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1. The need for conceptual information in connectionist networks

Humans have the ability to recognize and reason about a wide variety of social behaviors in
their fellows: deception, professional relationships, goal seeking, argumentation, etc.
Much of this ability is centered around our ability to manipulate conceptual knowledge. A
recent compendium of psychological results relating to human use of these structures is
(Galambos, Abelson, and Black 1986). There have also been a number of computer
programs> which have demonstrated the capability to use conceptual knowledge as
modeled by data structures in symbolic languages. Three fundamental problems are
knowledge representation, knowledge access (i.e. which knowledge structures to activate)
and knowledge application to specific instances (i.e. which symbols or roles in the
knowledge structures are bound to which objects in the current situation). Although results
have been enlightening as to processes underlying the use of conceptual knowledge, they
have all been based on serial examination of symbolic data structures. This serial approach
is unacceptable as a complete model of human cognitive performance.

1.1. Computer model of conceptual information storage and retrieval

Early models of conceptual knowledge concentrated on the ability of knowledge to “control
inference and direct search” (Schank 1987). Most research prototypes constructed to date
do not have enough knowledge in memory to cause knowledge access to become a serious
performance issue. Nevertheless, models of how knowledge is indexed, such as dynamic
memory theory (Schank 1982), have been put forth to try and shore up this deficiency in
these models. The original dynamic memory theory was posited to account for a large
number of aspects of how memory is accessed and updated, specifically: reminding,
memory confusion, forgetting, and generalization. The actual embodiments of the theory
in programs, however, have stressed only two aspects: categorization(Lebowitz 1983) and
elaboration (Kolodner 1983). The main strengths of the theory have been in explaining
cross-contextual reminding using thematic knowledge structures (Seifert et af 1986) and in
modeling confusions in episodic memory (Bower et al 1979). However the theory has not
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been able to account for effects such as priming, retroactive inhibition, associative recall
and more general types of learning.

1.2. Computer models of spreading activation and knowledge application

Previous work on parallel application of knowledge has examined one of two problems:
semantic retrieval or variable binding. Semantic retrieval has mostly been attacked through
the use of spreading activation models (after Quillian 1968) which search a network of
symbols in parallel. Two types of spreading activation have been posited, either passing
discrete symbols along the network such as Charniak's (1986) or Fahlman's (1977) marker
passing techniques, or the spread of continuous activation levels such as in Anderson's
ACT* (1983) model. Both these techniques can account for strong, proven, semantic
priming effects. Unfortunately, both techniques also require a serial component to either
explicitly evaluate paths found or implicitly apply knowledge structures activated by the
spread of activations. The reason for this serial step is that neither method can accomplish
variable binding; therefore, constraints among symbolic roles (such as equality constraints)
cannot be enforced during the spread of activation and so paths must be evaluated serially.
This step also requires a change in representation from a propositional network to a
predicate calculus (Charniak 1986) or production system (Anderson 1986) format.

1.3. Neuromorphic work on variable binding

Two types of concept retrieval have been demonstrated in distributed connectionist
networks!: (1) structured object retrieval and (2) micro-feature based associative retrieval,
Touretzky and Hinton's (1985) parallel production system has demonstrated various types
of parallel constraint satisfaction to perform role binding. These techniques use direct
representations of symbols, e.g. each symbol is represented using a feature vector or
micro-features. Architectures built using these distributed representations are capable of
performing pattern matching where the patterns contain variables but they do not account
for purely semantic retrieval. That is, a structure which does not match the variable
bindings in long term memory will not be retrieved. In micro-feature based associative
retrieval, the pattern of activation which is closest in absolute terms (e.g. hamming
distance) to the input pattern is replicated or in some models a combination of two patterns
which closely matches the input will be retrieved (Rumelhart and McClelland 1986).

For some tasks, such as learning the past tense of verbs, micro-feature based associative
retrieval is exactly what one wants, and for other tasks, such as modeling human puzzle
solving, purely structured object retrieval is what one wants. However, when a system is
trying to process conceptual knowledge, we would like it to be able to do both. What are
the desired characteristics of a realistic model for retrieval and application of conceptual
knowledge? First, we must have a model which accounts for psychological data on cued
retrieval, but does not require a change in representations (such as moving to predicate
calculus) to apply the knowledge. Second, we require a model which is able to create and
apply role binding constraints in addition to associative retrieval for accessing conceptual
knowledge. For example, Seifert and her colleagues (1986) have shown that people are
susceptible to thematic priming where there is little semantic similarity between the cue and
the test. In previous work (Dolan and Dyer 1987) we had proposed that a sub-symbolic
model of conceptual knowledge use would not require a general variable binding
mechanism such as that in (Touretzky and Hinton 1985), but only perform role binding.

Concept retrieval is also performed in local connectionist networks (Shastri and Feldman 1984) but that
work is aimed primarily at evidential reasoning (Shastri and Feldman 1985).



Role binding is the process of propagating change in one role or slot of a frame to all other
slots which point to the same object. However, we have found that in order to model
results such as those of Seifert and her colleagues we have had to admit a more general
variable binding mechanism. An example of the need for variable binding in conceptual
knowledge is the concept of “flattery”, getting someone to do something for you by
complimenting them. The need for variable bindings in this concept arise from the need to
represent the fact that the mental state which the flatterer seeks to evoke in the listener will
service one of his goals. This representation requires that one structure point to another,
but when the structure is stored in long term memory there is no way of knowing initially
what type of object the structure will need to point to because many different statements
could constitute a compliment.

2. Changing the assumptions and criteria for symbolic distributed
processing

A step in the right direction would be a distributed model which is able to handle the same
symbolic schemata used in other models of conceptual knowledge. Symbolic schemata
have been used extensively in story understanding and planning under various names:
scripts (Cullingford 1981), sketchy scripts (DeJong 1979), MOPs (Lebowitz 1983) and
plan boxes (Wilensky 1983). Schema recognition is a fundamental operation in such
systems. Role binding has also played a prominent role in such systems, especially in the
BORIS system (Dyer 1983). Some connectionist systems (Golden 1986, and Rumelhart ez
al 1986) have attempted to incorporate ideas of schema recognition but these systems have
suffered from an impoverished representation of schemata compared to those used by
symbolic systems. Figure 1 shows an example schema with some unfilled roles: ‘waiter’,
‘owner’, ‘food’, and ‘payment’. This schema is simplified and adapted from the restaurant
script in (Schank and Abelson 1977). The notation used in Figure 1 stresses that a schema-
based representation can be implemented as a set of relations, one relation for each slot in
the schema. Likewise, the constraints among the slots of the schema, which constitute the
structural description of the schema, can be represented as sets of relations.

$RESTAURANT PTRANS MTRANS ATRANS
customer John actor actor to
e g stabiishmaent = MaMaison to
waiter HUMAN(servica-person) to actor
food CBJECT(edible) object obiact

Figure 1: Sample conceptual structures, restaurant

All previous models of conceptual knowledge have operated under the physicat symbol
system hypothesis (PSSH) (Newell 1980). In elaborating this hypothesis, Newell laid out
a candidate list of a “...baker’s dozen...[of]...constraints on the nature of mind-like
systems...”. Systems which meet the strict definition of a physical symbol system
(formally equivalent to a Turing machine) automatically meet two of these constraints: (1)
universality and (2) symbolic behavior. Furthermore, at the time there was hope that *“‘an
accepted generative class of systems that are universal-symbol and also rational” would
grow from concepts such as goal hierarchies and heuristic search, thus satisfying another
of Newell’s constraints on mind-like systems. At this stage in the development of
neuromorphic systems, we feel that it is time to pursue systems which not only satisfy the
above three constraints but also three more: (1) behave robustly in the face of error, (2) be
realizable within the brain and (3) operate in real time. To this end we have concentrated on
giving connectionist networks the ability to use conceptual knowledge. As an example, we
give a brief description of such a system.



3. Representation and architecture

One way to think of symbols in distributed connectionist models is as “bit strings”. These
“bit strings” are not memory addresses, as are symbols in traditional implementations, but
are feature vectors. An example of this is found in (McClelland and Kawamoto 1986)
where each symbol is classified along a number of dimensions. A fixed number of bits is
allocated to each dimension, one for each possible classification, and the bit string is
formed from that set of features. As an example from (McClelland and Kawamoto 1986),

DIMENSIONS FEATURES
GENDER male, female
SIZE medium, large

are the features, and the symbol mappings are,

SYMBOLS VECTORS
GENDER SIZE

John  -=> ( 10 01)

Mary --> ( 01 10 )

To keep the descriptions simple, we will reuse the bit patterns for the symbols above in our
description of frames and slot names. For example, the pattern for a frame and two of its
slots might be:

HIT -— (1010)
actor --> (1010)
object --> (0101)

By constructing symbols this way, we ensure that symbols with similar meanings will have
similar representations. Relations can then be formed from these symbols in a very
straightforward manner, as in (Hinton 1981) by representing a relation as concatenations of
bit vectors. For examples, we can represent “John hit Mary” with two relations (1010
1010 1001) for (HIT actor John) and (1010 0101 0110) for (HIT
object Mary). In Hinton’s terminology the three symbols are called (ROLE1 REL
ROLEZ2), but in more traditional terminology they would be (FRAME slot Filler).

Sets of relations of these units can be represented on a set of units using conjunctive coding
(Hinton er al 1986). An example of such a representation is given in Figure 2. Here we
allocate a cube of units where each dimension of the cube is the length of one symbol.
Each unit in the cube represents a three-way conjunction of the features of the ROLE],
REL, and ROLE2 positions of a relation. In this way, multiple relations can be stored on
the same set of units. In the figure, the active units for the triple (HIT actor John) are
shown in black.

This approach is similar to the design of the working memory for the production system in
(Touretzky and Hinton 1985), except in that design, each element of the working memory
was assigned a random subset of each of the possible symbols for the three positions in a
relation. In our design, each unit in the working memory plays a very specific role in the
semantic meaning of the relations stored in working memory. The advantage of using this
approach is that it is easier to design networks which make use of many modules, because
the modules have a regular structure. Also, the results of a learning algorithm (that adapts
to the pattern representing a concept on a conjunctive cube) will be easier to analyze when



the structures are regular. The primary disadvantage of this approach is that ambiguities in
the memory develop more quickly than with the random subset approach.

ROLE2
(John)
Figure 2: Relations are represented on a conjunctive cube

From the discussion above, we can see that distributed representations impose a different
set of constraints than the PSSH. First, it is difficult to make arbitrarily fine distinctions
among symbols, because similar symbols have similar representations. Second, in a
distributed representation, types and tokens are almost impossible to distinguish, a fact
which has been cited as a weak point by Norman (1986) but as a strong point by Rumelhart
and McClelland (1986). Third, it is easy to decide if two symbols are similar. Finally,
connectionist memories are limited in the number of patterns they can store (Dethrick and
Plaut 1986).

Even though some of the assumptions of the PSSH change, others remain. For example,
we still have symbols which are manipulated by the system, and we can “open up” a
symbol's definition by bringing into working memory all the relations which have that
symbol in their ROLEI position, In addition we still have the assumption that a symbol's
definition may only reference other symbols and therefore only reference that symbol’s
definition indirectly. The major change is that more processing can be done without
“opening up” a symbol's definition because the representation of a symbol has some
semantic content (instead of being merely an address bit vector).

We have constructed and simulated a model which partially satisfies all of the requirements
we have outlined in Section 1.3 for a system which retrieves and applies conceptual
schemata. It uses the encoding of symbol structures described above. This means that the
representation is also compatible with our previous model of binding new information to
instantiated knowledge structures (Dolan and Dyer 1987). We have performed experiments
with this architecture in selecting the most appropriate symbolic structures give a partial
description of a situation. Although activation flows through the network in parallel, the
model effectively uses associative retrieval on semantic features first to narrow the
possibilities (as in the parallel intersection search used in marker passing) and then uses
role binding constraints to make a final selection when semantic features are not sufficient.
If no correct binding can be found then one of the semantically related structures is
retrieved. In summary, the model exhibits the behavior of both spreading activation and



parallel constraint satisfaction, whichever is appropriate, without any change in
representational format as in (Charniak 1986).

The processing architecture is shown below in Figure 3. The connections from short term
memory (STM) to other processing units that support story comprehension and planning
have been discussed elsewhere (Dolan and Dyer 1987). The long term memory (LTM)
consists of winner-take-all clusters modeled after Smolensky’s (1986) “knowledge atoms”.
The conceptual structures in LTM are encoded on the weights between LTM and the
retrieval buffer. There is no direct connection between STM and the retrieval buffer. The
only connection is via the mapping switch. If there were a direct connection the network
would only retrieve knowledge based on semantic features.

Long Term M th i
| Long Term Memory | Inverse Mapping switch Other Processing

Short
Term
Memory

Retriaval
Buffar

Mapping Switch

Figure 3: Architecture for conceptual knowledge retrieval

To understand the operation of this architecture, one must notice that in the same way thata
relation among three symbols can be represented on a cube of units, a relation among two
symbols can be represented with a square, and that a variable binding is essentially a
relation among two symbols, one in short term memory and one in the retrieval buffer.
Therefore the mapping switch is best conceptualized as a set of squares, where each square
represents a partial binding. In the binding switch there is a square for each conjunction of
a single bit in the ROLE1 and REL symbols. The activity of a unit in the mapping switch
signifies that a particular conjunction of a ROLE1 and REL (frame name and slot name)
maps one bit of the ROLE2 representation in the STM onto another bit in the retrieval
buffer for that same ROLE] and REL. Figure 4 shows! the details of some of the
connections among STM, the mapping switch, the binding square and the retrieval buffer,
Only single connections are shown between units. The bi-directional arrows in Figure 3
indicate symmetric connections among the units shown in Figure 4.

IFigure 3 shows the architecture for a representation with three bits for each of ROLE1, REL and ROLE2.
The largest network we have simulated to date has used eight bits for each of these. Delails on the
performance of these networks can be found in (Dolan, forthcoming).
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O LT™M Binding STM
Square

Retrieval
Buffer

b

Mapping Switch
Figure 4: Details of the connection topology

Within the mapping switch incompatible mappings are connected with mutual inhibition
along the rows and columns of the partial bindings. Each of these mapping units,
however, only determines if it is locally consistent; the network as described so far can sull
contain many global inconsistencies. Maintaining local consistency ensures that each frame
and slot name map a bit in the STM to exactly one other bit in the retrieval buffer and vice
versa. Maintaining global consistency ensures that two entire schemnata are correctly bound
at the symbol level. The binding square attempts to resolve these global inconsistencies by
computing the distributed representation of the bindings between the symbols in STM and
the variables LTM and using this to resolve inconsistencies in the mapping switch. The
activity of a unit in the binding square signifies that a particular mapping of one bit to
another is globally consistent. The binding square can be thought of as counting up the
votes in the mapping switch.

The function of the binding square together with the mapping switch is similar to the “bind
units” in Touretzky and Hinton’s (1985) production system. The major difference is that
this architecture does not require a fixed concept size. The reason it can handle some
variation in concept size is that inconsistencies are constrained via direct inhibitory
connections between semantically inconsistent units and not via global inhibition which a
priori constrains the number of active units in a module. As in the mapping switch,
inconsistent bindings! in the binding square are connected with mutual inhibition along the
rows and columns, therefore, if there are ‘n’ bits in the ROLE2 representation, only ‘n’ bits
can be fully active in the binding square. This places some limitations on the capacity of
the network but not a hard limit. A structure can still be retrieved, even if only part of its
mapping is present. The network degrades gradually as the bindings become more
complex.

In the first few cycles of retrieval, the LTM units for structures which have substantially the
same conjunction of frames and slots in the STM get much more activation than others. At

1The inconsistencies are structural not semantic.



this point, most of the computation has been due to the action of the STM on the retrieval
buffer via the mapping switch. Neither the inhibitory connections in the binding switch nor
the binding square have had much effect.

After the most likely candidate structures are partially instantiated in the retrieval buffer, the
binding square makes a few decisions on particular bits being mapped to one another
globally. This information feeds back into the mapping switch and allows some the
candidate structures to be eliminated. As this process continues, the binding square settles
on global mappings and alternate candidates are eliminated until a complete mapping is
determined and a single conceptual structure is instantiated in the retrieval buffer.

Once the bindings have been determined, the inverse mapping is accomplished with another
set of switching units (i.e. the inverse mapping switch) which is isomorphic to the mapping
switch but which simply ANDs together the output of the binding square and the retrieval
buffer. This set of units then excites the units for the re-mapped structure in STM.

Of course the operation of the network is not as smooth as the preceding discussion implies
(although this is in general the manner in which it settles into a stable state). The LTM, the
mapping switch and the binding square are each connected like a Hopfield optimization
network (Hopfield and Tank 1985). However, the dynamics and hence the energy
surfaces are greatly complicated by interactions with the other component networks. We
can get some insight into dynamics if we look at the types of local minima to which it is
subject. The most common type of local minima is where a row or column of the binding
square settles on intermediate values for two units instead of a single highly active unit.
Another type of local minima is when more than one unit representing a conceptual
structure remains active in the LTM. This problem is aggravated when the units in the
LTM are replaced by cliques of units as were used in Touretzky and Hinton’s (1985)
distributed production system. The most common type of local minima is found when
there is a semantically similar but structurally dissimlar concept in the network. If the
network is forced to settle too quickly, then it may find one of these. The problem is that,
at a distance in the hyper-space of unit activations, the gradient towards a structure with
correct bindings is not very different from semantically similar ones with incorrect
bindings. If the network moves towards the two minima too quickly, a small amount of
noise will cause it to select the wrong concept. More simulation work is required to
determine how these local minima can be avoided and how their number and character
change with the increase in complexity of conceptual structures.

4. Conclusions

If the ability to retrieve and apply conceptual knowledge is a key aspect of humans' ability
to understand their social world, then both the abilities to select the appropniate knowledge
structure and to correctly apply that knowledge are required of a complete cognitive model.
If we accept the assumption that this knowledge can be represented by symbolic structures,
but reject models which serially examine symbolic data structures, then we need parallel
architectures which account for both the predominance of semantic cues in retrieval and the
ability to make fine distinctions based on role bindings. We have presented a model here
which makes a step towards integrating these two processes using a large network of
parallel processors. Furthermore we believe that work of this type is required to develop a
stronger version of the physical symbol system hypothesis, a version which not only
requires models to be Turing machine equivalent and symbolic in nature, but which also
requires models to be real-time (at least potentially), robust, and realizable within the brain.
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