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Abstract

We propose a procedure to reduce the number of cells in arrays of processing elements (PEs)
for matrix computations, as part of a design methodology. Such procedure achieves its objec-
tive by reducing the number of nodes in a fully-paralle] dependence graph used to describe
the algorithm. In addition, we identify some irregularities which complicate the procedure and
propose mechanisms to deal with them. The irregularities considered are varying paths length,
bi-directional broadcasting and non-regular interconnection pattern between nodes of the de-
pendence graph. The mechanisms include an extension to the procedure proposed for reducing
nodes, to cope with varying path length, and transformations to the dependence graph to re-
move the remaining irregularities considered. The graphs obtained from these mechanisms are
suitable for further transformations aimed towards regular graphs or for direct implementation
as arrays of PEs. We use LU-decomposition, without and with pivoting, as examples of appli-
cation of these mechanisms. The methodology produces triangular arrays for this computation,
with better utilization than the square arrays formerly proposed for it.

1 Introduction

Matrix computations are the basis for many applications in science and engineering. Examples
exist in image and signal processing, pattern recognition, control systems, among others. The
evolution in VLSI technology is making possible the cost-effective implementation of many matrix
algorithms as a collection of regularly connected processing elements (PEs).

An important problem in the design of arrays of PEs for a given algorithm is the methodology
used to derive the structure and interconnection of those arrays. Standard structures (systolic
arrays [1]) have been used for these implementations [2]-[10]. Some transformational methodologies
have been proposed {11], where a high-level specification of a problem is transformed into a form
better suited for implementation. Although the proposed approaches can be useful to accomplish



certain design tasks, they either restrict the form of the algorithm (i.e., a recurrence equation) or
are unable to incorporate implementation restrictions as part of the methodology.

We have proposed a graph—oriented design methodology for arrays of PEs, with the capability to
handle and relate features of the algorithm and the implementation in a unified manner [12]. This
is a transformational methodology, which uses a fully—parallel dependence graph as the description
of the algorithm. In such a graph, nodes represent the operations and edges correspond to data
communications. We assume that all nodes have the same computation time. These graphs are
characterized by having all inputs and outputs available in parallel and no loops (i.e., loops are
unfolded). Starting from a fully-parallel graph, we apply transformations to incorporate issues such
as data broadcasting, data synchronization, interconnection structure, I/O bandwidth, number of
PEs, throughput, delay, and utilization of PEs. Preliminary results on the application of this
methodology have been reported in [13].

We use the fully—parallel graph to describe an algorithm, because such graph is unique for a given
algorithm and exhibits the intrinsic properties of the algorithm. The graph can be used directly
to derive an implementation by assigning each node of the graph to a different processing element
(PE), and by adding delay registers to synchronize the arrival of data to the PEs (i.e., a pipelined
implementation of the graph). The resulting structure exhibits minimum delay (determined by the
longest path in the graph) and maximum throughput (determined by the node with the longest
computation time), but may require complex interconnection structure, high I/0 bandwidth, and
large number of units. Our methodology deals with these problems, while still attempting to
preserve the delay and throughput inherent in the dependence graph.

In this paper, we propose a procedure to reduce the number of nodes in the fully—parallel de-
pendence graph with the purpose of reducing the number of cells needed in an implementation.
In addition, we identify some irregularities which complicate the procedure, and propose mecha-
nisms to deal with them. These irregularities are varying paths length, bi-directional broadcasting
and non-regular interconnection pattern between nodes of the dependence graph. Examples of
algorithms exhibiting such irregularities are square of a matrix, LU-decomposition without and
with pivoting, matrix triangularization, inverse of non-singular triangular matrix, among others.
We extend the procedure proposed for reducing the number of nodes to take into account the
varying paths length, and propose transformations to the dependence graph to reduce the other
irregularities considered. The graphs obtained from these mechanisms are suitable for further trans-
formations aimed towards regular graphs or for direct implementation as arrays of PEs. We use
LU-decomposition, without and with pivoting, as examples of application of our mechanisms.

This work is part of the development of our design methodology. Additional assumptions and
details about the methodology are described more fully in [12] and [13].

2 Reducing the Number of Nodes in the Dependence Graph

The fully—parallel graph of a matrix algorithm of the size used in real applications always has too
many nodes, so that a pipelined implementation of such graph requires too many units. Transfor-
mations to incorporate certain implementations restrictions, such as removing data broadcasting
or restricting the input/output bandwidth, may reduce that number. However, in most cases it is
necessary to reduce the number of nodes (i.e., reduce the concurrency) further. We achieve this



objective by grouping sets of nodes into single nodes. Evidently, the computation time of the new
nodes is longer and the throughput of a pipelined implementation based on the transformed graph
is lower. (This reduction is complicated by irregularities in the algorithm, as discussed later.) We
present now a procedure to perform such reduction.

Reducing the number of nodes in a graph requires a criterion to group set of nodes into single

nodes. To achieve a suitable implementation, the grouping should satisfy the following constraints:

e Obtain new nodes with identical computation time, so that the utilization of an array is

maximized.

e Obtain a regular interconnection pattern among the new nodes.
o Preserve the length of the critical path in the graph.

It is not always possible to fulfill all these constraints simultaneously. However, such constraints
must guide the process of grouping nodes. While doing this grouping, we have to consider the
following issues:

i)

iv)

Grouping nodes of a sub—graph reduces the interconnection requirements and the parallelism.
The dependences between the nodes in a group are transformed into dependences within the
new node, so that no communication path is required for those nodes. An example of this
situation is shown in Figure 1la.

Grouping nodes at different levels in the graph (i.e., nodes which are dependent) reduces the
degree of pipelining possible in the graph (i.e., fewer stages) but preserves the delay of the
computation. This is in contrast to grouping nodes at the same level, because in such a case
the parallelism is reduced and the path length is increased, possibly increasing the length of
the critical path in the graph. Grouping nodes at different levels is shown in Figure 1b.

Grouping sub-—graphs into different nodes reduces the interconnections between the nodes of
the sub-graphs to a single connection between the new nodes. Figure 1c depicts an example
of this case. Proper selection of sub—graphs leads to regular interconnections.

Selecting an equal number of nodes per sub—graph produces new nodes with the same com-
putation time. Nodes with the same computation time maximize the utilization of an array.

Consequently, we choose as criterion for grouping sets of nodes to collapse sub—paths of identical
length into single nodes, selecting them in such a way as to enhance regular interconnections. Sub-
paths of identical length are sub—graphs with nodes at different levels of the graph and with the
same number of nodes, meeting the conditions listed above.

The following procedure satisfies the criterion:

¢ Annotate the nodes with their level in the graph (the level also corresponds to the time when

the nodes are executed). This information is obtained by traversing the graph from inputs to
outputs.

e Select the length of the sub—paths to collapse according to the desired reduction in the number

of nodes in the graph. Such reduction is determined by implementation constraints, namely
by the number of nodes possible in the implementation.
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Figure 1: Options in grouping nodes of the graph

s Select the sub-paths to collapse in such a way as to enhance interconnection regularity.
e Serialize onto the inputs of the new nodes the data used for the different nodes which have
been collapsed.

The application of this grouping procedure to some graphs is straightforward. In those cases,
it is possible to group sub-paths of identical length without compromising the interconnection
structure of the resulting array as shown in Figure 2a. An example of an algorithm with such
features is matrix multiplication. However, when sub-paths suitable for collapsing do not have the
same length or there are several groupings possible (as is the case with certain algorithms with
irregularities), it becomes necessary to evaluate the alternative grouping options. An example of
this situation is shown in Figure 2b, where O(n?) nodes in a graph have to be reduced to O{n).
Several groupings are possible. Grouping vertical sub-paths leads to varying computation time
per node, while more irregular groupings such as the one shown in the figure achieve the same
computation time per node but require a complex interconnection.

In contrast, Figure 2c shows a grouping which does not follow the procedure described above, in
particular it doesn’t group sub—paths of the graph. This grouping leads to a complex interconnec-
tion, higher internal data communications bandwidth, and longer delay (i.e., computation time),
undesirable characteristics for an implementation.

Many algorithms have dependence graphs exhibiting varying paths length, such as matrix tri-
angularization, LU-decomposition, inverse of non—singular triangular matrix, QR decomposition,
among others. In those cases, the application of the grouping procedure described above will not
be succesful, because it is not possible to select groups with the same number of nodes without
compromising the interconnection structure of the array. As a consequence, the utilization of the
resulting array will be sub-optimal. Utilization degradation is minimized by grouping nodes in
such a way that the computation time of each group is similar to the group with the longest com-
putation time. Therefore, we extend the procedure described above to include varying paths length
by performing the selection of sub-paths suitable for collapsing in order of decreasing length. That
is, we select the length of the longest sub—path and perform as many groupings of that length as
possible. Then, we perform groupings of length one less than the maximum and continue doing so
in decreasing length untill all nodes have been included in some group.
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We apply now the extended reduction procedure to the LU-decomposition without pivoting.

2.1 Reducing the number of nodes in LU—decomposition without pivoting

Figure 3 shows the fully—parallel dependence graph for the LU-decomposition algorithm without
pivoting, for a 6 x 6 matrix, after replacing data broadcasting with data pipelining [13]). In this
figure, nodes are annotated with their level in the graph (i.e., the number of nodes traversed from
the root of the graph up to and including a node). This graph depicts varying paths length, O(n?)
nodes, and O(n?) I/O bandwidth. The graph is characterized by sets of sequential operations which
are interdependent. Data arrives to the nodes synchronously, without the need to add extra delay
nodes. Due to implementation restrictions, this graph is not suitable for implementation: input
data elements are needed throughout the graph, implying large input bandwidth, and the graph
requires O(n3) PEs.

We address the requirement of PEs, with the objective of reducing the number of nodes in the
graph to O(n?). For such purpose, we identify sub-paths suitable for collapsing into single nodes
according to the criterion stated in Section 2. There are essentially three groupings possible, namely
the sub—paths corresponding to rows, columns or diagonals in Figure 3. However, all these sub-
paths do not have the same length. Moreover, they exhibit different degree of variation in length.
For instance, there is only one diagonal sub—path of length six and eleven diagonal sub-paths of
length one, while there are six rows of length six and only one row of length one. Consequently,
according to the selection criteria stated in Section 2, we choose to collapse rows (or columns) as
shown in Figure 4. A direct implementation of this graph leads to a triangular array.

The alternative of collapsing each diagonal sub—path in Figure 3 into a single node, and mapping
the resulting nodes to different cells in a square array, was proposed in {10}. However, the utilization
of such array is not adequate because of the variation of the number of operations per cell. For
example, the cells in the leftmost column and in the topmost row have only one operation to
compute, while the lower rightmost cell has n operations. Consequently, the diagonal sub—paths
do not meet the criteria we stated in Section 2, since there is only one sub—path with the longest
length. The triangular array derived above has a utilization roughly twice better, for large n, than
that of the square array. Therefore, the triangular array performs the computation in the same
amount of time with half as many units than the square array.

3 Transformations for Some Algorithm Irregularities

‘We consider here certain irregular properties which are found in matrix algorithms. These properties
complicate the reduction in the number of nodes according to the procedure stated in the previous
section. We use the dependence graph of the algorithm, in its fully—parallel or a transformed
form, to identify those non-regularities. We propose transformations to the dependence graph to
eliminate or reduce the non-regularities, leading to more regular implementations.

We center our attention on the following non-regularities:

a) Broadcasted data flows in more than one direction along some or all of the communication
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Figure 3: LU-decomposition graph
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Figure 4: Reducing the number of nodes in LU-decomposition

paths (i.e., horizontal, vertical, diagonal).

b) The interconnection pattern between nodes in the dependence graph is not the same for all
nodes.

These non-regularities are described in detail in the following subsections and suitable trans-
formations are proposed for them, so that they can be handled as part of our design methodology.
We use LU-decomposition with pivoting to illustrate the existence of the non-regularities and as
target for the proposed transformations.

3.1 LU-decomposition algorithm with neighbor pivoting

The LU-decomposition algorithm is an example of Gaussian elimination, which requires division by
the diagonal elements of the matrix. Unless the matrix is well conditioned, Gaussian elimination
procedures require pivoting for numerical stability. The strategies suggested to cope with this
problem are complete or partial pivoting. However, neither of these two schemes is amenable to
parallel computation since they require global communications. Gentleman and Kung [5] proposed
another scheme, called neighbor pivoting, where the pivot is selected as the largest element between
two neighbors. They used this approach to devise a systolic array for matrix triangularization.
They claim that neighbor pivoting is stable and that numerical experiments have confirmed so.
We use this pivoting scheme for LU-decomposition as an example of the type of irregularities that
are found in matrix algorithms. We make no specific statements regarding the suitability of this
scheme from the numerical point of view.

The LU-decomposition algorithm with neighbor pivoting is described by the dependence graph
shown in Figure 5. Broadcasting of intermediate results, originally present in the graph, has been
replaced by pipelining according to the methodology described in [13]. In this version of the
algorithm, pivots are selected as the largest of a diagonal element and the element in the next row



and same column. That is, at iteration k the pivot is chosen as maz(ag i, @k+1,k). If the chosen
pivot is element Gg41.k, Tows k and (k + 1) must be exchanged.

The graph in Figure 5 exhibits varying paths length, similar to the case without pivoting, but
it has the additional irregularity of bi-directional broadcasting. In fact, the selection of the pivot
must be broadcasted in both directions in each row: towards the right to compute the remaining
elements u; ; (j > ), and towards the left to exchange previously computed elements I; ; (i < j), if
necessary. Notice that the arrival of data to the nodes in this graph is not synchronized.

3.2 Transformation of graphs having bi—directional broadcasting with inde-
pendent paths

We present now a transformation to eliminate bi-directional broadcasting under certain con-
straints. This type of irregularity is found in matrix algorithms such as square of a matrix and
LU-decomposition with neighbor pivoting, among others.

There are two issues of interest in bi—directional broadcasting, namely the synchronization of
data and the reduction of nodes in the graph. Both are complicated by bi—directional broadcasting,
as we show in Figure 6. In Figure 6a, there is bi-directional broadcasting from the nodes located
along the main diagonal of the graph. Nodes to the left of the main diagonal receive data from above
before receiving the data broadcasted in a row. In other words, a vertical path reaching a node to
the left of the main diagonal in a given row of the graph is shorter than a path going through the
diagonal node in the same row. As a consequence, data arrival to the nodes to the left of the main
diagonal needs to be synchronized. Such synchronization requires the addition of delay registers
along the vertical paths to the left of the source of broadcasting, as shown in Figure 6b. Adding
the delays implies inserting new nodes in the graph and the length of the columns is increased by
different amounts, so that the graph is not regular anymore (i.e., vertical sub-paths in the graph
do not have the same length). As a consequence, the application of the procedure proposed in
Section 2 to reduce the number of nodes in the graph leads to low utilization of cells if the grouping
is done by columns, or O(n) storage requirements in the cells if rows (including the delays) are
collapsed into single nodes.

The problems outlined above can be eliminated for the particular case in which all computation
paths to the left (or right) of the source of broadcasting are independent (i.e., they are disjoint},
as it is the case in Figure 6a. In such a case, it is possible to move the independent computation
paths to the other side of the node source of broadcasting, so that the bi-directional data flow is
eliminated. The result of this type of transformation is shown in Figure 6c.

We apply now the transformation outlined above to the algorithm for LU--decomposition with
pivoting, which exhibits this type of bi-directional broadcasting. In Figure 5, the sources of bi-
directional broadcasting are the nodes used to compute the elements u;;. The broadcasted data
is the signal indicating whether the corresponding rows have to be exchanged or not, depending
on the pivot selected. The computation paths which perform the exchange of elements [;; (i.e.,
the vertical computation paths to the left of nodes computing u;;) are independent. Therefore,
as indicated above, it is possible to move these independent paths to the right of the source of
broadcasting in such a way that the bi—directional data flow is transformed into uni—directional.
This transformation is shown in Figure 7. The resulting graph has broadcasting in only one
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direction.

However, the interconnection pattern between nodes of the graph in Figure 7 is non-uniform,
as shown by the shaded region. The interconnection of nodes computing updated values of the
matrix is different than the interconnection of nodes to exchange the elements /; ;. This is not
surprising, since they are entirely different operations. In addition, the number of nodes in the
graph is O(n®). The transformation described in Section 2 to reduce the number of nodes cannot
be easily applied here, because of the non—uniform interconnection pattern present at the boundary
of the graph. Such transformation is based upon selecting sub—paths of the graph and collapsing
them into single nodes. The irregular interconnection complicates such selection, or originates
complex interconnections.

For instance, if we want to collapse rows of the graph as done before, we find that the parts
of the rows exchanging the elements /; ; are connected to many other rows (i.e., nodes to exchange
elements I; ; in one row are connected to O(n) rows of the graph). This implies a large fan-in
for the collapsed nodes exchanging the elements {; ;. Moreover, pipelined flow of elements I;;
and u;j towards the exchange nodes requires the synchronization of data arrival to those nodes,
task which is not straightforward with the graph as shown. Consequently, given the irregular
interconnection pattern, it is not possible to collapse rows of the graph as done previously for the
case without pivoting. In addition, attempting to partition the graph into a regular and a non-
regular portions, grouping the nodes in them separately and combining the resulting parts, faces the
same problems just mentioned. Further transformations to solve the non—regular interconnection
pattern are discussed next.

3.3 Transforming non—uniform interconnection pattern

As illustrated by the previous example, another type of irregularity in matrix algorithms occurs
when nodes in the dependence graph have non—uniform interconnection pattern. That is, nodes
are interconnected with a regular pattern excepting some interconnections at the boundaries of the
graph which are not the same. An example of this kind of irregularity is shown in Figure 8a. This
non—uniform interconnection pattern complicates the collapsing of sets of nodes into single nodes,
because sub—paths in the graph do not have the same structure.

Our approach to solve the non—uniform interconnection pattern problem consists of replacing the
irregularity with a regular interconnection. To achieve this, we add delay registers to the irregular
boundaries in such a way that their interconnection corresponds to the same regular pattern as
the one existing for the rest of the nodes. The way such delay registers are added depends on
the interconnection structure of the nodes whose non-uniformity is being solved. An example of
transforming non-uniform interconnections is depicted in Figure 8b. As shown in the figure, this
transformation might increase the total computation time of the algorithm (i.e., delay), but the
throughput is not affected. For algorithms which are computed for many instances, this increase
in delay is not significant.

We have found this approach to be suitable for some algorithms, though we can’t claim that
it is always possible to do so. In other words, this is an example of a transformation adequate for
certain algorithms, but not necessarily all cases.

We apply now the transformation proposed above to the non-regular interconnection pattern

12
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existing in the transformed graph for LU-decomposition with pivoting shown in Figure 7. We
transform the irregular pattern into a regular one by adding delay registers to the boundary paths,
namely the ones used to exchange the elements {; ;. These registers are connected with the same
structure as the other nodes, as shown in Figure 9. The arrival of data to the nodes of this graph
has also been synchronized. It turns out that the task is accomplished without difficulty, resulting
in a graph with a regular interconnection pattern.

The new graph exhibits varying paths length but it is suitable for grouping nodes. We apply
now the procedure proposed for such task in Section 2 and group rows (or columns) of the graph
into single nodes. The graph resulting from such grouping, shown in Figure 10, is regular and can
be mapped directly into a triangular array.

4 Conclusions

We have presented a procedure to reduce the number of nodes in the fully—parallel dependence graph
of matrix algorithms, with the purpose of reducing the number of cells needed in an implementation.
Such procedure is part of a design methodology for arrays of PEs that we are researching. This
methodology consists of the application of transformations on a fully—parallel graph describing the
algorithm, to fulfill implementation restrictions. We have also identified some irregularities which
complicate the proposed procedure. These irregularities are varying paths length, bi—directional
broadcasting and non-regular interconnection pattern between nodes of the dependence graph.
We have proposed an extension to the procedure for reducing the number of nodes, to take into
account the varying path length. Moreover, we have proposed transformations to the dependence
graph to remove bi-directional broadcasting and non-regular interconnection pattern under certain
constraints. The graphs obtained as a result of the proposed mechanisms are suitable for further
transformations aimed towards regular algorithms, or for direct implementations as arrays of PEs.

We have used the LU-decomposition, without and with pivoting, as examples of application
of our methodology to algorithms exhibiting the non-regularities considered. Such application has
resulted in triangular arrays for these algorithms, with better utilization than the square arrays
formerly proposed for it.

14
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Our research has permitted us to describe the features of a few basic transformations [12], [13].
Their application has allowed us to show that it is possible to incorporate implementation restric-
tions, and now specific irregularities, as part of a design methodology. However, these transforma-
tions are not an exhaustive collection for all possible irregularities and matrix computations. In
addition, as shown here, there are cases where the details of 3 certain transformation are specific
to a given algorithm. The objectives of our current research ipclude the identification and formal
definition of a larger set of transformations, for a more varied ¢lass of matrix algorithms. The ulti-
mate goal of the proposed research is to provide the designer with a collection of transformations
which are applied to a target algorithm. In this way, the design process becomes a search, in the
space of solutions available through the transformations, for the alternative which offers the best
cost—performance trade—offs.
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