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Abstract

Concurrent error detection and confinement requires checking the outputs of every
module in the system during every clock cycle. This is usually accomplished by
checkers and isolation circuits in the communication paths from each module to the rest
of the system. This additional circuitry reduces system performance. We present a
technique, called micro rollbacks, for eliminating most of the performance penalty for
concurrent error detection. Detection is performed in parallel with the transmission of
information between modules, thus removing the delay for detection from the cntical
path. Erroneous information may thus reach its destination module several clock cycles
before an error indication. Operations performed on this erroneous information are
“‘undone’’ using a hardware mechanism for fast rollback of a few cycles. We discuss the
implementation of a VLSI processor capable of micro rollbacks, its use in a complete
system, and the use of micro rollbacks in a fault tolerant multiprocessor.
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1. Introduction

One of the keys to achieving a high degree of fault tolerance is the ability to detect errors
immediately after they occur and prevent erroneous information from spreading throughout the system.
In order to achieve concurrent error detection and confine the damage caused by the error to the failed
module, it is often necessary to check the outputs of the module during every clock cycle. These
requirements are usually satisfied by connecting checkers and isolation circuits in the communication
path from each module to the rest of the system. As a result, either the clock cycle time must be
increased to allow the checks to complete or additional pipeline stages are added to the system, thus
slowing down the system whenever the pipeline needs to be flushed or is not full due to data
dependencies. Hence, systems with high-coverage concurrent error detection often experience significant
performance penalties due to checking delays. This problem is aggravated in VLSI implementations
where checkers often stretch over long lengths, contain many series stages, and introduce as much or
more delay than the circuit being checked. These delays can compound as when a memory word is read
and (1) Hamming Code checks are made, (2) the word is encoded for bus transmission, and (3) the word

is checked when it arrives at the processor before use,

One way to solve the problem described above is to perform checking in parallel with the
transmission of information between modules. The machine does not wait for checks to complete, It
proceeds with execution as the check is being carried out and the checking result is sent one (or a few)

cycles later.

Performing error checking in parallel largely solves the problem of checking delays, but it
introduces a new problem in recovery. The state of the computer may have been polluted with damaged
information before the error signal arrives. Therefore it is necessary to back up processing to the state
that existed when error first occurred. This retums the computer to an error-free state where the offending
operation can be retried (or correction may be attempted by other means such as restoring information
from a redundant module or initiating a program rollback). We will refer to the process of backing up a
computer several cycles in response to a delayed error signal as micro rollback. This involves buffering
changes of state for several cycles in each module of a computer and being able to retumn t0 a previous
state. Micro rollback differs from single-instruction retry? in that rollback occurs at a lower level - on the
basis of clock cycles rather than instructions. Since the system undoes cycles rather than instructions, it
can be done at the logic level without keeping track of microprogram-level instruction semantics and

instruction pipeline conditions. Moreover, this work is specifically aimed at VLSI implementation and



specifically the problem of delayed error checks.

This paper discusses the micro architecture and VLSI implementation of a VLSI RISC processor
that is capable of micro rollbacks. We show how the updated state of the entire processor can be
checkpointed after every cycle without replicating all the storage. The VLSI implementation of the basic
building blocks needed to implement micro rollbacks is discussed. It is shown that the micro rollback
functionality can be added with only a small performance penalty and with a low area penalty relative to
the size of the entire chip. We describe how micro rollbacks can be used with parallel (delayed) error
checking to provide error recovery using either ECC in the processor or restoration of state from an
external processor. We show how the concept of micro rollback can be used throughout the system,
discuss the requirements from modules other than the processor, and show how the various modules

operate in a multiprocessor system.

2. Micro Rollbacks

A micro rollback consists of bringing the processor back a few cycles o a state reached in the past.
It is thus necessary to save the state of the processor (checkpoint) at each cycle boundary.? The state of a
processor is the contents of all storage elements which carry useful information across cycle boundaries.
It is composed of the program counter, the program status word, the instruction register, the register file.
It also includes the contents of some pipeline latches and some registers in the state machine which can
be changed during the execution of a multicycle instruction.

Because of the fact that instructions also modify external memory (loads and stores), the state of the

cache must also be preserved. A rollback merely restores the contents of the cache present a few cycles

ago. We discuss the interaction between the processor and the cache in section 4.

3. Implementation of Micro Rollbacks in a VLSI RISC Processor

The process of saving the state of a RISC processor and the method used to rollback in one cycle is
described below. It basically consists of saving two different entities, the register file and the individual

state registers.



3.1. Micro Rollback of the Register File

At every cycle, there is a possibility that a write into the register file occurs. To preserve the state
of the file for N cycles by replicating N times (using for example shift registers) is unacceptable due to
the large area occupied by an on-chip file (40% in RISC II). 5 We use a different method which

minimizes hardware and still allows a rollback of up to N cycles in one cycle.

3.1.1. High-level Description

Whenever the processor writes data in one of its registers, the full address of the destination register
as well as the data to be written, is stored in an N-word FIFO queue (see Figure 1). The part which holds
the address of the register to be written is associative while the part containing the data, is composed of
memory cells which can also be shifted. Every time there is a register-read operation, we compare the
address of the two operands with the address of the registers stored in the associative part of the FIFO. If
there is a match, the data of the maiching register is put on the corresponding internal data bus. If there is
more than one register matching the address of the operands, a priority circuit is used to provide the most
recent version available in the FIFQ. This corresponds to the rightmost valid register in the FIFO in

Figure 1.

The FIFO acts as a buffer which delays each write by N cycles before it is written into the register
file. During each cycle an entry is made in the FIFO. If a write occurs, the data is entered and the FIFO
position is marked valid. If no write occurred during the cycle the corresponding FIFO word is reserved
but marked as invalid. Similarly during each cycle when the FIFO is full the oldest word is removed.
Only if its valid bit is set will its contents be written to its corresponding address in the register file. In
order to roll back p cycles (1 £p <N) we invalidate the last p entries in the FIFO (the right-most p

entries in Figure 1) which may have contained from O to p valid writes.

A very important feature of this design is that the storage of a new entry into the FIFO and the
movement of an old word from the FIFO to the register file can take place simultancously. It tums out
that there are never any conflicts for buses so that the primary additional delays in using this structure are
only the associative lookup operations which can be made quite small. Design features are discussed

below.
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3.1.2. Description of the RAM

Connected to the data path, is a large register file consisting of 128 32-bit registers. The basic ram
cell is a two-port cell which allows two simultaneous reads and one write during a processor cycle.
During a read both buses are precharged to speed up the delays. During a write the buses are loaded with

complementary values to force the chosen cell to be overwritten.
The layout of the RAM cell is shown in Figure 2, The cell measures 156022,

To improve the decoding of the 7 bit composing a register address, we use large pass transistors.
With the help of dynamic CMOS logic, we were able to keep the size of the decoder relatively small and
fairly fast. We based our decoder on a design made by Bill Barnard from University of Washington.
Since two registers may be read simultaneously, two decoders are provided. One precharges a line which
controls a PMOS transistor, while the other one predischarges an NMOS transistor. Figure 3 shows a

transistor level description of the decoder.
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Figure 2: Layout of aRAM cell

3.1.3. Description of the FIFO/CAM

The top section of the FIFO/CAM contains the data to be written into the register file, while the
bottom part contains the register address accompanying the data. The data part is a simple FIFO where
each register, in addition of shifting to the left, must also be accessible from the bus. The bottom part is
composed of basic CAM cells consisting of a one-bit static shift-register with some extra logic for the cell
to behave like an associative memory. A loop consisting of two inverters and two pass transistors forms
the storage part of the cell (see Figure 4). For the comparison with a current address bit, pass transistor
logic is used to implement XOR gates. Two lines, Match1 and Match2, initially precharged, represent the
status of the comparison. A one means that there is a match while a zero represents a mismatch. A
mismatch will discharge the match line through two pass transistors. The speed of this discharge is
critical and therefore appropriate transistor sizes must be calculated. Figure 5 shows the layout of the
CAM cell.
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Figure 3: Transistor Diagram of the Decoder

3.1.4. Data buses and connectivity logic

The data bus going through the 128 registers is connected, with the help of some logic (see Figure
6), to another bus which goes through the FIFO. Precharging the bus and selecting the proper register is
done in parallel for the register file and for the FIFQ. The outcome of the comparison performed in the
CAM with the register addresses decides if the the buses are connected or disconnected. If there is no

match, the register file provides the data, while the FIFO takes over if there is a match.

3.1.5. Forward Register

As explained earlier, instructions are executed in a three-stage pipeline; fetch, execute and write-
back (see Figure 7). In order to avoid interlocks, we provide a latch which contains the result of the ALU
operation at the end of cycle 2. This latch is called Forward Register (FR). It is necessary to use such a

scheme to allow instructions such as:

add R1 R2 R3
add R3.R4,R5
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to be executed properly. In this case, the result of the ALU, which is written into the register file during
cycle 3 would not be available for the next instruction. But using FR, which is written into at the end of
cycle 2, the data is readily available for the next instruction. The physical location of the FR can be seen

on the datapath described in Figure 8.

3.2. Timing and Metrics of the Register File
The register file is an important contributor to the critical path in the processor. Indeed the lengths
of the different processor clock phases are mainly based on worst case delays from the file. We present

the details of the four phase processor cycle.
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3.2.1. Timing diagram

The following times are based on a 128 register file with a FIFO of depth 4. Our basic processor
cycle is composed of four non-overlapping phases which altogether add up to a period of 100ns. Phase 1
(¢,) and phase 3 (¢5) are 15ns long while phase 2 (¢,) and phase 4 (¢,) are 35ns long (see Figure 9).

After we pre-discharge the decoder during the first part of ¢, it takes about 9ns to fully decode the
7-bit register addresses. During that time the main bus in the register file is precharged and is ready to be
discharged by the chosen cells. The read discharge takes approximately 33ns. This completes the first two
phases. ¢5 and d, are dedicated to the write operation. The diagram also shows the timing associated with
the shifting in the FIFO/CAM.

The price to pay for adding all this logic to the the register file is mainly in terms of area. From our

layout we measure an overhead, in terms of extra logic dedicated to the register file, of 10%.
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3.2.2. READ Delay vs Scaling of the Design

We have simulate 4 different register file sizes (16, 32, 64, 128) with 8 different FIFO sizes (4, 8,
12, 16, 20, 24, 28, 32). Using Figure 10, a design team can decide what FIFO size is appropriate for a
given register file. From the graphic one can measure the overhead introduced by the micro rollback by
comparing it to a FIFO size of 0 (no micro roliback). For example, a file of 128 registers with a FIFO of
8 registers has a read delay of 34ns (vs 31 for a plain file).

The read delay calculated in the graphic can originate from two different sources:
(1) when there is no match: the address is sent to the register file, the chosen register discharges the file
bus lines, a superbuffer discharge the FIFO bus lines. Notice that the signal which connects both data
buses comes during the mean time.
(2) when there is a match: the address goes through the CAM, a match is detected, the priority circuit
detects which register to select, the chosen FIFO register discharges the FIFO bus lines.
For a large register file the critical path will most likely be path (1) (for small FIFO). For small register
files with relatively large FIFO, the main data bus is discharged before the buses are connected. In this
case the critical path is path (2).
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Figure 9: Timing Diagram

3.2.3. Area Overhead vs Scaling of the design

Using the same combination of file and FIFO sizes, we present in Figure 11, the area overhead

required to add the micro rollback logic.

3.3. Protection of The Register File

If an error occurs in one of the registers in the file, it is necessary to have a redundancy in order to
recover. One approach is to use a duplicated processor and recover damaged information from the duplex
copy. The other approach is to use error correcting codes in the register file. The micro-rollback
mechanism can be used to hide the checking delays associated with this since, if an error occurs, the

processor can back up several cycles.
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3.3.1. Detection from Parity and Correction by Processor Transfer

This approach assumes that there are two processors (P and P,) executing the same instructions in
parallel. All the words in their respective register files are stored with an accompanying parity bit,
inverse residue or similar separable code. Whenever read instructions are executed, checking of each
word is performed. When an error is detected in the register file by P, it sends the address of the faulty
register to P, and and both rollback to the point before the file access. Notice that P, will be requested to
rollback more cycles because it kept executing during the time that P, sends the address. At this point P,

transfers its correct data to P, and the operation continues.

3.3.2. Data Correction Based on Hamming Code

Using this approach, every word in the register file is encoded with an error correcting code (e.g.
Hamming SEC-DED). The code bits are created when a word is transferred to the FIFO/CAM. During
reads from the register file, the correction circuitry should detect errors and correct them appropriately.

Of course we do not want to do this by lengthening the critical timing path. Therefore when words are
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Figure 11: Area Overhead vs File and FIFO sizes

read out of the register file they are captured by latches and checked in parallel as processing is carried
out in the ALU. If an error is detected processing is stopped, the word is corrected, and it is restored in
the file. Then a micro rollback is issued in order to bring the processor te the cycle when a read was

requested.

Based on published results® and on our experience, we believe that the method based on the
duplication of the processors is more efficient in terms of implementations costs, performance, and fault

coverage.

3.4. Micro Rollback of Individual State Registers

The state registers consist of the various individual registers which are typically at widely separated
locations on the chip. These include the Program Counter, Instruction Register, Program Status Word,
Pipeline Latches, etc. Here, each working register must be protected up with an additional N backup

registers to assure that the state can be rolled back for up to N cycles. Each set of N backup registers,
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(where N represents the maximum number of cycles that we may want to roll back t0), is organized as a

small RAM. (see figure 12). A decoder points to the active backup register in the small RAM, and a
control signal indicates if a READ of a WRITE operation is needed.

internal bus

|

P current register

I

— parily generator
— l
pointer

backup RAM decoder address

latch

Figure 12: Saving of a State Register

During each cycle, if the current state register is modified, its contents are written into the small
RAM. To restore the state during a rollback, the appropriate back-up register is loaded into the current
register. In this way a roll back of 3 cycles is performed just as fast as one of 1 cycle, which would not the
case if we were using a stack. The layout is quite compact and very regular as one can see from the

transistor level diagram on Figure 13.

An error detecting code can be used to protect the states. If the word comes from extemal memory,
its code bit(s) are brought into the chip. A check is performed on the word when the transfer from the
current register to the backup RAM is done. If an error is detected, we rollback one cycle which actually
corrects the state register by restoring its previous contents. During a rollback, the opposite transfer

occurs. The contents of the appropriate backup register goes through the parity checker and is stored into
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the current state register. If an error is detected, once again we rollback one more cycle if the depth of the

FIFO allows it.

The effect of the extra hardware on the processor speed is small because the extra logic is not
connected serially to the path followed by the buses, only the one ‘‘current register’’ interacts with the
rest of the system. On the other hand the area for each state register must be increased. For example, in
order to implement the capability of rolling back four cycles the area must be increased by about a factor

of six,

3.5. Examples

The general method described above applies to any single state register. There are singularities

attached to some specific registers that are described below:

Program Counter (PC): Besides saving the state of PC, the backup RAM serves a dual purpose by

saving LAST PC, which is very useful for restarting instructions during interrupts.

Instruction Register (IR): This register is really a set of a few smaller registers containing information
spread out at different places in the layout (opcode, registers address, etc). Each individual part has its
own back-up RAM. One tradeoff would be to group state registers together to decrease the total extra

logic such as the decoder and the parity generator,

Another alternative concemning the instruction register is not to preserve it and refetch it from the
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program counter. This eliminates some hardware but it also adds an extra cycle before any useful work
can start. Since our method throughout the cpu and over the whole system aims at a one-cycle recovery,

we chose the first option which favors performance over increased area.

Program Status Word (PSW): The program status word presents a peculiar situation. One or several
individual bits can be changed at every cycle. Since the parity circuit cannot make the difference between
a bit being changed by the control unit and a bit being flipped because of a fault, we use a different
strategy. Duplication of the PSW together with a comparator circuit provides error detection and can

generate a micro rollback.

Multistage Latches: Some of the latches involved in the pipeline are only required in the second or third
stage. For example one bit of an instruction specifies if the PSW needs to be modified during the third
stage. Instead of replicating the cascade latches we group them together under the same backup RAM
and use two decoders to refer to the. READ and WRITE location in the RAM.

4, System Issues in the use of Micro rollback

In addition to the processor, micro rollbacks can be used effectively with other modules of the
system. Parallel error checking and delayed error signals can be implemented using techniques quite
similar to those used in the processor. The decision to use those techniques compared to a serial check, is
based upon performance improvement/overhead and the degree of simplicity/complexity involved. In
general, whenever data can be received or transmitted before it is checked, a FIFO/CAM, such as the one
described in Section 3, may be used to delay permanent modification of critical state until the results of

the check are received.

4.1. Micro Rollback and Cache Memory

Most modern machines use an instruction and data cache to increase performance by decreasing the
effective memory access time. For example the Fairchild Clipper? accesses the cache in 4 clock cycles
compared to 9-10 for a zero wait state main memory. Error detection (using Hamming code) applied to
32-bit words coming from the cache takes approximately 50ns. In this way, a serial check would add two
more cycles to a 33MHz Clipper, an overhead of 50% in the cache access time. Considering that the

cache is active for every instruction and data access, it is a huge price to pay. A parallel checking is a
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significant performance gain in this case.
The fact that a cache resembles a register file, suggests the use of the same method, i.e. a

FIFO/CAM, to preserve data entry. Indeed, except for some minor modifications, the same method

works and we verify it by looking at load and store instructions individually.

During a load, data comes either directly from the cache on a Ait, or from main memory on a miss.
On a hit, the state of the cache is unaffected and no actions need to be taken to undo the load. On a miss,
a line in the cache has to be replaced by data fetched from main memory. During a micro rollback, it is
impractical to restore the contents of a line in the cache with its previous contents. Instead, we leave the

line intact knowing that the worst which can happen is that a line has been fetched for no reason.

A store instruction requires additional hardware and is handled in the same way as a write for the
register file. Figure 14 shows a logic diagram of the cache and the extra circuitry attached to it to provide

micro rollback capabilities.
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Figure 14: Logic diagram of the cache
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The store is simply delayed for N cycles in a CAM during which time it can either be re-read by the
processor or canceled in the instance of a rollback. Note that interaction between the cache and main
memory occurs after the data has gone through the FIFO. Thus, either write-back or write-through caches
may be used and in both cases there will never be a need to undo a write to main memory (checking of

the data is complete before the write to main memory occurs).

Figure 14 shows that the comparison in the CAM is now made on 2 sections of 15 bits, forming the
real address, instead of the 7 bits composing register addresses inside the processor. The new comparison
takes 22ns, instead of 8ns for the register file, but there is also more time available because of longer

access time in the cache,

4.2. Micro Rollback and Main Memory

One of the problems with using micro rollbacks in all modules of the computer is that it requires
synchronous operation. Each module must buffer up to N clocks of data and precisely roll back some
specified number of cycles. This is difficult or impossible to do if the entire system is not completely

synchronous (e.g. some high-performance buses have asynchronous protocols.)

If a cache memory is used with the processor, it is possible to use micro rollback in only the
processor and cache and avoid using it with main memory. The cache provides the necessary buffering of
data from the processor for N cycles before writing back to memory or I/O. Hence, if serial checking is
performed for transfers between the cache and memory and between the cache and I/O devices, data
received at the memory or I/O from the cache will never have to be rolled back. Thus the memory and
I/O do not have to provide micro rollback if serial checking does not cause unacceptable speed delays in
these modules.

Primary memory, and I/O units can wait for checking to assure data to be correct before sending it.
This is because the bandwidth requirements and the effects of latency of memory and /O are reduced
because the processor uses a cache. Since communication between the cache, I/O, and main memory
typically occurs in multiple word blocks performing the checks serially, in a pipeline, is likely to be an
acceptable solution since the only delay is for the first word of the block. Thus the relative performance

cost of waiting for checking to complete is significantly lessened.

There are significant advantages to using serial rather than parallel checks in the main memory
module: 1) there is never a need to rollback main memory, 2) no special hardware is required for main

memory, and 3) the cache coherency protocol does not need any modifications.
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The only disadvantage in a serial check in primary memory is that it increases the memory access
time. If an effective cache (with a high hit-rate) is used, accesses to main memory occur relatively rarely

and this is not a major problem.

Referring to the same RISC processor, the Fairchild Clipper coupled with two 4096-byte caches for
instruction and data,Z we calculated the overhead associated with a serial check for main memory. Based
on the data given in table 1, we obtained an effective memory access overhead of 9.3%, which

corresponds to a 3.5% overhead of the average instruction time for a 33MHz machine.”

Clipper Features
processor cycle 30ns
bus cycle 60ns
cache read 120ns

instruction miss ratio 3.15%

data miss ratio 6%

read miss delay 585ns
tlb miss ratio 0.34%
tlb miss delay 960ns

copy back percentage | 3%

copy back delay 480ns

Table 1: Timing for the Clipper

Because of the advantages mentioned above and because of the low overhead, a serial check for main

memory accesses proves to be the right choice.
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5. Micro Rolibacks in a Multiprocessors Environment

So far we have demonstrated how micro rollbacks work in a single processor system. We now
describe how micro rollbacks can be used with a shared-memory multiprocessor system. The
architectural model considered is the following: a collection of processors, each with its own private

cache, are connected to each other as well as to main memory through a single shared system bus.

When a write is executed by a processor, the local cache and the rest of the system are normally not
aware of it until the data exits the FIFO and is written into the local cache (see Figure 14). Any actions

required by the cache coherency protocol, then takes place as with normal caches.

In a multiprocessor system where each processor has a local cache there is a problem of maintaining
identical views of the logically shared memory from all the processors.! Specifically, in order for the
caches to be transparent to the software, the memory system should ensure that *‘the value retuned on a
load is always the value given by the latest store instruction with the same address.”’l A system that

meets this condition is said 10 be memory coherent.

A multiprocessor system in which our FIFO/CAMs are used with the caches is nor memory
coherent. Specifically, a load executed by one processor cannot return the latest value written to the
address by a store from another processor until the value stored ‘‘propagates’ to the head of the

FIFO/CAM and is written to the cache.

In a multiprocessor system that is not memory coherent it is desirable to maintain the weaker
condition of sequential consistency.5

“‘[A system is sequentially consistent if] the result of any execution is the same as if the

operations of all the processors were executed in some sequential order, and the operations of

each individual processor appear in this sequence in the order specified by its program.”’

Unfortunately, a multiprocessor system that uses our FIFO/CAMs is not sequentially consistent.
The problem is illustrated by Lamport’s® example of a mutual exclusion protocol:
Process 1
a :=1;
if b =0 then critical section :
a =0

else ., . . fi
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if a =0 then critical section ;

else . . . f£fi
With our FIFO/CAMs, Process 1 can set a:=1 at the same time that Process 2 sets b:=1. They can then
both reach their if statements before the stores setting a and b have time to propagate to their respective
caches. Sequential consistency is violated since the result of the execution is as though the sequence of
operations is:

Process1: if b = 0 then critical section ;

Process2: if a = 0 then critical section ;

Process1: a := 1 ;

Process2: b := 1 ;

Without modifications to the scheme shown in Figure 14, a multiprocessor in which the processors
use the FIFO/CAMs with their local caches is a very limited system. Indeed synchronization through
atomic instructions such as test-and-set can also become a problem. For a test-and-set instruction, the set
is made right after the test during the same bus transaction. Using a conventional processor with the
cache described in Figure 14, the test consists of reading the variable from the cache, while the set
involves a write to the FIFO. A problem occurs if processor P performs a test-and-set and the write is
still in its FIFO when processor P, performs another test-and-set on the same variable, Processor P, will
not be able to observe the set by P, and both processors will enter the critical section concurrently. As
shown above, because the system is also not sequentially consistent, other mutual exclusion protocols that

work on conventional multiprocessors may not work on a multiprocessor that uses our FIFO/CAMs.

In order to allow synchronization in a multiprocessor with our FIFO/CAMs, the cache controller
must be modified. The simplest modification is to allow cache blocks to be locked during test-and-set
operations. Specifically, a block containing a semaphore should be locked from the time it is accessed,
until the time that it is modified. For a FIFO/CAM of depth N, this means that the block is unaccessible
during N cycles plus the time it takes to execute the test-and-set instruction. Alternative solutions are

currently under investigation.
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6. Summary and Conclusions

The delays due to error checking being performed in series with intermodule communication are
one of the primary causes of performance degradation associated with implementing concurrent error
detection in VLSI chips. The circuitry required to perform such checks as parity, residue codes, and
m-out-of-n codes often reduce the speed of the circuit by 50-100%. (Checks that are area efficient are
usually serial and slow, and faster checks are often trees which take up large area slowing down
surrounding circuits). Checking delays are compounded when data is transferred between several

modules, and checked at several places.

This is a fundamental problem in achieving fault tolerance in high speed VLSI systems. Concurrent
fault detection will not be feasible if checking is done in series with execution (i.e. each step must be
checked before proceeding to the next, and the checking delay is added to each clock cycle). Thus it is
necessary to perform checking in paralle]l with execution. Signals to be checked are latched, and error
checking takes place in one or more subsequent cycles (as a pipeline). As a consequence etror signals

will arrive one or more cycles after error-damaged data is received for processing.

In this paper, we have described a micro rollback mechanism which allows recovery when a
delayed error signal arrives. It is a systematic way to design VLSI computer modules so that they can roll
back and restore the state which existed when the error occurred. This technique is characterized by
extremely low performance overhead and a modest area overhead compared to the area of the entire
processor. The recoverable register file design is a new approach which is particularly well-suited to
VLS! implementations and which we believe will have wide application in future systems which must

combine fault-tolerance and high performance.
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