any constraints being considered of type 3, then
consider only those.

If there are any constraints being considered of type 2, then
consider only those.

If there are any constraints being considered of type 1, then
consider only those.

Of the constraints being considered, determine those with the
single lowest degree of truth (highest real number), and then
consider only those.

Of the constraints being considered, select the constraint which
has least recently been selected.

The select_object_&_function function operates as follows.

Step 1: If the constraint is of type 3, then return the left side of the
equation as the object, and return the right side of the equation
as the function,

Step 2: If the constraint is of type 1 or 2, and the degree of truth is false,
then determine a new equation which preserves the equality
expressed in the constraint, such that the left side of the new
equation is an object instantiated to unknown. Return the
left side of the new equation as the object, and return the right
side of the equation as the function.

The initial condition problem for a single-variable, second-order differential
equation can be expressed as a constraint network as just described, where
the objects X{(®(0) and X(V(0) are instantiated to values corresponding to
initial conditions. All other objects are instantiated to the value unknown.

Application of the procedural semantics just described results in all ob-
jects instantiated to unknown to become newly instantiated to real values.
The new instantiations occur in the order X@(#), then X}t + 1), then
X©(t 4+ 1), for 0 < t < t;. Note that for the initial condition problem, the
procedural semantics is identical to propagation.

5 Example: Shooting Problem and More

Figure 2 illustrates the constraint network of the initial condition example
extended to reflect fourth and fifth types of constraints. This example
addresses the opening comments made regarding queries.

Under consideration first is the shooting problem, where models are express-
ible as differential equations with known initial and non-initial conditions.
In practice, such models are typically constructed so that a query can be
made regarding its behavior, specifically, colloquially expressed, “Which

X

R

o 8517) =) = 15

X))

Figure 2: Extension for Shooting and Oscillation Control

values for initial conditions not known will cause the model to satisfy the
known non-initial conditions?”

The shooting problem for a single-variable, second-order differential equa-
tion can be expressed as a constraint network, where objects X (1)(0) and
XO)(t;) are instantiated to values corresponding to known conditions. The
object X(®(0) is instantiated to some guessed value. All other objects are
instantiated to the value unknown. Also, additional constraints of a fourth
type must be included of the form X(0) = a and X@(¢;) = 4, to prevent
the instantiations of these objects from permanently changing.

Application of the procedural semantics described, augmented to account
for constraints of the fourth type, results in propagation behavior until im-
mediately following the instantiation of X()(3). Then, since both of the
constraints XM(2) = X©(3) — X©(2) and XV(3) = XO(4) - X0(3)
are applicable, and since the latter has been selected less recently, the lat-
ter is selected. Objects previously instantiated to real values subsequently
become reinstantiated to other real values. The order in which they are

reinstantiated depends on how the procedural semantics have been aug-
mented.

The shooting problem example motivates a generalization of the query to
the following: “Which values for initial conditions not known will cause the
model to satisfy all of a set of constraints?” Here the set of constraints can
represent any relationship between variables, not just non-initial consitions.

For example, constraints of a fifth type can reflect a relationship between
values of variables at regular time intervals, perhaps of the form X(O(¢) =
X Ot 4 2), corresponding to a query of the form, “Which values for initial
conditions not known will cause the model to behave such that the lowest
order derivative cycles with a period of 277

Empirical results for some simple non-linear constraint network testbeds
suggest that for many practical models, the instantiations converge appro-
priately, reasonably quickly.

6 Conclusions

Models expressible as sets of simultaneous differential equations and sets
of queries on those equations have been shown to be equivalently naturally
expressible as constraint networks in the constraint satisfaction modeling
paradigm. In the latter form, all queries are handled by a single procedural
semantics, so that construction of specialized algorithms for certain queries
is not required. This, along with an investigation of some simple examples,
suggests that constraint satisfaction may be the paradigm of choice on
which to base continuous systems simulation environments.

References

{1} Leler, William. Specification and Generation of Constraint Satisfac-
tion Systems, Ph.D. Dissertation, Department of Computer Science,

(2]

[3]

[4]

[5]

University of North Carolina at Chapel Hill, Technical Report 87-006,
1987.

Parker, D. Stott, Jr. Partial Order Programming, Department of Com-
puter Science, University of California, Los Angeles, Technical Report
CSD-870067, 1987.

Parker, D. Stott, Jr., Richard R. Muntz, & Gerald Popek. Tangram,
Department of Computer Science, University of California, Los Ange-
les, Unpublished, October 1987.

Steele, Guy Lewis, Jr. The Definition and Implementation of a Com-
puter Programming Language Based on Constraints, Ph.D. Disserta-
tion, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Techmcal Report AI-'TR 595,
August 8, 1980.

Witkin, Andrew, Kurt Fleischer & Alan Barr. “Energy Constraints
on Parameterized Models,” SIGGRAPH ’87 Conference Proceedings,
July 27-31, 1987.

10

