IDENTIFYING AND SELECTING SEQUENTIAL THREADS IN
DATA FLOW PROGRAMS

Daniel R. Greening February 1988
Milos D. Ercegovac CSD-880008

Identifying and Selecting Sequential Threads in
Data Flow Programs

Dan R. Greening
Milo§ D. Ercegovac

University of California, Los Angeles

January 13, 1988

Abstract

Communication and matching delays between actors in a data flow graph present a
significant performance degradation factor. We can reduce these delays by partitioning
actors into large sequential threads, and bypassing matching and queueing operations
in communications that occur between actors in the same thread. This paper presents a
method for partitioning a cyclic data flow graph into a collection of sequential threads,
reducing overall execution time in appropriately designed machines.

We provide an algorithm to give the set of all maximal sequential partitionings for
a data flow graph. Selecting an optimal partitioning from this set is incomputable.
However, through simulation of a “typical” case, we can select a reasonable partition-
ing.

In simulating two example programs, selecting a different partitioning had little
impact on the execution time. However, using the worst-case maximal partitionings
improved execution time by 33% and 18% over the non-partitioned programs. Using
the best-case partitionings improved execution time by 39% and 20%.

1 Introduction

Communication and matching delays often dominate the execution time of data flow pro-
grams. This may be the major reason data flow machines have not replaced control flow
machines: the gains reaped from increased parallelism in data flow programs have been
offset by increased communication time. We can reduce execution time by identifying
naturally sequential threads in a data flow program which require no matching. Generally,
one can find several ways to partition a data flow program, each with a different execution
time.

We present an algorithm for enumerating all maximal sequential thread partitionings
of a data flow program. We show its application to two example data flow programs,
INTEGRATE and RECURSIVE_AQ. Using simulation, we compare the execution times
of different partitionings, and discuss the implications of our results.

1.1 Definitions

We use the term “actor” to refer to a primitive data flow operation, and the term “thread”
to refer to a collection of actors that naturally execute in sequence. The data flow ma-
chines we discuss here bypass matching and unnecessary communication for tokens passed
between actors in the same thread. If a program has been divided into threads, we call 1t
a “partitioning.”

When a program consists entirely of unpartitioned actors, we call it a “fine-grained”
data flow program. When a program’s actors have been partitioned in any fashion (not
necessarily into threads), we call it “coarse-grained.”

“Intra-thread communication” refers to the passing of data between two actors within
the same thread. Intra-thread communication does not require the use of a matching store.
“Inter-thread communication” refers to the passing of data from one thread to another.
This will either require the use of a matching store or the startup of another thread, both
of which additional time.

We group edges into “enabling groups” and “production groups.” Enabling groups are
sets of incoming edges. In one enabling group, all edges share a common sink actor. When
tokens rest on all edges in an enabling group, that actor can consuming the tokens and
begin execution. Several enabling groups can be associated with a given actor.

Production groups are sets of outgoing edges. In one production group, all edges share
a common source actor. When an actor completes execution, it sends tokens out on only
one production group, one per edge.

We use thick arcs to connect members of enabling groups and production groups.
Figure 1 shows an example of this diagrammatic convention.

1.2 The Problem

Data transmission from one actor to another incurs a large time cost when operands
must pass through a matching unit. Thus, coarse-grained data flow programs—where
many intermediate operands do not pass through a matching unit—often run faster than
equivalent fine-grained programs, even though fine-grained programs can introduce greater
parallelism. Machines with long transmission or matching delays exacerbate the effect
[Chan81,Leco81], as shown by both simulations [Gand85,Huda85] and mathematical con-
structions {Gaud84].

In experiments on 29 different pumerical analysis programs, Manchester machine re-
searchers discovered that unary instructions comprised between 56% and 70% of the total
instructions executed [Gurd85]. They modified the Manchester machine to bypass the
matching store when an instruction with a unary output followed an instruction with a
unary input, essentially creating a thread, to reduce overall execution time.

The problem of identifying “unary-output followed by unary-input” constitutes a spe-
cial case of the problem of identifying “natural sequential threads in a data flow program.”
Precedence relations can force data flow program fragments that include n-ary (not just
unary) operations to run sequentially.

1.3 Our Contribution

We base our work on a hypothetical tagged-token data flow machine which can execute
actors in a thread without sending intermediate tokens through a matching store or gen-
erating unnecessary communication delay.

We extend Gurd and Watson’s work to identify and combine naturally sequential n-ary
actors into large threads. In doing this, we preserve inherent parallelism (unlike Gaudiot),
while we attempt to reduce overall communication and matching delays to a minimum.
We show how to obtain the set of ¢!l maximal sequential partitionings of a data flow graph.
We often find several alternatives to choose from, each with a different execution time.

Choosing the partitioning with the least execution time is incomputable. Simulation of
a “typical” terminating case for the data flow graph provides an execution-time heuristic.
measuring the “badness” of different partitionings.

We provide two example programs, then partition and simulate them. We find that
even choosing the worst-case partitioning for each example program improves execution

3

time by a substantial margin.

2 Identifying Sequential Threads

One can partition data flow graphs in several ways. We restrict ourselves to partitioning
in a way that preserves all parallelism, but which incorporates as many actors into each
thread as possible. To ensure this, we adopt the following set of rules:

All input tokens coming into a sequential thread must be ready before the thread
starts. Otherwise, if a sequential thread could partially complete and then wait for a
token, deadlock can occur.

Since input tokens must be available before a thread starts, inherent parallelism in the
system could be destroyed by interior actors that require inter-thread data. Therefore, we
will not incorporate an actor into a thread if it requires tokens from another thread and it
is not the first actor in the thread.

However, we do allow any actor (i.e., not necessarily the last actor in a thread) to
produce output tokens which are sent to another thread. This is easy to implement in
hardware. When an actor produces a result, it could be immediately sent to the matching
store, for example, rather than wait for the entire thread to complete.

Algorithm PSB partitions a program graph into the largest possible sequential threads
according to the above rules. It uses some notation from our discussion of probabilistic
data flow graphs [Gree87].

Specifically, V is the set of vertices, or actors, in a data flow graph. E is the set of
edges in a data flow graph. §p(¢) = —1 means that no token rests on edge e in its initial
state. 8p(v) = —1 means that vertex v is not processing data in its initial state. P, is
the set of all enabling groups for vertex v. Therefore, the term |P,| > 1 in statement 2
of Algorithm PSB asks whether a vertex may be started by more than one set of vertices.
The functions pred(v) and suce(v) return the set of predecessor and the set of successor
vertices for vertex v, respectively.

Algorithm PSB first places all vertices that must begin sequential blocks in set 5
(statement 1). It uses this criteria: If an initial token rests on a vertex's incoming edge
(i.e., if residual time éo(e) # —1) or the vertex itself is processing a token (§o(v) # —1),
that vertex is placed in S. Statement 2 adds those vertices which have more than one
enabling group.

Threads then grow from these “starting vertices” in the loop beginning at statement
7. If an immediate successor to the current vertex, s, requires a token from s to begin
execution, and if that successor accepts tokens solely from the vertices preceding it in the
current thread (set Q), it is selected as a successor within the thread.

Any other successor vertices, whose predecessors are entirely in Q U M, will be added

1[5 —{veEV|IeeE E,dofe) #—1A sink(e) = v) V 6g(v) # —1} ; Establish starting nodes.
2| §—Su{veVj P> 1} ; If a pred(v) may not start v, include v.
3| Me—S5,3+~0 ; Initialize.
4 | while § # @ do H As long as there remains a starting node,
5 pelect any s € S ; .. select one as this partition’s start.
6 S§—S5—{s}j—it+t1,k—=0,Q+ 0, Found — true ; Update S, get next P, initialize.
7 while Found do ; If we found a good successor, continue.
8 Found — false,k — k+1,Fj 1) — 8,Q — Qu{s} ; Go to next vertex, add vertex to P and Q.
9 for all v € V such that v € succ(s) Av & M do ; Check each successor node for “goodness”.
10 if pred(v) C M ; Have predecessors been placed?
11 M~ MU {v} ; Yes, this one will be too.
12 if pred(v) € Q@ A ~Found ; Are all predecessors in partition?
13 Found «— true,n — v ; Yes. Put v in partition.
14 else j
15 § — Su{v} ; No. Put v in start nodes.
186 end if H
17 end if H
18 end for ;
19 s—n ; Set up to put our successor in P.
20 end while ;
21 Fliner) ¢ ; Mark end of this partition
22 end while ;
Algorithm PSB (Partition Sequential Blocks)

to the set S. These will serve as additional thread starting vertices.
Upon completion of Algorithm PSB, each F;, where 1 < i < j, comprises one sequential

block.

Theorem 1 Upon completion of Algorithm PSB, two-dimensional array P contains all
vertices in V, except unezecutable vertices.

PROOF. First, we assume that Vv € V,[c € C A v = end(c)] = [Te € E,end(e) = v).
By this assumption, we disallow vertices executable solely by input constants. Because
vertices driven solely by constants have no clear interpretation, and in some machines they
could generate an infinite number of output tokens, we exclude them.

By statement 1, we know that the labels of all vertices that might execute immediately
after initiation of the program are in S. Statement 7 executes at least once for every s € S,
by statements 4 to 6. No statement in Algorithm PSB removes an element of S, except
statement 6. Thus, if at any time during Algorithm PSB’s operation, s € S, then by the
algorithm’s termination 3i € {1,...,k}, Ps1) = 8.

Assume that @ € V, and a is executable. We want to show that for any b € suce(a),
where b is executable, that 3i,j € Z*, P ; = b.

Suppose b € succ(a). Then Je € E, start(e) = a Aend(e) = b. By statements 3 and 11,
M contains all vertices that at some point were members of S, or those included in some
previously constructed thread. We know by the above argument that all such elements of
S will be in a thread. Therefore, if b € M, b is in a thread.

Now consider statement 7. If @ can receive a token, at some point the program’s s
equals a at statement 9. If b ¢ M, we execute the body of the loop. If pred(b) C M, that
is, all predecessors of b are executable and have been placed in P, then by statement 11, b
will be added to M, and thus b will be placed in a thread (either immediately at statement
19, or later through statement 15).

We know that all vertices that can execute immediately upon program initiation are
present in P. We know that if a vertex is present in P, and successor vertices will also be
present in P. So by induction, the labels of all executable vertices arein P. W

Theorem 2 Algorithm PSB preserves the ordering of directed graph G.

PrOOF. To prove this, we have to show that no thread P, in P internally violates the
ordering of G. Then we must show that externally, no ordering violations can occur.

By statement 12, a vertex v can only be included in F; if all & € pred(v) precede it in
P,. Therefore, internally all threads P; preserve the ordering of G.

Externally, according to the machine’s operation, all incoming tokens must be present
before a thread begins. Therefore, P; cannot begin until the external ordering is satisfied.

Theorem 3 Algorithm PSB preserves all parallehsm present in the original data flow
graph.

PROOF. Assume otherwise. Then Ji,j, k € Z*+,j < k, such that Pz precedes F;; in
graph G or no ordering exists between F; and i ;).

Theorem 2 implies that no ordering exists between P and P ;. But by line (9)
of PSB, the succ relation orders all vertices in the string P;. With this contradiction, we
proved our theorem. H

2.1 Execution Times for Different Partitionings

While the use of Algorithm PSB will reduce communication delays the indeterminancy of
statement 9 allows several different partitionings of most graphs. In some cases, selecting
one partitioning over another will accelerate an algorithm.

Cutcome 1 Qutcome 2

Figure 1: Two Outcomes of Algorithm PSB

In Figure 1, we see two possible outcomes, depending on which v € suce(s) statement
9 choses when s = DUP. In Outcome 1, a result token will appear on the left input of
SUB earlier than on the right input, because the left path requires fewer vertices {machine
operations) and fewer exposed edges (communication delays) than the right path. In
Outcome 2, the two result tokens will appear at SUB at more nearly the same time.

Remark 1 Ouicome 2 of Figure 1 is faster than Outcome I.

PROOF. Let t:C — R, where C is the set of all operation codes and R is the set of
real numbers. If ¢ € C, then t(c¢) is the execution time of that operation. t; is the average
time to process intra-thread communications. ?; is the average time to process inter-thread
communications. #; < #; because the latter must go through the matching store, while the
former need not [Wats82).

The Outcome 1 program takes T, = #(DUP) + maz(t(SQR), t; + t(ADD) + t(SQR)) + t, +
#(SUB) time units. The Outcome 2 program takes T = t(DUP) + maz(t; + t(SQR), t{ADD) +
#(SQR)) + t, + t(SUB) time units. We easily compute that T, = T, — t; — t(ADD) +
maz(t,, H(ADD)). Since #; > 0 A t(ADD) > 0, we see that T, <T;. W

Ideally, we would generalize this concept, generating an algorithm to choose the optimal
set of sequential threads. We shall discover this task difficult.

Qutcome 1 Outcome 2

Figure 2: Optimal Partition Depends on Input

Theorem 4 Partitioning an unevaluated data flow graph into optimal sequential blocks 1s
incomputable.

PROOF. We prove this theorem by example. Observe the data flow program frag-
ment in Figure 2. There are two possible partitionings under algorithm PSB. Assume
the incoming value z > 3, and the execution time of each vertex is the same. Then the
leftmost partitioning completes earlier. Conversely, with z < 3, the rightmost partitioning
completes earlier.

Thus, the optimal graph partitioning depends solely on the value of incoming value
z. But the algorithm used to calculate z can be any data flow algorithm. By [Turi36],
predicting the value of z is incomputable. Therefore, partitioning a data flow graph into
optimal sequential threads is incomputable. W '

Since partitioning is incomputable by Theorem 4, we must rely on approximations.
Applying non-deterministic Algorithm PSB to a data flow graph will result in a set of
different sequential partitionings. We must choose one of these.

Partition execution times will differ between partitionings because intra-thread com-
munication time will be less than inter-thread communication times. Using simulation, we
can obtain an estimated completion time for each partitioning, and choose the partitioning
which completes in the least amount of time.

10

3 Experiences with Partitioning

To evaluate the utility of sequential thread partitioning, we applied Algorithm PSB to two
example programs, obtained sets of sequential threads (partitionings), and executed them
using an idealized data flow simulator. In this section, we briefly describe the simulator
and present our results.

3.1 The Simulator

Our machine corresponds roughly to the Manchester machine [Gurd85], except in the
following ways:

1. Communication plus matching time is given a fixed value for each edge. On a real
machine, this time will vary depending on the machine load, and the size of the data
tokens.

9. The matching unit can handle operations which require more than two input
operands. The Manchester machine matching unit imposes a maximum on the num-
ber of input operands: two.

3. The matching unit handles arbitrary multiple “enabling groups.” The Manchester
machine allows only one enabling group per instruction.

4. Our system does not allow two edges to share the same sink vertex and sink position.
We provide an equivalent construct in the MERG instruction.

5. An infinite number of processors are provided. There i1s no processor contention.

6. No matching-unit or communication contention occurs.

3.2 Instructions Provided

The simulator has an easily extensible instruction set. We implemented only those instruc-
tions necessary to simulate our example data flow programs. The instructions provided
include:

MERG This instruction allows any number of input edges, each in its own enabling set.
There is only one output edge. An input edge will be randomly selected from those
which contain tokens, the token absorbed and reproduced as an output token. This
operation executes in zero time.

11

DUP The DUP instruction has one input edge. It duplicates an input token, and outputs it
on two output edges.

SUBR The SUBR instruction takes no input edges and allows any number of output edges.
It serves simply as a label for a subroutine. The output edges correspond to the
parameters of the subroutine. CALL instructions which refer to this subroutine must
have the same number of input edges {not including the subroutine name) as the
corresponding SUBR instruction has output edges.

CALL The first input edge to a CALL instruction should be a string constant naming the
subroutine to be called. The remaining input edges correspond to parameters. There
should be the same number of input parameter edges as there are output edges to
the corresponding SUBR instruction.

The CALL instruction allows a varying number of output edges. The number of output
edges for a particular CALL instruction should equal the number of input edges to the
appropriate RET instruction in the called subroutine.

The CALL instruction first obtains a new unique “invocation ID” for the subroutine
being called. It saves the invocation ID of its input tokens, the label of the CALL
instruction, and the new invocation ID in an “invocation memory.” It changes the
invocation IDs of its input tokens to the new invocation ID. The CALL instruction
then send the tokens out on the output edges of the named SUBR instruction.

RET This instruction takes any number of input edges and produces no output edges. When
it receives input tokens, it looks up their invocation ID in the invocation memory. It
sets the invocation IDs of its input tokens to the old invocation ID. It then produces
output tokens on the appropriate CALL instruction.

PLUS, MINUS, TIMES These instructions all take two input operands and produce one output
token. Their functions are obvious. If inputs are integers, they produce an integer
output. If inputs are real, they produce a real output.

ABS This produces the absolute value of its single input token. If the input is an integer.
it produces an integer output. If the input is real, it produces a real output.

OR, AND, NOT These instructions perform corresponding logical operations on their
boolean inputs.

BRR This branch instruction takes a number of inputs greater than 1. The first input edge
must carry a boolean value. If there are n input edges, the BRR instruction must

12

have 2(n — 1) output edges. If the first input edge carries a false value, the tokens
on input edges 2 through n will be copied to output edges 1 through (n —1). If the
first input edge carries a true value, the tokens on input edges 2 through n will be
copied to output edges n through 2(n —1).

CGR This “compare greater” instruction compares its two input tokens. If the left is greater
than the right, it outputs a true value. Otherwise it outputs a false value.

ADL This “add to iteration level” instruction increments the iteration level number of the
left input token by the integer value of the right input token.

sIL This “set iteration level” instruction sets the iteration level number of the left input
token to the integer value of the right input token.

STUB This instruction merely absorbs an input value, and produces nothing,.

ISERROR This instruction produces a true output value if the input token is an error value.
It produces a false output value if the input token has any other value.

The exact input format is described in [Gree87]. Some data in the input language
are superflous to the simulator, and are used by a statistical analysis package we have
developed.

3.3 Sample Programs

Both example programs were originally written in SISAL, a stream-oriented, Pascal-like
applicative language. We used the retargetable SISAL compiler developed by Lawrence
Livermore National Laboratory [McGr85] to generate data flow program object, and cou-
verted the object to our input format.

All data flow instructions in these examples were simulated in one cycle. Inter-thread
communication and matching took one cycle. Intra-thread communication took zero cycles.

3.3.1 Sample Program 1: INTEGRATE

The INTEGRATE program is derived from an example discussed in [Gurd85}, and con-
verted to SISAL version 1.2. The source follows:

define Integrate

function Integrate (returns real)
for initial

13

int :
y
x -
while
x <1.0
repeat
int :
Y
X
returns
value of sum int
end for
end function

nnu
OO0
[aRe R
< r

0.01 * (old y + old y);
old x * old x;
old x + 0.02

W nan

The resulting data flow input for our analysis and simulation programs follows

(edge =a 1 0 0.0)
(edge =b 1 0 0.0)
(edge =c 1 0 0.02)
(edge =d 1 0 0.02)
(edge =e 1 -1)
(edge =f 1 -1)
(edge =g 1 -1)
(edge =h 1 -1)
(edge =i 1 -1)
(edge =j 1 -1)
(edge =k 1 -1)
(edge =1 1 -1)
(edge =m 1 -1)
(edge =n 1 -1)
(edge =0 1 -1)
(edge =p 1 -1)
(edge =q 1 -1)
(edge =r 1 -1)
(edge =s 1 -1)
(edge =t 1 -1)
(edge =u 1 -1)
(edge =v 1 -1)
(edge =w 1 -1)
(edge =x 1 -1)
(edge =y 1 -1)
(edge =z 1 -1)
(edge =aa 1 -1)
(edge =ab 1 -1)
(edge =ac 1 -1)
(edge =ad 1 -1)

14

_1)
_1)
_1)
-1)
-1)
_1)
_1)
_1)

(edge
(edge
(edge
(edge
(edge
(edge
(edge
(edge
(edge =c6 0 -1)
{edge =80 -1)
(finalvertex *F
(vertex *32 NOP
(vertex *33 NOP
{(vertex *34 NOP
(vertex *35 NOP
{constantvertex
(vertex *0
(vertex *1
(vertex *2
(vertex *3
(vertex *4
(vertex *5
(vertex *6
(constantvertex

=ae
=af
=CO.
=cl
=c2
=c3
=c4
=c5

CO0OOOCOMH

(vertex *7 ADR 1 -1 ((

(vertex *8 MLRd
(constantvertex

(vertex *9 ADL 1 -1 ((1 =nu

(vertex *10 ADR 1
(vertex *11 DUP
(constantvertex
(vertex *12 MLR
(constantvertex
(vertex *13 ADL
{vertex *14 ADR
(constantvertex
(vertex *15 ADL
{constantvertex
(vertex *16
(vertex *20
(vertex *1i7
(vertex *18
(vertex *19
(vertex *50
end

CGR 1 -1
puUP 1 -1
BRR 1 -1
BRR 1 -1
DUP 1 -1
BRRdt 1 -1
DUP 1 -1 (

A op

=af
0
0
Q
O

.0

[T B e Y T T S
[T B
1]
e o~ O

S e’ e N N N’

39

@ Fh
P N e R A

f\f\f\f\f‘\l—l

oHp

)) (Q1

Pt

o= nn

(
(
(
(
(
(

o~
[} HV

*C1 0.

N

nH—~a

1
1
1
1
1
(
1
0
1

)
1 -1 (1)
*C2 1 ((1 =c2))
=c?2)
-1 ({1 =1 =v)
1 -1 ({1
*C3 0.01
1 -1 ((1
*CS 1 ((1 =c6)))

-1 ((1 =w =c6)) ((1

~p))
p =i)) ((0.02)(0.98 =q =1)))
((1 =8 =t)))

=0))

2 =80)(0.98 =1)))
g)(o .98 =k)))

=ab)))

1 -1 ((1 =k =2)) ((1 =ae)))

*C4 1 ((1 =c4)))

1 -1 ({1 =ae =c4)) ((1 =aa)))

*C5 0 ({1 =c5)))

=a) (1
=b) (1
=¢) (1 =ac))
=d) (1 =ad))
=30)) ()

=aa))
=ab})

15

SIL 1 -1 ((1 =j =c5)) ((1
MERG 0 -1 ((1
MERG 0 -1 ((1
MERG 0 -1 ((1
MERG 0 -1 ((1
STUB 0 -1 ((1

=af)))
(1
((1
(1
((1

Version Simulation
No partitioning { 761 cycles
Partitioning # 1 | 459 cycles
Partitioning # 2 | 507 cycles

Table 1: INTEGRATE: Simulation Res-ults

Algorithm PSB identified two partitionings for the INTEGRATE program:

Partition 1
(x19) (%6 *8 *13) (*10 *12) (%14 *15) (*5 *7 *9 *11)
(%18 *0 *1 *4) (%2 *50) (#3 *16 *xF) (#17) (*20)
Zeroed edges:
=W =T =S =Y =AE =X =U =R =0 =H =G =50 =AF

"

J

Partition 2
(#19) (#7 *9 *11) (*5 *6 *8 *13) (*10 *12) (*14 *15)
(*18 *0 *1 *4) (*2 *50) (*3 *16 *F) (#17) (*20)
Zeroed edges:

=X =0 =W =T =S5 =Q =Y =AE =0 =H =G =50 =AF =J

Results of the simulation of INTEGRATE are shown in Table 1.

3.3.2 Sample Program 2: RECURSIVE_AQ

This program is taken from an example shown in [McGr85], a recursive adaptive quadrature
program which integrates an arbitrary function, using a supplied stop condition.

We inserted the subroutines necessary to integrate the function 2?4+ 3r—8fromz =0
to z = 10.

define Recursive_AQ

type Interval =
record [X_Low, Fx_Low, X_High, Fx_High :@ real 1;
type Interval_List = array(Interval]

function Evaluate_Function(X: real returns real)
(X * X) + (3.0« X) -8.0
end function

function Stop_Condition(Area_l, Area_ 2,

Interval_Width: real returns boolean)
(abs(Area_1 - Area_2) < 2.5) & (Interval_Width < 1.0)

16

end function

function Recursive_AQ(L, Leftv, R, Rightv: real
returns real, boolean)
let
Mid := (L + R) * 0.5;
Midv := Evaluate_Function(Mid};
Prev_area := (R - L) * (Rightv + Leftv) * 0.5;
New_Area := (R - Mid) * (Rightv + Midv) * 0.5
+ (Mid - L) * (Midv + Leftv) * 0.5;
Done := Stop,Condition(Prev_Area, New_Area, R-L);
Abort := is error(New_Area) | is error(Done)
in
if Abort then Prev_Area, true
elseif Done then New_Area, false
alse
let
Left_Area, Abt_Left
.= Recursive_AQ(L, Leftv, Mid, Midv);
Rgt_Area, Abt_Rgt
.= Recursive_AQ(Mid, Midv, R, Rightv);
in
Left_Area + Rgt_Area , Abt_Left | Abt_Rgt
end let
end if
end let
end function

We provide a graphic description for the resulting data flow program in Figure 3.

The results of simulating the RECURSIVE_AQ program appear in Table 2. A detailed
listing of the partitions is supplied in [Gree8T].

17

Figure 3: RECURSIVE_AQ: Probabilistic Data Flow Graph

18

Version Simulation Version Simulation
No partitioning 324 cycles Partitioning # 33 | 259 cycles
Partitioning # 01 { 259 cycles Partitioning # 34 | 264 cycles
Partitioning # 02 | 264 cycles Partitioning # 35 | 259 cycles
Partitioning # 03 | 259 cycles Partitioning # 36 | 264 cycles
Partitioning # 04 | 264 cycles Partitioning # 37 | 259 cycles
Partitioning # 05 | 259 cycles Partitioning # 38 | 264 cycles
Partitioning # 06 | 264 cycles Partitioning # 39 | 259 cycles
Partitioning # 07 | 259 cycles Partitioning # 40 | 264 cycles
Partitioning # 08 | 264 cycles Partiticning # 41 | 259 cycles
Partitioning # 09 | 259 cycles Partitioning # 42 | 264 cycles
Partitioning # 10 | 264 cycles Partitioning # 43 | 259 cycles
Partitioning # 11 | 259 cycles Partitioning # 44 | 264 cycles
Partitioning # 12 | 264 cycles Partitioning # 45 | 259 cycles
Partitioning # 13 | 259 cycles Partitioning # 46 | 264 cycles
Partitioning # 14 | 264 cycles Partitioning # 47 | 259 cycles
Pariitioning # 15 | 259 cycles Partitioning # 48 | 264 cycles
Partitioning # 16 | 264 cycles Partitioning # 49 | 259 cycles
Partitioning # 17 | 259 cycles Partitioning # 50 | 264 cycles
Partitioning # 18 | 264 cycles Partitioning # 51 | 259 cycles
Partitioning # 19 | 259 cycles Partitioning # 52 | 264 cycles
Partitioning # 20 | 264 cycles Partitioning # 53 | 252 cycles
Partitioning # 21 | 259 cycles Partitioning # 54 | 264 cycles
Partitioning # 22 | 264 cycles Partitioning # 55 | 259 cycles
Partitioning # 23 | 259 cycles Partitioning # 56 | 264 cycles
Partitioning # 24 | 264 cycles Partitioning # 57 { 259 cycles
Partitioning # 25 | 259 cycles Partitioning # 58 | 264 cycles
Partitioning # 26 | 264 cycles Partitioning # 59 | 259 cycles
Partitioning # 27 | 259 cycles Partitioning # 60 | 264 cycles
Partitioning # 28 | 264 cycles Partitioning # 61 | 259 cycles
Partitioning # 29 | 259 cycles Partitioning # 62 | 264 cycles
Partitioning # 30 | 264 cycles Partitioning # 63 | 259 cycles
Partitioning # 31 | 259 cycles Partitioning # 64 | 264 cycles
Partitioning # 32 { 264 cycles i

Table 2: RECURSIVE_AQ: Simulation

19

4 Conclusion

A cursory glance at Tables 1 and 2 makes it clear that, at least for these examples, selecting
a particular partitioning makes only a small difference in the execution time. For examples
1 and 2, the best-case partitioning execution time beats the worst-case partitioning by 9.4%
and 1.8% respectively.

However, even the worst-case partitioning beats no partitioning by a substantial margin,
33.3% and 18.5% for examples 1 and 2. The best-case partition beats no partitioning by
39.6% and 20.0%.

We note that the number of partitionings generated by Algorithm PSB grows expo-
nentially with the number of multiple-successor nodes. The decomposition methods of
[Kape87,Kape88] can address this problem to some extent. However, our experience seems
to indicate that (since worst-case and best case times do not differ substantially) using a
cheap heuristic to reduce the number of partitions generated by Algorithm PSB would pro-
vide an efficient data flow optimization scheme. We are currently looking into alternative
heuristics and search-space reduction schemes for Algorithm PSB.

20

References

[Chan81]

[Gaud84)

[Gaud85)

[Gree8T]

[Gurd85]

[Huda83]

[Kape87]

[Kape88]

[Leco81]

[McG185]

T.L Chang and P.D. Fisher, A Block-Driven Data-Flow Processor, pp. 151-
155, in Proceedings of the 1981 International Conference on Parallel Processing,
Columbus, Ohio (1981).

J.L. Gaudiot and M.D. Ercegovac, Performance Analysis of a Data-Flow Com-
puter with Variable Resolution Actors, in IEEE Proceedings of the International
Conference on Distributed Computing Systems (1984).

J.L. Gaudiot, R.W. Vedder, G.K. Tucker, D. Finn, and M.L. Campbell, A
Distributed VLSI Architecture for Efficient Signal and Data Processing, IEEE
Transactions on Computers, C-34(12):1072-1087 (December 1985).

D.R. Greening, Modeling Granularity in Data Flow Programs, Master’s thesis.
UCLA, Los Angeles, California (1987), Computer Science Department.

J.R. Gurd, C.C. Kirkham, and 1. Watson, The Manchester Prototype Dataflow
Computer, Communications of the ACM, 28(1):34-52 (January 1985).

P. Hudak and B. Goldberg, Distributed Execution of Functional Programs
Using Serial Combinators, IEEE Transactions on Computers, C-34(10):881-
891 (October 1985).

A. Kapelnikov, R.R. Muntz, and M.D. Ercegovac, A Methodology for the Per-
formance Evaluation of Distributed Computations, in Proceedings of the IFIP
Conference on Distributed Processing (October 1987).

A. Kapelnikov, R.R. Muntz, and M.D. Ercegovac, A Modelling Methodology for
the Analysis of Concurrent Systems and Computations, to appear in Journal
of Parallel and Distributed Computing (1988).

M. Lecouffe, Architecture of a Multiprocessor Using Data Flow at a Program
Block Level, pp. 160-161, in Proceedings of the International Conference on
Parallel Processing, Columbus, Ohio (1981).

1. McGraw and S. Skedzielewski, SISAL: Language Reference Manual, ver-
sion 1.2, Technical Report M-146, Lawrence Livermore National Laboratory,
Livermore, California (1985).

21

[Turi36] A.M. Turing, On Computable Numbers, with an Application to the Entschei-
dungsproblem, pp. 241-265, in Proceedings of the London Mathematical Society,
Series II (December 1936).

[Wats82] I Watsonand J.R. Gurd, A Practical Dataflow Computer, Computer, 15(2):51-
57 (February 1982).

