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ABSTRACT

We propose an execution model and a special-purpose processor architecture for the execution of Flat Con-
current Prolog (FCP). The execution mode!l defines internal concurrency inherent to the execution of FCP
on a single processor. It is derived by partitioning the FCP Sequential Abstract Machine into concurrently
executing units. To support this execution model, the FCP Processor architecture consists of the follow-
ing concurrent functional processors: Reduction Processor, Tag Processor, Goal Management Processor,
Instruction Processor and Data-Trail Processor. The Goal Management Processor performs the efficient
management of concurrent FCP goals reduced by the Reduction Processor. The Data-Trail Processor im-
plements a novel cache managernent algorithm which supports shailow backtracking. The FCP Processor
architectural model is specified in FCP itself and is part of a working simulator. The attainable performance
of the FCP Processor architecture is currently under investigation.

1 Introduction

Flat Concurrent Prolog (FCP) is a concurrent logic programming language that uses read-only variable
annotations to implement data-flow synchronization and allows only simple test-predicates in the Horn clause
guards. The language design and an interpreter are specified in [Mier85) and a Sequential Abstract Machine
(SAM) similar to the abstract machine for Prolog defined by {Warren83] is proposed in [Houri86]. Both the
sequential interpreter and the abstract machine implementations of FCP perform inferior to conventional
sequential languages. Improved results are reported in [Klig87] using target host compilation techniques.
However, to achieve performance comparable to conventional languages, a special-purpose environment for
the execution of FCP is required.

Since FCP is a concurrent programming language, one way of improving performance is to define a
concurrent execution model and distribute the execution of an FCP program on multiple processors. For
example, preliminary results of implementing FCP on a Hypercube architecture are reported in [Taylor87).
Besides inter-processor concurrency, further performance improvements are possible by exploiting parallelism
at the processor architecture level, that is the inira-processor concurrency. By supporting the parallelism
inherent to the execution of FCP on a single processor, one may obtain high-performance processors which
could also be used as building blocks in a multiprocessor environment.

The main goal of our research is the design of a high-performance processor for the execution of FCP. It
is modelled with the following considerations:

e Internal functional concurrency within the processor is exploited to achieve high-performance.

¢ A wide-bandwidth memory hierarchy is integrated into the processor architecture to reduce memory
response time.
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Figure 1: An Execution Model for the FCP Processor

In this paper we describe the architectural model for the FCP Processor. It consists of a set of hierarchally
structured communicating functional units. In Section 2 we describe the execution model of the FCP
Processor. It is derived by modifying the SAM for FCP to execute on multiple functional units. In Section
3 we describe the Reduction Processor which is the main unit in the FCP Processor. Two features which
distinguish FCP from other logic programming languages are supported at the functional unit level:

® The use of goal invocation or process-call as the basic control mechanism.

s The use of read-only unification as the basic data manipulation primitive.

The former feature is supported by the Goal Management Processor which manipulates goal structures using
a Goal Cache. The functionality of the Goal Cache described in Section 4, is similar to the use of multiple-
windows for nested procedure calls in RISC processor architectures [Pat82]. The latter feature is supported
by the Data-Trail Processor which performs data trailing and the undoing of the trail using a data cache.
In Section 5 we describe the Data-Trail Cache policy we call Delayed Binding. We conclude this paper by
summarizing the properties of the proposed FCP Processor execution model and architecture.

2 The FCP Processor Execution Model

It is common practice in the design and implementation of a high level language to first specify an appropriate,
machine independent, abstract machine and instruction set suitable for execution in an existing, often general-
purpose processing environment. Since these environments are currently sequential, one readily defines a
sequential abstract machine, followed by optimization techniques which may lead to an implementation with
acceptable performance.

However, if one is to specify a special-purpose processor for the execution of the target language, one
need not inherit the restrictions of the execution model specified for a general-purpose processing environ-
ment. Thus, if one were to consider the SAM for FCP as the execution model of the FCP Processor, one is
limited by its inherent sequentiality. In Figure 1 we symbolically imply that the FCP SAM may be adequate
for implementation on a general-purpose sequential machine. However, for a special-purpose processor, an
alternative execution model should be considered; one that suites the underlying architecture. We propose
modifications to the SAM and define the FCP Processor Execution Model (EM) executable on a single
processor which consists of concurrent communicating processing elements or functional units. The trans-
formation of the SAM into the FCP Processor EM is simple and intuitive. Many features of the EM may
also apply to other concurrent logic programming languages.

2.1 FCP Processor Organization

The FCP Processor consists of a set of functional units or processing elements for the single-reduction exe-
cution of FCP. Figure 2 depicts the three-layer hierarchal structure of the FCP Processor organization. The
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Figure 2: The Organization of the FCP Processor

top of the hierarchy contains the tightly coupled execution processors, the second level consists of specialized
memory management processors and the third level contains the special-purpose memory modules. The
following are the FCP Processor concurrent functional units:

1. Execution Processors: Reduction (RP) and Tag (TP) Processors;

2. Memory Management Processors: Goal Management (GMP), Data-Trail (DTP) and Instruction (IP)
Processors; )

3. Memory Modules: Goal, Data, Tag and Instruction Memory;

Program 1 describes the organization of the FCP Processor, using FCP. The parallel execution of com-
municating processors is described using concurrent FCP goals. The communication protocol between the
functional units is modelled using shared variables as communication channels and read-only variable anno-
tation {¢) to model the direction of communication and synchronization. The predicate fcp_processor has
four argumets representing the initial values of the four memory modules. It spawns goals corresponding to
the parallel functional units: rp, ip, gmp, ip, dip, and memory modules: instruction_memory, data_memory,
tag_memory, goalLmemory. The rp predicate contains arguments ToeGMP, ToDTP, TolP, ToTP which cor-
respond to the inter-processor communication channels. The predicate gmp shares a read-only version of the
variable ToGMP with the rp. This means that the GMP waits for a message from the RP.

fcp_précessor(I.IM,I..DM,I_TM,I.GM) -
rp( ToGMP, ToDTP, TolP, ToTP?},
tp{TolP?,ToTP,ToDTP1),
gmp(ToGMP?, ToGM),
ip(TolP?,ToIM),
dtp(ToDTP?,ToDTP1?,ToDM, ToTM),
instruction_memory(1_IM, ToIM?),
data_memory(I.DM,ToDM?),
tag.memory(I_TM, ToTM?),
goal_memory(I.GM,ToGM?).

Program 1: FCP Processor Crganization

The next subsection describes the FCP Processor functional units.



2.2 FCP Processor Functional Description

Reduction Processor

The RP performs goal reduction using the FCP read-only unification algorithm [Shapiro83}. The RP requests
and manipulates three types of operands: Goals, Insiructions and Data. A goal is an abstract data structure
that contains a peinter to a sequence of instructions (called the goal’s program counter) and a set of pointers
to the goal’s arguments. The RP reduces goals by executing the instructions denoted by the current goal’s
program counter. The instructions are requested and received from the IP. The RP executes instructions,
thus requesting data manipulation from the DTP or goal management from the GMP.

Tag Processor

FCP incorporates polymorphic operations on primitive data types. Unless some architectural support is
provided, our observations indicate that tag processing consumes a significant part of program execution
and compiled code size. In the FCP Processor tags are separated form data objects and stored in the Tag
Memory. A separate processor-memory path for tags enables concurrent tag access and the TP performs
concurrent tag processing. The instruction requested by the RP from the IP contains two fields indicating
concurrent operations for the RP and TP. The RP does not execute the next instruction until both the RP
and the TP are finished executing the current instruction.

Goal Management Processor

In FCP and in other committed-choice concurrent logic programming languages, spawning and halting of
concurrent goals represents the main control mechanism. This is analogous to the procedure call and return
in conventional languages. We propose a novel mechanism for the management of concurrent goals on a
single processor. Using a Goal Cache structure described in Section 4, the GMP implements efficient goal
switching, goal creation, suspension, activation and termination.

Instruction Processor

The IP fetchs instructions from the IM when requested by the RP. Additional features could be added to
the functionality of the IP: prefetching, instruction caching etc.

Data-Trail Processor

Goal reduction requires the unification of goal head arguments with arguments of a matching clause in the
FCP program, followed by the successful evaluation of clause guards. These two steps are jointly referred
to as a clause-iry. If there are several matching clauses, a clause-try is attempted for each clause, until a
successful clause-try is found, otherwise the goal fails, During a clause-try, variables in the clause may have
values assigned to them. If a clause-try fails, memory must be restored to the state preceeding the clause-
try, so that another clause-try is attempted. This is referred to as shallow backtracking. If the clause-try is
successful, the bindings performed during the clause-try are available to the body of the clanse.

To restore a previous memory state, variable assignments performed during a clause-try are frailed.
Trailing consists of saving the address and value of the trailed variable in a trasl structure. Restoring the
previous memory state is then performed by reading the old variable values from the trail and writing them
to memory.

In the FCP Processor, a novel trailing mechanism is performed by the Data-Trail Processor. It records the
changes made in memory during a clause-try, restores them upon a clause failure and makes them permanent
upon clause commit. The data trailing algorithm is performed concurrently with RP execution.



Memory Modules

The FCP Processor memory modules service the read{Address, Value) and write(Address, Value) memory
requests from the GMP, DTP and IP. The address space of a FCP program is partitioned into four areas:
Code, Goal, Memory and Tag Memory. The compiled program is stored in the Code Memory which is
accessed and managed by the IP. The Goal Memory is used for storing goal structures. It is accessed and
managed only by the GMP. Tags are stored in the Tag Memory whereas the Data Memory is used for storing
objects like lists, variables, tuples, integers etc. It is managed by the DTP.

2.3 FCP Processor Execution

The FCP Processor maintains a consistent hierarchy of processor execution. The RP requests goals, instruc-
tions and data values from the GMP, IP and DTP respectively. Each of these processing units acts as a
cache of objects requested by the RP. If there is a cache hit, the RP will be serviced immediately, and if
there is a cache miss, the corresponding cache processor will perform the necessary memory request. There
are no explicit requests by the RP to the memory modules.

The RP executes FCP programs by requesting goals from the GMP. The received goal becomes RP’s
current goal. The RP requests from the IP the instruction corresponding to the goal’s program counter.
The received instruction contains instruction fields that determine the operation of the RP and TP, The
execution of the instruction manipulates structures in the Data and Tag Memory by requesting changes to
the memory state from the DTP. All read or write requests to the D'TP fetch or store the appropriate data
and tag pair of values.

Some of the instructions that the RP receives from the IP require the management of the current goal.
These instructions are executed by the GMP while the RP continues executing the next instruction. There-
fore, the RP continuously reduces goals while the GMP manages the goal structures in an overlapped mode.
The communication protocol between the RP and the GMP allows a single GMP operation to be requested
at a time. Using FCP, this protocol is modelled in the following way: The RP sends the GMP an operation
together with a Busy variable, shared by the two processors. When the GMP receives the message, it per-
forms the requested operation, and upon completion, assigns it the value done. Meanwhile, the RP continues
to execute instructions. Instructions that are executed only by the RP, do not depend on the status of the
Busy flag, and thus they ignore it. When a GMP instruction is encountered in the RP, the Busy status flag
is first tested by attempting to assign the done value. If the GMP finished its previous operation, this shared
variable is bound to done, thus leading to successful unification which results in continuous RP execution.
If the GMP is still busy, the RP will suspend waiting for the GMP to finish the current instruction.

3 Reduction Processor

The RP is a special-purpose processor for the reduction of FCP goals. It is the main processing unit in the
FCP Processor. The purpose of the remaining functional units is to ezhance the performance of the RP.

3.1 Goal Reduction

Goal reduction in FCP consists of:

1. selecting a clause whose head unifies with the goal and whose guard succeeds,
2. commiting to this clause, and

3. spawning the body of the committed clause.
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3.1.1 Clause Selection

In FCP, given a goal and a set of matching clauses, any clause may be selected for goal reduction, conditioned
that the clause-head arguments unify with the goal arguments, and the clause-guard evaluates to true.
Selection of a clause may consist of a sequence of unsuccessful clause-tries. If a clause-try creates structures
in the Data Memory, then, if the clause-try fails, these structures become invalid. If the clause-try succeeds,
the structures are valid. In other words, during clause selection, all bindings in the Data Memory are
temporary until a successful guard evaluation marks the end of the selection phase, and the beginning of the
commit phase, which makes the bindings permanent.

Data Trailing
Structures in the Data Memory area allocated as a heap. Let HP denote the top of the heap and HB the top
of the heap prior to the last clause-try. During a clause-try, new data structures are allocated between HB
and HP. If a clause-try succeeds, the HB becomes HP and a new clause-try may begin. Otherwise, the newly
allocated structures are discarded by assigning HB to HP. But, this does not undo any changes performed
in memory below HB. That is, memory assignments below HB must be trailed.

In the FCP Processor, data trailing is performed in the DTP concurrently with RP execution. The
RP distinguishes memory assignments below HB by comparing the address of a memory access with the
value of HB. Thus, there are three different types of memory accesses: read(Address), write(Address, Value)
and trail{Address, Velue). The write memory access is perfortned when HB < Address < HP and trail is
performed when Address < HB . This is shown in Figure 3.

Goal Suspension
In FCP, during clause-head unification the current goal suspends if an attempt is made to bind a read-only
variable, The goal suspension mechanism is implemented by the GMP. The RP supports goal suspension by
using two suspension tables, ST1 and ST?2. During the clause-try, a suspension table (ST) is used to store
the variables that the current goal may suspend on. If the outcome is anything other than suspend, the
suspension table is cleared and reused. Otherwise, it is used by the GMP to implement the goal suspension
mechanism, while the RP continues with program execution using the alternative suspension table.

3.1.2 Clause Commit

Following a successful clause-try is the commit phase of goal reduction. Committing to a clause means that
all the assignments made during the clause-try become permanent. What remains to be done at commit
time is to verify if assignments were made to variables that had goals suspended on them. If there were
goals suspended on these variables, they are given to the GMP to schedule for execution. This is done using
a goal Wakeup Queue (WQ).

In section 6 we briefly deseribe the goal suspension mechanism performed by the GMP. The relevant part
to the clause-commit algorithm is that goal suspension is implemented by assigning the read-only variable a
pointer to the suspended goal. Therefore, at commit time, the trailed value of a read-only variable assignment
points to the goal to be woken up. This pointer is given to the GMP via the WQ. The RP repeats this for
each trailed entry and terminates the commit phase by enqueueing a special marker onto the WQ.

Goal wake-up may be a time consuming operation. Enabling the GMP to perform this operation con-
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Figure 4: FCP Clause Types

currently with RP execution is a significant architectural feature. The number goals typically activated at
commit time is of the order: zero, one or two.

3.1.3 Spawning the Clause Body

After the commit phase the RP spawns goals corresponding to the body of the committed clause. For each
goal in the clause body, it creates the goal arguments and places pointers to them into a goal structure.
After spawning all of the goals in the clause body, the current goal is considered reduced.

3.2 RP Instruction Execution

The RP reduces goals supplied by the GMP. Goal reduction consists of executing instructions corresponding
to compiled goals stored in the IM and managed by the IP. In FCP, a goal corresponds to a set of Guarded
Horn Clauses which may take one of the three forms shown in Figure 4.

If we symbolically represent goal-head unification with the get instruction and the formation of goal
arguments with the pui instruction, the clanse types are compiled to the sequence of instructions shown in
Figure 5. The commit instruction denotes the commit phase of goal reduction, the halt instruction terminates
the current goal, and the spawn instruction tells the GMP to schedule the newly created goal. The first
clause type represents goal termination, the second goal iteration and the third shows goal p iterating on
goal g, while spawning goals g2, 43, ..y ¢

The RP executes all the get and put type of instructions, but not the instructions that deal with the
actual manipulation of the goal structures (highlighted). These instructions are executed by the GMP. In
Figure 6 we describe RP instruction execution. Instructions denoted as gmpop are sent to the GMP to be
executed while the RP continues to fetch and execute instructions.

4 Goal Manégement Processor

The purpose of the GMP is to reduce the effective time spent performing goal management operations. By
effective time, we imply the time as seen by the RP, which also includes the overhead of communication and
synchronization. This is achieved in the following way:

. The FCP Processor execution model allows the execution of GMP operations concurrently with goal
reduction in the RP.

s The GMP is designed for the efficient execution of goal management operations using a Goal Cache
(GC).

4.1 Overlapped GMP Execution

The following features of the FCP Processor execution model enable the concurrent execution of the GMP:
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Figure 5: Compiling FCP clause types

rp(ToGMP, TolP, ToDTP, ToTP) :-
rp(done,done, ToGM P, TolP,ToDTP, ToTP,initial state(...)).

rp(done,done,[G|Gs?),[I|Is?],[D|Ds?),[ T Ts?],State):-
fetch(1,State,Instruction),
execute{Instruction?,done,Done,done,Busy,G,D, T,State? NewState),
rp(Done?,Busy,Gs,Is,Ds, Ts,NewState?).

rp{done,done,[close],[close][close],[close], state()).

execute(store( A, T,V),D,D,B,B,noop,noop,write{ A,T,V),set(T) state(..PC..),state(..PCL..):-
PC1 := PC + 1] true.

execute(gmpop,Done,Done,Busy,Busyl,gmpop( Busy1},nocop,noop,state(..PC..),state(..PC1..)):-
PC1 := PC + 1, ground(Busy) | true.

fetch(read{PC,Instruction),state(...,PC,...),Instruction).

Figure 6: RP Instruction Execution Cycle
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gmp( ToGMP, ToGM):-
gmp( ToGMP,done, ToGM,state(initial)).

gmp([gmp_.op(Busy)| ToGMP],done, ToGM,State):-
stepl(ToGM,ToGM1? State?,Statel,done/Donel),
step2(ToGM1,NewGM?,Statel?,NewState,Donel?/Busy),
gmp(ToGMP?,Busy?, NewGM,NewState?).

Figure 8: GMP Instruction Execution

¢ The goal ma.na.gement operations Halt, Spaun, Suspend and Commit are identified as sepa.ra.te high-level
lnstructlons in the RP instruction set.

¢ Their execution manipulates goal structures which are accessed only by the GMP.

e The nature of the data dependencies between the GMP instructions and the following RP instructions
is well defined. For the Halt and Spawn operations there is no data dependency, thus they may execute
concurrently without any special support. The concurrent execution of the Suspend instruction is
enabled by adding a second Suspension Table and the Commit operation is supported by adding the
Wake-up Queue.

In Figure 7 we symbolically represent the GMP and its interface to the Goal Memory and the RP. The
GMP receives instructions from the RP via ToGMP and communicates with the Goal Memory using the
To(GM channel. The two suspension tables ST1 and ST2 are alternatively used for implementing the goal
suspension algorithm and the W(Q enqueues goal pointers received from the RP denoting goals to be scheduled
for reduction.

In Figure 8 the GMP concurrent execution is described using FCP. The GMP receives from the RP
a message containing the operation and the shared Busy flag used for synchronization. When the GMP
completes the requested operation, it will set the shared flag to done. If the RP decodes another GMP
operation before the GMP finishes the current operation, the RP suspends.

4.2 Efficient Goal Management

The GMP performs efficient goal management by manipulating a Goal Cache (GC) used for storing FCP
goals. The GC consists of a set of N goal windows marked active, ready, free or spawn. The active window
contains the currently executing goal, ready windows contain goals that are ready to be reduced, free windows
are vacant and spawn denotes the window used by the RP to spawn a new goal. The windows that are
addressable by the RP are the active and the spawn windows. The GC is shown in Figure 9.

The GMP manipulates the GC so that it always has at least one free window used for fast spawning, and
one prefetched goal for fast goal scheduling. A goal is spawned in the cache by marking it ready. If the GC
overflows, a goal is selected in the cache and moved to a queue in the Goal Memory. A goal is terminated
in the cache by marking it free. Successive goal termination may cause underflow. In this case the GMP
dequeues a goal from the queue in the Goal Memory, and stores it in the GC.
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When a goal suspends, it is moved to the goal queue in memory, and when goals are woken up, they
are added to the end of the goal queue. All operations in the GC consist of changing the status of the goal
windows and manipulating goal window pointers.

5 Data-Trail Processor

In FCP, given a goal query, any clause from a set of matching clauses may be selected for a clause-try. The
outcome is success or failure. A number of unsuccessful clause-tries may be attempted before a successful
clause-try is found. We consider as overhead all the time spent executing clause-tries that lead to failure.
To reduce their effect on performance one may:

e Improve the clause selection strategy;

¢ Provide architectural support for data trailing;

Improving the clause selection strategy is possible if more processing is performed at compile time, and if
the user provides some “inside information” regarding program behaviour. Because of data dependencies
and lack of knowledge about program behaviour, clause-try failures are unavoidable. Therefore, given that

the clause selection strategy is not ideal, we are concerned with reducing the overhead of data trailing in the
FCP Processor.

There are three parts to the clause-try overhead: processing necessary to determine clause-try failure,
saving a previous memory state and restoring a previous memory state when failure occurs. The processing
that is performed to determine whether the selected clause succeeds is unavoidable, given that the compiler
or user were not able to provide the program execution with such information.

The DTP provides architectural support for both saving and restoring the memory state prior to and
after a clause-try failure. We refer to the following DTP policy as Delayed Binding:

All assignments performed during a clause-try are delayed until the outcome of the clause-iry is known. If
the outcome is successful, the bindings become permanent otherwise they are cleared.

5.1 Data-Trail Cache Algorithm

The DTP is a data cache that implements the Delayed Binding policy. In this paper we do not discuss the
details of the data cache organization or mapping policy. We only emphasize those features that relate to the
data trailing property. For simplicity, we assume that the data cache is fully associative with a write-back
memory policy. The data cache stores the address, the value and the status of the cached elements. The
status may be: Empty, Clean, Dirty or Trailed. An entry labeled Empty is vacant. If the status is Clean the
cached element is identical to the corresponding value in the DM. A Dirty status indicates that the stored
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Figure 10: Data-Trail Cache Policy: Delayed Binding

value in the cache differs from the value in memory, and the Trailed status indicates that the value in the
cache is temporary.

The DTP receives read, write and trail memory requests. The read and the write requests are treated in
the conventional way. Upon receiving the trail memory request, the DTP performs the following operation:

o trail(Address,Value): If there is a cache hit, the following cases may occur depending on the status
of the cached element. If it is Clean, the new value is stored in the cache and marked as Trailed. If
it is Dirty the cached value is written back to the DM and the new value is stored in the cache and
marked as Trailed. If it was already Trailed, the new value is written in the cache and remains Trailed.

In case of a cache miss, the cache replacement policy vacates an entry that is not Trailed, writes the
new value in the cache and marks it as Trailed.

The following operations are performed when the control signals feil and commil determine clause-try
failure or success. ’

e fail: All Trailed entries are marked Free.

¢ commit: All Trailed entries are marked Dirty.

In Figure 10a we show the DTP cache during a clause-try. The elements marked as T are being trailed.
In Figures 10a and 10b we show the contents of the cache after a clause success and failure.

Therefore, the proposed data cache policy implements the Delayed Binding approach to data trailing
by keeping the trailed values in the cache and either commiting them to Dirty upon clause-try success, or
resetting them upon clause-try failure. One should note that Trailed values are never replaced by the cache
replacement policy. Furthermore, trailed values are accessible during the clause-iry even before they commit
or fail. Trailed values that commit to Dirty remain in the data cache as valid cache entries.

6 Conclusion

In this paper we propose a FCP Processor execution model which exhibits intra-processor concurrency. The
. xecution model is derived by modifying the SAM for FCP. We also describe the organization of the special-
surpose FCP Processor architecture which consists of the following concurrent functional units: Reduction
Processor, Tag Processor, Goal Management Processor, Instruction Processor and Data-Trail Processor. The
Reduction and Tag Processors execute instructions received from the Instruction Processor, reducing goals
supplied by the Goal Management Processor and sending data requests to the Data-Trail Processor. We
propose architectural support for goal management in the form of a Goal Cache. We define the Delayed
Binding data cache policy used by the Data-Trail Processor to reduce the overhead of saving and restoring
a previous memory state upon clause-try failures. The FCP Processor architecture and execution model are
described using FCP. We are currently investigating the attainable performance of the FCP Processor.
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