PARTIAL ORDER PROGRAMMING

D. Stott Parker December 1987
CSD-870067

Partial Order Programming

D. Stott Parker

Computer Science Department
University of California
Los Angeles, CA 90024-1596

ABSTRACT

We introduce a programming paradigm in which statements are
constraints over partial orders. A partial order programming problem
has the form

minimize u

subject to uy vy, Uy vy,
where u is the goal, and u; 2 vy, uy dv,, - -+ is a collection of con-
straints called the program. A solution of the problem is a minimal
value for u determined by values for u;, v, etc. satisfying the con-

straints. The domain of values here is a partial order, a domain D with
ordering relation 3,

The partial order programming paradigm has interesting properties:

(1) It generalizes mathematical programming, dynamic programming,
and computer programming paradigms (logic, functional, and oth-
ers) cleanly, and offers a foundation both for studying and combin-
ing paradigms.

(2) It takes thorough advantage of known results for continuous func-
tionals on complete partial orders, when the constraints involve
expressions using only continuous and monotone operators. These
programs have an elegant semantics coinciding with recent results
on the relaxation solution method for constraint problems.

(3) It presents a framework that may be effective in modeling of com-
plex systems, and in knowledge representation for cognitive com-
putation problems.

This work supported by a Staie of Califomia — IBM Los Angeles Scientific Center MICRO grant, “RAPPORT: Relaxa-
tion and Pattern-Oriented Rule Programming’’, and DARPA contracts MDA-903-82-C-0189 and F29601-87-K-0072.
Copyright ® 1987, D. Stott Parker, JIr.

Table of Contents

L. IIMETOUICEION ooveeeeeeeeeeeeeeeeeeeetesseesasrassrsasssnesesessessesssasns onsnssesansasassrassssnanessrassssnsnnnse

1.1.
1.2,
1.3.
1.4.
1.5.
1.6.

Paradigms for Modeling CompleX SYSIEMS ...oovcvviviiniiiiinniniesnnreseieans
Ordering as a Basis for Modeling ...,
MONOLONICILY «vervirreerrensrereereeareesessiastitastasbesbbs b ertaststs shee b aasesbasaesassseansssressaannssns
Logic and Ordering ... s
Partial Order Programmingccceeieiiiieinissimiimi et siesns
FOTEWOTIT it rr e s st a et e saa e sb st sabe s s b e e s s s b e n s eaaas

2. Complete Partial Orders and Fixed Point Theoremsc.cococccvniiiins

2.1.
22.

Complete Partial Orders and Complete Lattices ..o
Continuous Monotone Functions and Fixed Pointsccccoocovireiiiiicenicicneennn.

3. Partial Order Programming ... o

3.L
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.

Formal DefiRItION .c.cccviiiiiireeiiimieneieressmre e i s ssssssiassssassassasss s ssssessans s sases
Solvability of Partial Order Programming Problemsccciiniiiniinn.
Reductive Partial Order Programs ... e
Model-Theoretic SEMANTICS ...covvviirreerieeceericreerre e s eee e reee s restns e sbe st b ssareens
Procedural SEMAantiCsccceoeininniniimmimiocie e s
Continuous Monotone Partial Order Programsc.ccccocvvmmecenncennnceccnnn
A Sample Continuous Monotone Partial Order Program ...,

4. Examples of Partial Order Programmingcccoccocvvvirenenernnenimnnscnnnveene

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

Mathematical Programmingccccuimemommiiceimmeiemeeessessissesse s
Linear AlZebraic SYSIEIMS iiiviiiiiiiiiiimiemimmmsminssmissisiiseis s sissssaes
Shortest Paths, Path Problems, and Dynamic Programmingcocouieiiicn
Approximate Consistent Labeling and Constraint Networkscocoeevienenn
Polymorphic Type Inference for Prolog and Abstract Interpretation
Rewriting and REAUCHONcciviiiiiiii i s e e
Logic and Lattice Programmingcccccovinniismnmrimmisiie i e
NUMETICAl TIETATION .iiivvrreiiiiriaerrer e rsereerere e et ssatssas s s b ss b s bs st e bt s s e st are s

5. Semilinear Partial Order Programming ...,

5.1.
5.2.

Linearizable Problems ... s s sns e
Ordered Semimodules and Semilinear Programming ...,

~l N BN

S -

6. Partial Order Programming and Computer Programming

6.1. Least Fixed Point Semantics and Partial Order Programmingcc.cco..o.

6.2. Functional Programmingc.ccceceenninn
6.3. Logic Programmingccccccceenvenicnnnans
6.4. Integrating Paradigmscccevvinniniininnns

..

..

..

...

...

...

..

..

56
56
57
60
64

67
67
68
71

74

Partial Order Programming

D. Stott Parker

Computer Science Department
University of California
Los Angeles, CA 90024-1596

1. Introduction

This work began as an attempt to design a formal framework for modeling complex
real-world systems such as software environments and computer systems. Over time
part of the design has grown into a theory of its own. This monograph summarizes
the theory in its current state. To provide some perspective on the philosophy behind
the theory, we begin with some speculation on the nature of modeling.

1.1. Paradigms for Modeling Complex Systems

The basic issue in modeling complex systems is the identification of an appropriate
paradigm for expressing the objects one knows about and how they behave. A para-
digm is a language with well-specified semantics, along with conventions for effective
usage. There are many paradigms today, including knowledge representation para-
digms (frames and rules, constraint satisfaction, production systems), computer pro-
gramming paradigms (functional, logic, object-oriented), and mathematical program-
ming paradigms (linear and nonlinear programming). None of these is ideal for
modeling truly complex systems.

Recently a number of ingenious paradigms have been introduced that offer alternatives
here. They include the type-oriented extensions of logic programming LOGIN, LeFun,
and LIFE of Ait-Kaci, Nasr, and Lincoln [2,3,4,5] with type hierarchies and func-
tions; the Constraint Logic Programming scheme of Jaffar et al [47,48], extending
logic programming with general mechanisms for delayed satisfaction of constraints,
particularly linear equality and inequality constraints in CLP(R); and the iterative
UNITY paradigm of Chandy and Misra {22] which generalizes spreadsheet calculations
into collections of assignment statements executed in parallel. Each will have different
strengths in different modeling applications.

In our view, ‘‘modeling” and ‘‘knowledge representation’’ are essentially
synonymous, and much of the initial motivation behind our design came from prob-
lems that are commonly recognized as knowledge representation problems. Currently
the field of knowledge representation lacks a theoretical foundation. Different issues
in knowledge representation apparently require very different solutions, and few impor-
tant issues have definitive solutions. Important issues include: which paradigms are
appropriate for which problems, how paradigms can be combined, how reasoning can
be controlled, how parallelism can be exploited, and how multi-level models can be
managed.

-2

The impetus behind this work comes from conviction in the following thesis:

A paradigm for stating and solving ordering constraints is effective in modeling
complex systems.

By ordering constraints we mean here relationships of comparison or inequality —
binary relationships that are transitive and reflexive. These relations are known as
preorders, and when further required to be antisymmetric (acyclic), they are called
partial orders.

Partial order programming is a paradigm in which information is expressed as order-
ing constraints over a predefined partial order. It is the use of partial orders that per-
mits this paradigm to model the rich structure of complex systems. Real-valued
(totally ordered) parameters used in many models are less flexible than parameters that
range over partial orders such as type hierarchies and intervals of values, not to men-
tion vectors, functions, sets, lists, algebraic expressions, or even complex numbers.
After justifying our belief in the importance of ordering and the related concept of
monotonicity, we will provide a more careful definition of this paradigm.

1.2. Ordering as a Basis for Modeling

Ordering is basic in human knowledge representation. First of all, ordering underlies
type hierarchies and generalization or abstraction, such as with the following incom-
plete taxonomy of animals:

vertebrate ¢ animal
gnathostomata C vertebrate
pisces & gnathostomata
shark C pisces
requiem shark < shark
hammerhead shark ¢ shark

whale shark c shark.

In this taxonomy < is the partial order of inclusion or containment. Ordering also
underlies composition, part-of relationships and aggregation, spatial relationships, tem-
poral relationships, dependencies, causal relationships, transfers of possession, strength
of conviction, preference, utility, planning, procedures, reductive problem-solving,
many modes of inference, chains of reasoning, and heuristics. In short, humans are
very good at reasoning about ordering.

Some have argued that the role of set theory in mathematics suggests that ordering is
not important, since sets are unordered. This is not true: set theory immediately intro-
duces the partial ordering of containment (<) just mentioned. Also, consider the fol-
lowing remark of the eminent logician Abraham Fraenkel:

From a psychological viewpoint, there can be no doubt that somehow the ordered
set is the primary notion, yielding the plain notion of set or aggregate by an act
of abstraction, as though one jumbled together the elements which originally
appear in a definite succession. As a matter of fact, our senses offer the various
objects or ideas in a certain spatial order or temporal succession. When we want

-3

to represent the elements of an originally non-ordered set, say the inhabitants of
Washington, D.C., by script or language, it cannot be done but in a definite order
[38].

In fact, the notation S representing the cardinal number of the set S was developed by
Cantor as a double abstraction, ‘‘the general concept which with the aid of our active
intelligence results from a set when we abstract from the nature of its various elements
and from the order of their being given” [53].

In his recent book [67], Minsky identifies many useful orderings used by the mind —
towers, bridges, chains, levels, etc. He also points out that ‘‘much of ordinary thought
is based on recognizing differences ... our senses react mainly to how things change
in time.”” Noticing differences, and differences in differences, invites comparisons and
ordering depending on what kinds of difference are important in context (§23).

Partial ordering necessarily arises when two objects differ in more than one aspect;
clearly if one object does not dominate the other completely, the two cannot be
directly compared or ordered except by individual aspects. In fact taxonomies like the
shark taxonomy above arise as an organized record of differences — as ‘‘discrimination
nets”’.

Further evidence of the importance of ordering is its role in natural language. At least
western languages make basic use of partial ordering in descriptions and ordinary
statements. Common nouns denote types, and adjectives typically are restrictions on
types. A description is a noun phrase denoting a subtype of the type of its noun.
Furthermore, prepositions usually define spatial relationships that entail ordering, and
ordering is implicit in most uses of the verbs ‘‘to be’” (isa, generalization) and *‘to
have’’ (hasa, partof, of, role chains, aggregation). It is not surprising that type hierar-
chies are natural to western programmers.

Systems providing type hierarchies with the orderings suggested here can be used for
many central knowledge representation problems. For example, consider the following
inference from such a system:

shark & non{whale shark) C carnivore
maneater = big & (eats flesh)
non{cats flesh) c non(carnivore)
big & (shark & non{whale shark)) < maneater.

This inference derives that big sharks are maneaters, except for whale sharks, which it
turns out subsist on plankton. Keenan and Faltz [50] give a semantics for natural
language in terms of Boolean algebras, Ait-Kaci and Nasr [3] use a distributive lattice
of types with attributes to generalize first-order terms, and Attardi and Simi [10] use a
lattice of descriptions in the Omega knowledge representation system. Lattices and
Boolean algebras are, of course, well-behaved partial orders.

1.3. Monotonicity

Given the importance of ordering, it is natural to study operators that preserve order-
ing. We say a function f is order-preserving, or monotone, if x <y implies f{x) < f(y).
Given a set S with some ordering relationships, the image f(S) will respect these order-
ing relationships, and possibly others. Viewed differently, f is monotone if giving it a
larger input cannot get a smaller output, i.e., f does not give out less if we put in more.

Monotone operators appears frequently, for example, in natural language. Determiners
(a, all, every, most, several, some) are often monotone on types. That is, determiners
preserve implication when applied to two phrases one of whose denotations implies the
other’s [80]. Because ‘‘sharks eat quickly’’ implies ‘‘sharks eat’’, ‘‘several sharks eat
quickly’” implies ‘‘several sharks eat’’. ‘

A deep topic that we will touch upon later in this work is the connection between
monotonicity, ordering, and computation. Given the ordering

x 2y
y 2 z
z 2 3

it is easy to see that both x and y are least 3. The computational percolation required
by this inference also underlies procedural concepts such as spreading activation, con-
straint propagation, hill-climbing, etc. All these methods iteratively propagate informa-
tion along ‘‘chains’’ of ordering constraints. Percolation is a monotone process: per-
colation through constraints results in a monotone increase in information about vari-
able values.

This percolation can be generalized to what is called relaxation by some researchers.
Relaxation takes a set of constraints like the above and an arbitrary initial set of
assignments of values to variables. Some of the constraints will usually be out-of-
kilter, i.e., unsatisfied. Relaxation then repeatedly ‘‘relaxes the tension’ of any out-
of-kilter constraints by updating value assignments to satisfy these constraints.
Although some satisfied constraints may become unsatisfied by this updating, in many
cases the process will eventually arrive at an assignment under which all constraints
are in-kilter. We will discuss relaxation later, but among other things it has also been
applied in natural language processing. Mellish describes a constraint satisfaction
framework for natural language processing that he calls ‘incremental semantic interpre-
tation’ [65]. Essentially his system uses relaxation in resolving constraints that arise in
semantic analysis of noun phrases.

Monotonicity is at the heart of of iterative, hill-climbing approaches for solving ine-
quality constraints like relaxation, Suppose we are given the constraint

u 2 flu

when f is monotone, and wish to find the least u that satisfies this inequality. This sort
of feedback control relationship arises frequently in survival, such as with

income = lifestyle_requirements(income).

If we have an initial value uy such that uy < fluy), applying monotonicity repeatedly
tells us that

Up < Fug)
fg) £ Afup)
fflug)) £ A

so the sequence ug, flug), fflug)), ... will increase, hopefuly reaching a solution of the
constraint u = f(u).

We must know more about f to prove that this sequence will reach a solution. One
common condition that turns out to be sufficient is that f also be continuous, in the
sense that it preserves limits of ascending sequences. That is, H}ZD fluy = f(liin i), so

that a graph of the function can be drawn without lifting pencil from the paper. We
will see later that if f is continuous and monotone, the sequence above must have a
limit — a fixed point u such that u = f{iu). With continuous monotone constraints, then,
we are not only no worse off by iteratively replacing our current value u with f(u), but
also guaranteed eventually to satisfy our constraints. Moreover, if we stop iteration
prematurely we still have an approximation to a solution.

Humans like monotonicity, and sometimes go out of their way to make life monotone
even though this behavior may be inefficient. To back up this generality, let us con-
sider the well-known eight puzzle. The problem is to take an initial configuration such
as

0
=~

and change it with moves of the “‘hole’” shown here in the lower right corner to a
configuration in which the tiles are placed in order around the periphery.

Although many heuristics are possible for the eight puzzle, a common human heuristic
is to impose a macro-structuring in which the tiles are placed in the right positions in

order. This heuristic is monotone. It gradually improves the configuration above as
follows [54]:

613 61113 1183 1123
81417 - 8 4 - 6 4 - 6 4
215 DR 2|57 RDLU {2 |5]17]| DRUULDRDLU [5| 8 [7
1213 112(3 1|2(3 112|3
6 4 - 6 4 - 7 4 - 4
5(18(7 5/8(7| ULDRURDLLURD (6 |8 | S| URDL (7|6 | 5§

When viewed at the level of the macro-steps shown here, the puzzle improves mono-
tonically in the ordering of ‘‘number of tiles in the right place’’. In general, when
given a problem goal it is not obvious that we can find a collection of easily-stated

-6 -

subgoals along with operators that monotonically achieve these subgoals, but for the
eight puzzle we can. In [54], Korf proves this assertion by producing a complete set
of macro operators which permit monotone solution of the puzzle. In GPS terminol-
ogy, the operators reduce of the goal of reordering the eight puzzle to “‘serializable
subgoals’® for individual tiles. As the example here suggests, the solutions obtained
with these operators are not necessarily efficient, but the simplification they provide
make them very useful. Korf also gives macro operators for Rubik’s cube and other
puzzles where their existence is not at all obvious.

Monotone operators have important properties. First, their composition is monotone.
As a consequence sums, products, etc. of monotone operators are monotone. Second,
to minimize (resp. maximize) the result of a monotone operator, one must minimize
(resp. maximize) the inputs to the operator. This is Bellman’s famous ‘principle of
optimality”’, the cornerstone of dynamic programming [39]. Thus monotone operators
are also easy to reason about, and an agent possessing only monotone operators and
monotone models of the world is in a consistent position. In fact, we can show that
monotonicity and ordering lie at the heart of logic and inference.

1.4. Logic and Ordering

Logic and ordering are directly connected: every logical implication is a statement of
ordering. The implication P — @ is identical to the constraint ‘‘truth(P)’’ <
“truth(Q)’, an assertion about ordering on truth values or validity. Thus simple logi-
cal implications are inequalities over the partial order with domain {true,false}. The
ordering relationship — on this domain is given by the familiar truth table with
false — true. Furthermore, the chain of logical implications

P - 0
Qg o R
P - R

can be seen as just a result of transitivity on inequalities.

Analogously, first-order (clausal or nonclausal) inference systems that use implication
as their basis are, in a very concrete sense, systems for chain reasoning about inequali-
ties. Inference rules used in automated deduction systems are then applications of par-
tial ordering axioms and properties of monotonicity. The resolution rule

GVP
-P VvV H
GV H

(if G or P, and either not P or H, then G or H) is equivalent to

GVY P 22 true
H 2 P
GV H 2 true,

where we write «— as 3. In other words, we can substitute H for P since it is at least
as valid. The rule is sound because V is monotone in its arguments.

- 7.

Induction is also just the combination of logical ordering with monotonicity of predi-
cates. The principle of mathematical induction

YP[PO) A [Vn P(n) » P(nt1)]] — [YnPn)]
can be reexpressed as
YP[[PO) Itrue] A [P monotone]l] — [YnP(n) true].

For computational induction and structural induction [60], the same observation holds.

Readers interested in automated reasoning may be surprised to find some very involved
inference rules result from ordering and monotonicity. Manna and Waldinger’s vari-
ous replacement rules [64] make direct use of ordering and monotonicity. Also, con-
sider the very general nonclausal nested resolution rule recently developed by Traugott
[911: Let G[P] be a ground first-order formula G that contains one or more
occurrences of the subformula P, and F[P', P7] be a ground formula with zero or
more occurrences of P, where Pt and P~ represent respectively the occurrences under
an even and odd number of negations. Therefore F is monotone increasing in P*, and
monotone decreasing in P~. Nested resolution is the following (surprising) rule:

FL P, P]
G(P]

F[G[true], —GJ false]].

Soundness of the rule follows from ordering and monotonicity. To see this, first
rewrite it as:

FIP,P] 2 true
GIP] 2 true

F[G[true], =G[false]] 2 true.

Note that G[P] 2 true implies G[true] 2 P Jd —G[false] whether P is true or false.
Therefore, the rule can be proved by using monotonicity twice and then the first
antecedent:

F[G[true],—G[false]] 2 F[P,—~Glfalse]] 2 F[P,P] = F[P',P] =2 true.

1.5. Partial Order Programming

The speculation above about ordering, monotonicity, and logic can be put together to
give a formal framework for structuring complex models such as expert systems.
Clancey’s classification problem solving methodology [24] is used to classify objects
with certain features in a type hierarchy. For example, we identify a large cartilagi-
nous animal with jaws and a backbone in a water habitat as a shark, using constraints
on members of the hierarchy (e.g., gnathostomatae have jaws). Clancey argues that ‘‘a
broad range of heuristic programs — embracing forms of diagnosis, catalog selection,
and skeletal planning - ... have a characteristic inference structure that systematically

-8 -

relates data to a preenumerated set of solutions by abstraction, heuristic association,
and refinement.”” This structure is represented by ten significant expert systems, includ-
ing MYCIN, SACON, The Drilling Advisor, GRUNDY, and SOPHIE L
Classification is a process of assigning a value to an object from a well-established
partial order of stereotypes, in a way that satisfies constraints.

Consistent with this perspective on expert systems, we feel diagnostic problems can be
put in the form

find the most specific cause
subject to cause —> observed effects

and more generally classification problems can be written as

find the most specific classification

subject to classification — properties
properties — observed properties.

We formalize this format for stating problems as partial order programming. Partial
order programming is a computational modeling paradigm that expresses both compu-
tation and relationships declaratively as statements of ordering. Every partial order pro-
gramming problem has the form

minimize G
subjectto P

where G is the goal, and P is a collection of constraints called the program. A solu-
tion of the problem is a value for G that satisfies the constraints P.

This much looks like ordinary mathematical programming. The new twist of partial
order programming is that the domain of values is a partial order, a domain D with
ordering relation 2. By contrast, mathematical programming requires D to be totally
ordered. We require each constraint to be of the form

ulv
where u and v are objects. The goal G is also an object.
Thus, in addition to the goal G the program P specifies:
(1) a domain D of values with partial order 2;

(2) a collection of ordering constraints C;
(3) a collection B of objects.
Semantics of the program are assignments of values in D to the objects u in B that

satisfy the constraints of C. Specifically, we are interested in those semantics giving
the least possible values to the object G.

-9.

Consider the following example of a partial order program, where the domain of
values D is the collection of all subsets of {1,2,3} and is partially ordered by inclusion
(2) with least element O

minimize §
subjectto § D ¢
s 2 ({3}
t 2 {1,2}).

In this problem the objects B are {s,t} L 2P, and the inequalities listed here give the
ordering constraints C. The unique solution of the problem is determined by the
semantics

$ {1,2,3}
t = {12},

which gives the smallest possible value to s that is consistent with the constraints.

We will make this definition more formal later. To help build intuition about how
useful partial order programming can be, the next section first presents a number of
examples 1illustrating its application. However, we should assert here that the
definition is very general. For example, we can let the objects B be expressions using
a fixed set of operators and variables:

minimize s
subjectto s 2 tuv {3}
t o {12}

When B contains expressions as it does in this problem, we obtain what we call an
algebraic partial order programming problem (the operators and variables determine an
algebra). When, furthermore, all the operators are continuous and monotone (such as
VU is), we obtain a continuous monotone partial order programming problem. As we
suggested above, these problems arise not infrequently, and have many nice properties.

The example above suggests partial order programming is like mathematical program-
ming. Actually, it covers certain forms of computer programming as well. For exam-
ple, with the problem

minimize f(1)
subjectto AX) 3T 2 *gX)
gy 4

we expect a solution that assigns the goal object f(1) the value 2 * (1 + 1). Later we
will see that this expectation can be met.

-10 -

1.6. Foreword

This monograph covers a lot of varied terrain at a quick pace. Each part of the terrain
contributes part of the whole picture, and all parts of the picture are, at least as of this
writing, important. Before we begin, let us take a few moments to summarize in a
large way what the picture is.

Partial order programming is interesting for several reasons:

e It connects diverse fields in a natural way, including fields of both symbolic and
numeric computation. Partial order programming generalizes a variety of compu-
tational paradigms: logic, functional, and others. We will explain how later, but
basically established computational notions such as logical derivation, lambda
reduction, and so forth can all be expressed with partial orders (or preorders). In
addition it resembles constraint-satisfaction paradigms from operations research,
particularly mathematical programming.

o There is a natural class of partial order programming problems that is easily
solved by relaxation iterations: the continuous monotone partial order program-
ming problems. Semantics for continuous monotone programs are especially
elegant, since the programs take thorough advantage of known results for continu-
ous functionals on complete partial orders. In fact, these programs give different
perspectives on the use of these results. Where this theory has been applied to
the problem of defining semantics of programming languages, the partial order
typically used is that of approximation, where one program approximates another
if its denotation is subsumed by the other’s [69,92]. Continuous monotone par-
tial order programming encourages the use of other partial orders: numerical com-
parison, type inclusion, etc. Also, the connection with relaxation and the funda-
mental role of partial orders in concurrency (e.g., in formalizing data and control
dependencies) suggest these programs may have parallel computing applications.

e Partial order programming offers a computational framework that has desirable
properties for dealing with cognitive problems, including natural language pro-
cessing and knowledge representation, Its paradigm of relating constrained struc-
tures (objects) to well-understood structures (values) via a process of constraint
satisfaction appears to coincide with concepts at the center of the knowledge
representation problem: typing, approximation (belief, certainty, confidence, util-
ity, etc.), and more generally abstraction.

Our concern here is to present basic results, in order to set a foundation for implemen-
tations of partial order programming. Throughout we have tried to keep the presenta-
tion simple and self-contained, in the belief that the only successful programming para-
digms are simple ones. After we define partial order programming rigorously, we
study a number of examples of the paradigm. We then investigate its relationship with
linearity, showing how continuous monotone programming problems sometimes can be
cast in the format of linear algebraic systems, and then solved by relaxation or elimi-
nation methods. Finally we relate continuous monotone partial order programming to
existing computer programming paradigms, specifically logic and functional program-
ming,

-11 -

2. Complete Partial Orders and Fixed Point Theorems

This section reviews basic results in the theory of partial orders. A mild warning!
The presentation here essentially follows current conventions in denotational semantics
[82]. However the reader should be aware that published treatments of this material,
even in the literature on denotational semantics, usually differ in some way. First,
some references base their presentation on complete lattices, while others use (differing
definitions of) complete partial orders. Second, older results are attributed to different
people by different authors. Third, conventions are sometimes tacit. For example, a
complete partial order sometimes tacitly contains a least element L, and in denota-
tional semantics ‘‘continuity”’ tacitly implies ‘‘monotonicity’’.

For the sake of clarity, we use the term ‘‘continuous monotone’’ below. (Readers
comfortable with denotational semantics should read this as *‘continuous’’, since there
monotonicity is implicit in the definition of continuity.) This perhaps cumbersome
notation states both requirements on functions sufficient to achieve fixed points itera-
tively as in Theorem 1. In general, however, continuity does not imply monotonicity:
real-valued continuous functions are not necessarily monotone, for example. Some of
the applications we illustrate later involve real-valued functions.

The fixed point results here are only the most basic. For example, a vast literature
exists on fixed point theory of functions that are continuous but not monotone.
Brouwer’s famous theorem proves the existence of a fixed point for such functions, but
does not show how to produce one; consequently many numerical algorithms for cal-
culating fixed points have been developed [81, 85]. Partial order programming should
be extended eventually to draw on other fixed point results.

In view of the potential for confusion, we have tried to keep the presentation simple
and self-contained. Proofs of theorems are included in the appendix. See
[12,82,87,88] for clear alternative presentations.

2.1. Complete Partial Orders and Complete Lattices

Definition
A partial order is a pair <D,23> where J is a binary relation on D such that

(P1) Forall xin D, x dx.
(P2) Forallx,yzinD,if x3JdyandyJdz then x 2z
(P3) Forallx,yinD,ifx3JyandyJx, thenx =y.

A preorder is a pair <D,2> satisfying (P1) and (P2).
The least element of a partial order, if one exists, is written _L; the greatest element, if
one exists, is written T. When they exist, we have:

(C1) ForallxinD, xdJd._.
(C2) ForallxinD, T Hx.

Definition

-12 -

A rtotal order <D 3> is a partial order in which for every pair of elements x,y either
x 2y oryJx holds.

Definition
o is the set of natural numbers.

Definition
An ascending chain S in a partial order <D, 3> is a sequence S={ x| k € ® } with

%ExExpC -

It is a totally ordered subset of D.

Definition

A directed set S in a partial order < D,2> is a nonempty subset of D with the property
that if x,y are arbitrary elements in S, then there is another element z in § such that
both zdx and z 2 y.

Directed sets include ascending chains as a special case.

Definition
In a partial order <D, 3>, an upper bound of a subset S of D is an element z in D such
that for every x in S, z J x.

The least upper bound of a set S, written

I—IS’

is the least z such that z is an upper bound of S. By P3, it is unique if it exists.

Definition
A complete partial order (cpo) is a partial order <D, 2> in which every directed set S
of D has a least upper bound || S. A pointed cpo is a cpo with _L.

This definition is interesting because it requires infinite directed sets to have least
upper bounds; every finite directed set must already contain its own least upper bound.
As an example, the partial order of real numbers in the open interval D = (0,1) ordered
by 2 is not a complete partial order, since the infinite directed set S = {1 - 2% 1k >0}
has no least upper bound in D. This partial order is also not pointed, since it has no
least element in D. Changing the domain D to the closed interval [0,1] ordered by 2
makes it a pointed cpo.

Definition
A complete lattice is a partial order <D,J> such that every subset § of D has a least
upper bound || S. In particular L € D, since 1 =] &.

Complete lattices are sometimes defined as partial orders in which || § and [] S exist
for every set S. Because [1S = || { x|y <x, forevery yin S }, the definition here
is equivalent.

- 13 -

Given a collection of cpos <Dy,2>, ..., <D,,2,> we can construct further cpos:
(1) if D; " D;={L) for all i # j, the direct sum
<D,3d> = <D 2> + .. + <D, 3,>
is a cpo, in which D = Dy v -+ w D, and x Jy iff x & y for some i.
(2) the direct product
<D,3> = <D,F> x .. x <D, 3>

n=n
is a cpo, in which D = Dy x -+ xD,, and <x,... >3 <y, ... p> iff
x; Ay; for 1 <i < n, The least element of D is written

L =<4, ...,1>

2.2. Continuous Monotone Functions and Fixed Points

Definition
A function on a partial order f : D — D is monotone if x Dy implies fix) 2 f(y).

Definition
The composition f « g of two functions f and g is defined by (f« g)(x) = f gx)).

Thus « : ((D—=D)X(D—D))—(D—D). We also permit « to serve as functional applica-
tion, where » : (D—D)xD)—D. In this case, fex=fx).

We introduce this notation instead of using the more common fog =g(f) so that
functional composition can be written left-to-right. This will simplify notation later
when we view functional composition as a kind of ‘‘multiplication’’ operator.

Note that any composition of monotone functions is monotone.

If S is a directed set and f is monotone, then fiS) = { fix) I x € §) is a directed set.
In particular, f maps ascending chains into ascending chains.

When f is monotone and we have the converse property that fix) 2 f(y) implies x Jy,
fis called an order embedding, and S and f(S) are order isomorphic.

Definition
A function f: D—D on a cpo <D,J> is called continuous monotone if for every
directed set S in D,

AUS) = UAS) -

This definition says that for an infinite ascending chain x, Cx; Ex, E - -+ we have
the equality

sl %) = fll{xglkeo}) = U{fplke 0} = kELIm JCx).

- 14 -

In other words f preserves the limits of chains. This parallels the definition of con-
tinuity of real-valued functions, but differs in considering only sequences that are
ascending chains.

Note that every continuous monotone function must also be monotone, since if x 3y,

fo = fAUEyD = UAyD) = fUM0G) 2 [

Conversely, every monotone function is also continuous monotone when every directed
set in the cpo is finite.

Continuous monotonicity is sufficient for functions to have a fixed point on a pointed
cpo:

Theorem 1
Let f: D—D be a continuous monotone map on the pointed cpo <D,2>. Then f has a
least fixed point equal to

fixf = [I{fHL) ke o)
where f* is f iterated k times, i.¢., f¥=f« f%71, and £ is the identity.

Although it did not use this terminology, Kleene’s first recursion theorem [52]
presented Theorem 1 for the situation where f is a partial recursive functional over the
pointed cpo D of partial functions ordered by approximation, where L is the com-
pletely undefined function. See [61]. Hence Theorem 1 is usually attributed to
Kleene.

Theorem 1 is false if we drop the continuity requirement. For example, the discon-

tinuous function
x2+1 0<x<?2
fx) =

x+1 2<x

is monotone on the pointed cpo {0,0] ordered by = with L = 0. However
fix/ = U{ffDlkeo} = 2
and f(2) # 2, i.e., 2 is not a fixed point of f.

On a complete lattice, we can adapt the result of Knaster-Tarski {90] to obtain a result
like Theorem 1 that omits the continuity requirement:

Theorem 2

Let f: D—D be a monotone function on the complete lattice <D,2>. Then f has a
fixed point in D.

Moreover, the set of fixed points of f forms a complete lattice, so f has a least fixed

point again. Unfortunately this theorem does not provide an effective means for
finding fixed points.

-15 -

We have avoided introducing ordinals in this presentation, since transfinite computa-
tions are not of use here. However, Hitchcock and Park [42] have shown that
Theorem 1 can be extended for monotone functions by using ordinals: if f is monotone
on the pointed cpo D, then f*(_L) reaches a least fixed point for some ordinal o, of
cardinality less than or equal to that of D. Nelson’s presentation of this result in [72]
is well-written. Fitting [35] presents a proof that does not use ordinals directly, but
Zom'’s lemma.

- 16 -

3. Partial Order Programming

This section defines partial order programming, and studies two important subclasses
of programs called reductive partial order programs and continuous monotone partial
order programs. Because the definition is abstract, both model-theoretic and pro-
cedural semantics for these classes of programs are straightforward to develop. The
procedural semantics reflect the fact that there are basically two ways to go about solv-
ing systems of inequalities: elimination and relaxation. Elimination corresponds to
standard reductive or proof-theoretic semantics, while relaxation semantics are more
novel,

The purpose of this section is to state formally what is meant by partial order program-
ming. Some readers will find themselves wishing for clarification along the way. An
example is provided at the end of the section to help make the abstraction more under-
standable. Also, a number of well-known classes of problems are expressed with par-
tial order programming in the following section. Later sections also relate partial order
programming to relaxation solution of inequalities and to computer programming.

3.1. Formal Definition

Definition
A partial order program P is a 4-tuple <B,C,D 2> where:

<D > is a pointed complete partial order of values,
B is a set of objects,
C < B x B is a set of constraints.

We require that D € B, so every value is also an object. Each member <u,v> of C
represents the constraint u 2 v, and is normally written in this inequality form. In the
special case where both u and v are values in D, we require that ¥ = v, i.e., the only
constraints in C involving two values are of the form v Jv.

Definition
Let v be a value, and u be an object that is not a value. A constraint ¥ dv is I
oriented. A constraint v 2 u is C-oriented.

A partial order program is =toriented it has no C-oriented constraint. Analogously, a
program is C-oriented it has no J-oriented constraint. The program is oriented if it is
either J-oriented or C-oriented.

Definition
A valuarion is a function p : B — D that is the identity on D, and maps each object in
B-D to a value in D.

Definition
The trivial valuation L is the valuation L : B — D defined by

- 17 -

L@ = L
for every u in B--D.

Definition

For two valuations pj, p;, we write py =2 py if for every u in B, py(u) 2 pi(u).
Thus valuations are partially ordered pointwise. Under this ordering, p J L for every
valuation p.

Furthermore we say a set S of valuations is directed if for every py, p, in S, there is
an element p in S such that p 2 pyand p 2 po.

The space of valuations is then a pointed cpo, since the trivial valuation is a least ele-
ment, and for every directed set § of valuations the least upper bound || S is defined.

In particular since S is directed, { p(u) | p € § } is directed for every u in B, so its
least upper bound is defined, and

UHw = U pw = I p
pe S pes

is well-defined for every u in B.

Definition
A constraint u 2V is satisfied by the valuation p if p(u) 2 p(v).

Definition
A model of a partial order program P = <B,C,D, 2> is a valuation p : B = D such
that, for each object u in B, every constraint 4 2 v of C is satisfied by p.

A minimal model p of P is a model for which there is no other model p’ such that
p 2 p’. Minimal models are not necessarily unique.

A least model p of P is a minimal model that is smallest, i.e., for which every other
model p” satisfies p* 3 p. Least models are therefore unique.

A semantics of a program is a model of the program.

Definition
A partial order programming problem is a statement of the form

minimize G
subjectto P

where P is a partial order program, and G is an object of P, called the goal of the
problem. A solution of this problem is a value p(G) of G that is minimal over all
models p of P.

Briefly, a model of a partial order program P = <B,C,D d> is an order-preserving map

- 18 -

from the preorder <B,J> defined by C to the partial order <D,2>. We can think of
finding a model for a partial order program as a process of mapping a preorder of
““‘unknowns’’ into a partial order that is ‘‘understood’’, in a way that respects the
preorder’s constraints.

For example, consider the partial order programming problem

minimize X
subjectto x 2 Yy
y 2 2z
z 2 3
and the three valuations below:
Valuation
Object | po | P1 | P2
X 5 5 3
¥ 2 4 3
z 3 3 3

Here py 1s not a model, p; is a model but not a minimal model, and p, is a minimal
model. In fact, p, is the least model. The unique solution of the problem is the value

pz(X) =3

3.2. Solvability of Partial Order Programming Problems

There are several important issues concerning the definition of partial order programs
above, and how it affects our ability to find a model for a partial order program.

First, we currently have no reasonable procedure for solving partial order programming
problems. This is very like the situation for mathematical programming, and in fact is
just as bad: for sufficiently interesting problems finding a solution is undecidable. This
undecidability follows from the expressibility of either functional or logic program-
ming in partial order programming demonstrated below. However functional and logic
programming do have evaluation procedures, and we will need to produce some solu-
tion procedure if partial order programming is to be of use.

Second, partial order programs may have no model. For example, if 2 is a partial
order on D for which the values a,b have no common upper bound, then the partial
order program

] ®
I 1y
o R

has no model.

Third, the definition of partial order programs permits non-oriented programs like

which has a model only if the domain D is trivial. Note also that when the domain of
values is a total order, the constraint v 2 u is the same as the negation of u Jv. It will
be interesting to extend the definition of partial order programs to include strict ine-
qualities. However, strict inequalities allow us to write inconsistent programs like

¥ u

and lead to many thorny issues of negation.

Summarizing, the definition of partial order programming above does not give us a
procedure for solving problems, or any kind of guarantee that a solution even exists.
We must therefore define subclasses of partial order programs to deal with these
issues. In the remainder of this monograph we will limit ourselves to one specific
class that seems to cover many interesting problems: reductive partial order programs.

3.3. Reductive Partial Order Programs

Definition
A reductive partial order program P is a partial order program <B,C,D 2> whose
constraint set C meets the following restriction:

C : B - B is a constraint function that is the identity on D.
For every object u in B, P is said to contain the inequality constraint
u 3 Cu).

A model of a reductive partial order program is thus a valuation p : B -3 D such that,
for each object u in B, p(u) 2 p(C(w)).

Clearly every reductive partial order program is J-oriented. This restriction eliminates
the possibility of programs such as

1 2 u
udT

which simplifies our analysis considerably, and has the beneficial effect that every
reductive partial order program has a model.

Above we noted that if J is a partial order on D for which the values a,b have no
common upper bound, then the partial order program

u 2 a
u3b

has no model. This problem cannot arise with reductive partial order programs, since
C(u) must be single-valued.

-20 -

When the value cpo D is a complete lattice, we can say still more about reductive par-
tial order programs. In this case upper bounds always exist, and the partial order pro-
gram with a,b above can be converted to the reductive partial order program

u 3 (@l b).

This second program is ‘equivalent’ in that any model of the first will also be a model
of the second. In fact, we can convert any J-oriented partial order program over a
complete lattice to an equivalent reductive partial order program:

Theorem 3

Let P = <B,C,D,2> be a 2-oriented partial order program, where <D,2> is a complete
lattice. Then there is a reductive partial order program P’ = <28 ' D> that is
equivalent to P, where by equivalence we mean there is a natural isomorphism
between models of P and models of P’

Proof
Define C’ : 28 — 28 for S ¢ B by
C(S) = {viuels wAve C }.

In particular when u is in B, C’'({u}) = { v {(u 3 v) € C }, so for a fixed u the set
of constraints { # 2 v } in C is converted to the single constraint {u} 2 C'({u}).
Because of the restrictions on C this function C’ is the ‘identity’ on D, in the
sense that C'({d}) = {d) forall d in D.

Now, we can extend any valuation p : B — D to a valuation p’ : 22 — D in the
obvious way:

pP(S) = U p(u).
ueS
We claim that p is a model of P if and only if p’ is a model of P":
First, if p is a model of P, then p(x) 2 p(v) for every (u 2v) € C, so
2 .
pw) < (“:H e p(v)

But p'({u}) = pu), and p'(C({u})) = (u:HE c p(v). Thus
p’({u}) 2p’(C'({u})), and p’ is a model of P".

Conversely, if p’ is a model of P’, then for every u in B, p’({u}) 2 p’(C"({u})).
From this we can infer that

pu) 2 p(v) forevery (u3av)e C,
so p is amodel of P. O
The significance of Theorem 3 is that restricting attention to reductive partial order

programs does not cause much loss of generality. Because of Theorem 3, from this
point on we will investigate only reductive partial order programs.

-21-

3.4. Model-Theoretic Semantics

Model-theoretic semantics for reductive partial order programs are simple. At this
point they are even simpler than the elegant semantics for logic programs [8, 58],
because partial order programs are defined more abstractly. Naturally we can say
more about the inequalities and their solution for specific domains B and D (and we
will do so shortly), but the point is that we can avoid details of the semantics neatly
through abstraction.

Definition
For a reductive partial order program P = <B,(,D,J> we define the function
Tp: (B—D) = (B—D) by Tp(p) = p-C.

Theorem 4

Tp is a continuous monotone map on valuations.
Proof
Tp maps valuations to valuations since C : B—B. Tp is also monotone, since if
Py 2 Py, then py« C 2 py« C. Thus Tp maps directed sets to directed sets.
Similarly Tp is continuous. To see this, recall that for (pointwise) directed sets of
valuations S,

USHw@w = U_pw,
pe s

SO
(F)LI Tp(p) Yw)
= | I_I peC)
= LI (p e« Ow))
= LI (P(C@N)
= (U P NC(u)
= TP(plgls P ().
g
Theorem 5
p 2 Tp(p) if and only if p is a model of P.
Proof

p is a model iff for every uin B, pu) 2 p(Cw)) = p+» Cw) = Tp(p)w). O

Definition
An object u of a reductive partial order program is definite if { C*"w)Inz1}
includes some element in D. Otherwise it is indefinite.

Theorem 6 (Model-Theoretic Semantics of Reductive Partial Order Programs)
Let P be a reductive partial order program. The least fixed point of Tp is the valuation

22 -

p = U TH(L), and is the least model of P.

ke w

Proof

Follows directly from Theorems 1 and 5, since Tp is continuous monotone. The
least fixed point is a minimal model of the program, since all inequality con-
straints u# 2 C(u) of P are satisfied by p with equality. Theorem 5 shows that any
other model p’ must be a prefixed point of Tp, i.e., p’ ATp(p"). But then p’ Jp
since p is the least prefixed point of Tp, so p is the least model.

More precisely, since p’ 2 L and Tp is monotone, Tp(p") I Tp(L), so p* 2 Tp(L).
Inductively then p’ 2 T5(L) for all £20, and p’ 3 p. O

Theorem 6 shows that reductive partial order programs always have models, and also a
least model. It also shows that the least model of a program assigns L. to indefinite
objects.

Since valuations are unrestricted here, Theorem 6 also gives a procedure for solving a
partial order programming problem. The problem with goal G and program P has the
solution p(G), where p is the least model of P. No other model can give a smaller
value to G.

3.5. Procedural Semantics

There are a number of ways to solve a system of inequalities, but two very basic
methods are elimination and relaxation.

By elimination, we mean repeated simplification of the set of constraints through elim-
ination of variables. The Gaussian and Gauss-Jordan elimination methods are classical
methods for solving linear constraint systems. The subfield of algebraic geometry
known as elimination theory studies such techniques for systems of polynomial equali-
ties and inequalites [46].

Relaxation methods begin with an approximate solution and iteratively modify the
solution to satisfy currently unsatisfied constraints. While relaxation methods are less
well-understood, for many constraint systems (real-valued and otherwise) iterative
relaxation is the only option for finding a solution.

We can therefore find the value p(G) of an object G under the least model p of a
reductive partial order program P in different ways. These ways give different pro-
cedural semantics for the program.

First, we can treat the program P ‘proof-theoretically’. Given two constraints u 2 v,
vaw of P, we can derive u 3w. This is a form of elimination, where the use of v
has been eliminated. The transitive closure of all constraints of P that this derivation
process produces will eventually contain a minimal value g lower bounding G, if any
such value exists. That is, if G is definite we will eventually derive a constraint G 3 g
where g is minimal.

-23.

We can view this process as evaluating or reducing G to the value g. Repeated reduc-
tion obtains a sequence of objects GO ¢ GM such that

G=69 260 3 ... 2 G™M = g

For this approach to be well-defined, all reduction sequences should ultimately give the
same value g. This is guaranteed with partial order programs.

We can also obtain values for G via relaxation, and use relaxation as our procedural
semantics. Relaxation is a simple paradigm for iteratively finding values that satisfy a
set of constraints. The name ‘‘relaxation’” was used by Southwell [86], after the appli-
cation he pioneered in stress analysis.

In this monograph we identify relaxation with fixed point iteration. That is, by relaxa-
tion we mean an iterative technique which, given an initial value (namely: L) for the
objects u in B-D, repeatedly selects an unsatisfied constraint # J v and updates u with
the current value of v to enforce the constraint. (‘Out of kilter’ constraints are brought
‘into kilter’.) By repeatedly enforcing constraints on G, we obtain an ascending chain
2D, oW, ., o™ of values in D:

Again, on reductive partial order programs enforcement of constraints in any ‘fair’
order (any order that eventually enforces all unsatisfied constraints) will ultimately
obtain minimal model values for the objects if such a value exists. That relaxation
works is then a consequence of Theorem 1.

Single-assignment semantics in programming languages have recently grown in impor-
tance. Relaxation semantics can be called assignment refinement: an assignment
G := g™ made for a partial order program can be replaced by G := g(’“‘l) provided that
g% D M In other words, we can replace the value of an object with better and
better ‘‘approximations’’ as they are obtained.

3.6. Continuous Monotone Partial Order Programs

In this section we will consider an important subclass of reductive partial order pro-
grams for which these procedural semantics become more explicit: continuous mono-
tone partial order programs. These programs are sufficiently general to cover many
practical problems and the functional and logic programming paradigms.

Up to this point, we have assumed very little about the value domain D: it is a partial
order with ordering relation 2. Frequently we know more about D. In particular, a set
of operators on D may be useful, and we would like B to include expressions using
these operators. Many computational paradigms define atoms (‘‘variables’’) that can
appear as arguments of operators (‘‘functions’’).

For example, if we have D = (o, the set of natural numbers, we might include a binary
operator ‘plus’ representing addition on D, and permit B to include expressions using
it. (The interpretation of Op is fixed a priori; plus represents addition, and only addi-
tion, on D.) This can be accomplished by letting B include the set of rerms involving

- 24 -

plus and some other domain of objects.

More exactly, we want to extend the definition of partial order programs by identifying
a set of atoms A, letting B be a set of expressions over A and the values in D, and let-
ting C represent both constraints on A and reduction or evaluation among expressions
in B. Thus C blends both declarative and procedural semantics. The partial order pro-
gram definition given earlier is general enough to encompass this extension.

Because C has additional structure, however, models of programs are more con-
strained. For example, suppose u,v € A and plus(u,v) is an expression in B. If it is to
be ‘‘reasonable’’, a valuation p should behave like a substitution acting on the vari-
ables in A, and must satisfy something like p(plus(u,v)) = p(u)+p(v). We formalize
this basic understanding as follows.

Definition

An operator domain Op is a set of function symbols f, each of which has an arity
of f). Given a fixed domain D, each function symbol f in Op denotes a priori a
specific function F: D™f) — D, that, for our purposes, we require to be total and
effectively computable in finite time. The set of these functions F paired with D is
called a D-algebra.

Definition

If S is a set and Op is an operator domain, the set Term(Op,S) of first-order terms is
inductively defined as the terms obtained from the union of § with the expressions
constructed from function symbols in Op acting on elements in Term(Op,S). For
example, if f has arity a(f) = 2,

Term({f}.{ab})) = { a, b, fla.a), Ka.b), fib.a), fb.b), flafla.a), .. }.

Thus the set of expressions over D using function symbols in Op is Term(Op,D).

Definition

An algebraic valuation over Op is a valuation p : B — D defined recursively for u in
B:

(1) Ifwuisin D, then p(u) = u.
(2) If uisin A, then p(u) is a value in D.

(3) If otherwise u =f{u;, ... u,), and F: D" — D is the function correspond-
ing to f in Op, then
p(fuy, .. u,)) = F(pluy), ..., pluy)).

Thus p is expression evaluation on Term(Op,D).

Definition
The trivial algebraic valuation J-op p is the valuation J_Op p B — D defined by
expression evaluation on Term(Op,D), and

-LOP.D(u) = J—

=25 -

for every u in B — Term(Op,D).

Thus 1, p is the identity on D, and is the least algebraic valuation: p 3 Ly, p for
any algebraic valuation p, since all algebraic valuations must agree on Term(Op,D).

Definition

Op 1is continuous monotone, if every function symbol f in Op denotes a function F on
the pointed cpo <D,2> that is continuous monotone in each of its arguments. In this
case the set of functions F and D is sometimes called a continuous algebra.

Theorem 7
Suppose Op is continuous monotone, and ;, p, are algebraic valuations over Op on B.
If P2 = Ppon A, then P2 = P on B.
Proof
Any composition of continuous monotone functions is continuous monotone.
Given every function F denoted by symbols f in Op is continuous monotone on
<D >, then every term in B = Term(Op,AuD) will denote a continuous mono-
tone function on A. Thus p, 2 p, on A implies p, 2 p; on B. O

Definition
Given two terms eje, in B, we write e Sg,pe; (¢ and e, are algebraically
equivalent over Op) if for every algebraic valuation p, ple;) = p(e,).

Definition
An algebraic partial order program P is a reductive partial order program
< Term(Op,ALD),C,D,3> where
<D,J> is a pointed cpo of values,
Op is an operator domain of functions on D,
A is a set of atoms,
C : B > B is a constraint function, where B = Term(Op,AuUD).
For every object u in B, P is said to contain the inequality constraint ¥ 3 C(u).
C must meet two requirements:
(1) C is the identity on D, and more generally C: Term(Op,D) — D.
(2) C is a computation rule [62] for reduction of expressions. Specifically, if f

is a n-ary function symbol in Op so fl u; , ..., u,) is an object in B, then
for some m 2 1 there exist argument indices iy, . . . ,i,, such that
CORC s tygs Wi Wigys """ W15 Wi s Uig1s 7))

=opp SO o u, Oy wyyrs - -y g0 €D, 8 41, 7)

-26 -

These restrictions on C have several ramifications:

e The second restriction requires C to reduce fluy,...,u,) either to
Sl CWy), ..y Cy;), ...) or to some equivalent expression. Thus C can perform
algebraic simplifications that preserve equivalence over D. For example, if D is
the natural numbers, Op is {plus} representing addition on D, A = {p}, and B =
Term(Op,AUD), C could include the following definitions:

C(plus(p,0))
C(plusO,p))
C(plus(0,0))

Il
o W

e The first and second restrictions together require C to be expression evaluation on
Term(Op,D), so if f is a function symbol in Op denoting the function F : D" —» D
and vy, . . .,v, are in Term(Op,D), then

C(Avy,...,vy)) = F(Cvp,...,CHvY).

e The restrictions also essentially require C to be expression evaluation on B — A.
We will clarify this momentarily.

e For objects u in A, C(u) is not restricted. Thus the real *‘program”’ of an alge-
braic partial order program comes from the constraints on A.

Definition
A continuous monotone partial order program is an algebraic partial order program
< Term(Op,AwD),C,D 2> where Op is continuous monotone.

The problem of finding a model for algebraic partial order programs is, in general,
undecidable. This is evident from the undecidability of Hilbert’s tenth problem [28].
Also, algebraic partial order programs may have many models but no least model, such
as with the program x 2 ~y over the value domain D of the integers. The following
theorem shows that continuous monotone programs resolve these problems, and have
least models that are algebraic, modulo indefiniteness.

Definition
A valuation p; approximates a valuation p, if for every object u e B, either

p1(18) = pa(), or py(u) = L.

Theorem 8
Let P be a continuous monotone partial order program. Then P has a least model,
which approximates an algebraic valuation.
Proof
Let P = <Term(Op,AUD),C.D,J>, and consider the map Tp(p) =p « C. Since
every continuous monotone partial order program is also a reductive partial order

.27 -

program, Theorem 4 shows that Tp is a continuous and monotone map from
valuations to valuations. Theorem 6 then implies

p* = kle_lm Tp(Lop.p)

is the least model of P, and is a least fixed point solution to the inequality
p = Tp(p). Thus p* =p*.C.

We must now show that this least model p* approximates an algebraic valuation.
Let u be in B = Term(Op,AUD). If u is indefinite, p*(u) is L. If u is definite,
then for some integer k£ > 0, which we can call the stage of u, CXuw) is in D. We
prove by induction on & that p* is algebraic for all definite objects # in B of stage
at most k. Since p* is _L for indefinite objects, this induction establishes the
theorem.

If k=0, then u is in D and p* trivially meets the conditions on algebraic valua-
tions. Assume then k 2 1, and that p* is algebraic for all objects u of stage at

most k—1. If u=fu;,...,u,) has stage k, C(f(uy,...,u,)) has stage
k—1, and the restrictions on C imply there is some m 21 and arguments
iy, . . . i, such that

¥y s Uy)
= pFeC(fuy s tty))
= p*(C(R Uy s iy)))
= p*(f(, u,'l_i, C(uil), ul‘l.‘_l, cany uim,_l, C(uim), u,-mﬂ,))
= F(., p*y 1), p* » €O, p*W;41), o Py 1), 0% » Cluy), ¥ 41D,)
= F(o, p*Qun)s p*)s p*(in)s oo PG 1) P)0 ¥y 41)s)
Thus the induction holds for objects of stage &, and p* approximates an algebraic
valuation. O

It is important to understand how p* can fail to be algebraic. Consider the following
definition for C:

C(plusp.)) = plus(plus(p,0),q)
C(plus(plus(p.,0).q)) = plus(p.q)
C(p) = 2

With this definition p*(plus(p,q)) = L, but p*(p) + p*(g) = 5. Thus p* only approxi-
mates an algebraic valuation. It is algebraic modulo the indefiniteness of the object
plus(p,q) under C. Nevertheless, it is the least model, since it satisfies the constraints
of C.

In some situations we will need a computation rule C that produces an algebraic valua-
tion, In the context of recursive programming languages, Manna [62] shows that what
is needed is a fixpoint computation rule. For our purposes, however, the requirements
on C above are sufficient.

Combining Theorems 7 and 8, we see that models of continuous monotone partial

.28 -

order programs are determined on B by their values on A. Thus values of the least
model on A gives a semantics for the program.

We can find values of the least model on A in two ways:

(1) A valuation on A be determined iteratively (by relaxation) yielding a sequence of
approximations to a model that increases in a continuous monotone fashion.

(2) When A is finite, continuous monotone partial order programs often can be linear-
ized (converted to systems of linear inequalities over some semiring). Values for
objects in A can then be obtained with elimination methods.

We will clarify the second statement later. The first statement says that if u denotes
the vector of atoms in the finite set A, and f is a vector-valued continuous monotone
function on A, then the continuous monotone partial order programming problem

minimize u
u

subject to 3 f(u)

over the pointed cpo <D,3>, is solved by the relaxation iteration
u = f(u)

with initial value L for u. This follows from Theorem 1, since the cross-product of n
copies of the pointed cpo is again a pointed cpo, and since the vector function f is
continuous monotone on this cpo. The fixed point obtained is the least fixed point,
and is the least solution to the inequalities in the program.

This shows that a relaxation procedure which satisfies all constraints in parallel con-
verges to a solution of the constraints. The same statement can be made for serial
constraint satisfaction. Since the vector functions

Fi‘(ul, e ,un) = <u1, Ca ,ui_l,f}(ul,...,un), /TR PP / 1<i< n,
are each continuous monotone, the vector function
F = F,e - «F

is also continuous monotone. Thus relaxation with F will converge to the least fixed
point of F. But every fixed point of F will also be a fixed point of f, and vice-versa.
So, relaxation with either F or f must yield the same (least) solution of the inequalities
u 2 f(u). Serial and parallel relaxation will yield the same result.

3.7. A Sample Continuous Monotone Partial Order Program
Consider the partial order programming problem

-29 .

minimize min{ g, max(c, e))
subject to 0.50 * min(b, f)
0.50 * min(¢, d)
0.20

.45

0.30

1.00

0.50

0.90 * e.

a
a
b
c
c
d
e

VNINVNIVIVIVIVIV

f

Formally we specify the program of the problem to be <B,C,D,>2>, where D is the set
of real numbers between 0 and 1 ordered by value, A is the set {a,b,c,d.ef}, B is the
set of expressions on A and D using the operators Op = {min, max, *}, and C is the
collection of constraints above. This program is reductive, since all constraints are =-
oriented.

Note that Op is continuous monotone on D, and max serves as [] on D. Using
Theorem 3, therefore, we can convert the program to the following equivalent continu-
ous monotone partial order program (where we have labeled constraints for reference
later):

(C1): a 2 max(0.50* min(b, f), 0.50 * min(c,d))
(C2): b = 020

(C3): ¢ 2 max(045,030)

(C4): d 2 100

(C5): e =2 050

(C6): f =z 090*e.

The algebraic valuation p defined by

pl@) = 0225
pd = 020
pic) = 045
pd) = 100
ple) = 050
pil = 045

is a model for this program. With this model, the goal
min(@, max{ ¢, €¢))

is assigned the value 0.225. In fact, p is a least model: it always gives the smallest
possible values under the order 2.

Procedural semantics vyield the same result. First, reduction of the goal
min{a,max(c,e)) might first produce the object

min(a, max(max(0.45,0.30), ¢))

-30 -

using the inequality (C3), and then reduced to
min(a, max(0.45, e)).
This process will eventually give the value (0.225 again.
Second, relaxation produces a sequence of valuations culminating in the model p given

above. For example, we might derive the sequence of valuations on A below. The
goal is refined to take the value 0.225 after the seventh step.

constraint enforced
Object (C5) (C6) (C2) (C1) ((€C3) (C4) (C1)

0.50 | 0.50 [0.50 | 050 | 0.50 [0.50
045 | 045 | 045 | 045 | 045
0.20 | 0.20 | 0.20 | 0.20 | 0.20
0.10 | 0.10 | 0.10 | 0.225
1 045 | 045 | 045
L L 1.00 | 1.60

LD AT

.y
HF-FRES
<o

HFEEEE
i -

min{a,max(c,e)) 0.10 | 0.10 | 0.10 | 0.225

There are many issues remaining to be studied in semantics of continuous monotone
programs that this example does not show. One interesting area deals with programs
such as

Ixb-8
2xa+1

a
b

where D is the real numbers with least element | = —ee, This program is not easily
solved by relaxation. (Indeed, it can be solved by elimination only if we can apply
algebraic properties of the operators + and x over the value domain.) Relaxation does
not produce informative minimal models unless it is provided with a good starting
valuation. The least model of this program is the trivial valuation assigning L to a
and b. If we adjoin T = oo to D, this program has greatest model [8] assigning T to
a and b. However the ‘most informative’ model assigns 1 to @ and 3 to b, and in this
case is the optimal fixed point [63] of the program.

Obtaining good initial values for iterations has been a largely heuristic heuristic pro-
cess until recently. For example, the continuation method [6,7] finds solutions to a
system of constraints by beginning with a similar system with a known solution, then
following curves that deform the system (and its solution) to the desired system. The
approach has promise and may make iterative approaches possible where they have not
been in the past.

Note that some programs are not finitely evaluable {34). This is illustrated by the pro-
gram

2
2

z, = min(2™ 2z,;)

where D is the nonnegative rational numbers ordered by 2, with the usual arithmetic
operators, and B is the set of arithmetic expressions involving nonnegative rationals

-131 -

and atoms in { z, | n > 1 }. This program has as its least model p the valuation
p(z,) =0 (21,

but any naive, finite evaluation of the program will fail to find this.

However, given a set of inequalities we can permit as our semantics any decision pro-
cedure for solving inequalities such as [9,19,49, 83, 84], or procedural semantics can
incorporate this procedure. This idea has been exploited nicely in the *Constraint
Logic Programming’ scheme [47,48], notably its implementations in CLP(R) over the
real numbers, which incorporate an incremental simplex constraint solver for logic pro-
grams augmented with linear equality and inequality constraints. Using general con-
straint solvers could permit us to handle both of the problematic programs above.

-32 -

4. Examples of Partial Order Programming

To gain some understanding of how partial order programming can be used, we give a
sequence of different situations in which it arises naturally. Many of the examples
here have direct applications in modeling of systems. Also, many of the examples
here can be solved iteratively, by relaxation. The relationship between partial order
programming and relaxation will be investigated later.

Some of the examples given below are more naturally stated as maximization problems
than as minimization problems. For every maximization problem, however, there is an
equivalent minimization problem. Given a maximization problem using the partial
order 3, we can simply ‘‘reverse’’ the partial order to give a new problem whose goal
is minimized where it was maximized by the original problem. This is only a conse-
quence of the fact that every partial order is a binary relation with two possible direc-
tions for extrema, and the direction called ‘‘minimal’’ is arbitrary.

Formally, if 21" is the reversal of =l defined by
wd" v iff v Ju

and <B,C,D. > represents a partial order program using the partial order 3, then the
problem

maximize G
subject to <B,C,.D,J>

1s equivalent to its reversal

minimize G
subject to <B,CDJ >

Every constraint v 2 u of the original problem is reversed to u 2 v, so maximal values
under - are minimal values under 2°. Below then, problems are stated in the most
natural way.

4.1. Mathematical Programming

Many problems can be modeled as mathematical programs, systems with objective
functions and collections of inequality constraints. The nonlinear programming prob-
lem

minimize Jx)
subject to gi{x) 2 O
(1<i<m),

requires the functions f and {g;} to be real-valued, and uses f to define an ordering
among feasible solution vectors x satisfying {g;}. When f and {g;} are linear func-
tions, we obtain the linear programming problem in canonical form

-33 -

minimize ¢ x
subjectto Ax 2 b
x 20

where ’ is matrix transposition [74]. Mathematical programming has countless applica-
tions, including, as a simple example, most spreadsheet models.

The similarity between these problems and partial order programming problems is
obvious. However, there is a significant difference: In mathematical programming the
objective is real-valued, and defines a toral order on the space of feasible solutions. In
partial order programming, goal objects may take on any value in a partial order.

This difference is significant for some problems. It is evident from the popularity of
linear and nonlinear programming that in many cases a real-valued objective function
is just what is wanted. However use of an objective function is sometimes artificial.
This is certainly the case when there are multiple objectives, or hierarchical objectives
[51]. Multiple objectives frequently arise in problems involving value, utility, or
preference, and in situations where multiple decision makers cooperate. For example,
the problem

minimize f{ Cost, CompletionTime, Shoddiness)
subject to C(Cost, CompletionTime, Shoddiness)

where f is some real-valued objective function and C is a set of constraints, seems
inherently more artificial than the problem

minimize <Ceost, CompletionTime, Shoddiness >
subject to C(Cost, CompletionTime, Shoddiness)

which requests a/l minimal (Pareto optimal) solutions under the 3-dimensional vector
partial ordering of domination. For example, we have the domination

< $1000, 20 days, failure rate 0.1 > < < $1500, 48 days, failure rate 0.2 >

but the two scenarios

< $1000, 48 days, failure rate 0.2 >
< $1500, 20 days, failure rate 0.1 >

are incomparable, i.e., neither dominates the other. Where the first problem maps the
three attributes of interest into a number, the second leaves them in a partial order.
Often it is not obvious why there should be a single number determining the desirabil-
ity of feasible solutions. (Why should apples be better or worse than oranges?) The
entire book [51] works at formalizing situations in which real-valued objectives are
reasonable.

Partially ordered value domains introduce the possibility of using structured values in
optimization problems. These values might enter as algebraic expressions specifying
bounds on unspecified parameter values as done with CLP(R) [48,55], or as

- 34 -

explanations or justifications (histories of derivation, qualifications, or endorsements of
values clarifying their accuracy or sensitivity). To some extent structures can be
encoded with numerical parameters, and this is certainly done in practice: for example
sets are encoded as collections of 0—1 variables, and certainties are encoded as con-
stants. However it is worthwhile to represent structures directly.

4.2. Linear Algebraic Systems
In the linear program

minimize cu
subject to Au 2 b
Au £ b

where A is a square, non-singular matrix, the solution u of the constraints is uniquely
determined. Elimination methods are commonly used to solve linear systems, the
Gaussian and Gauss-Jordan elimination methods being the best well-known.

Relaxation methods are also used for some problems. Probably the most familiar
example of a linear system solvable by relaxation is the finite difference version of
Laplace’s equation

Let u; be the solution of the discretized approximation to the equation. The discretiza-
tion is given by a rectilinear grid G, with boundary conditions defining # only on the
boundary points of G. Numbering the points in G as {u, ... ,u,} arbitrarily, let
left(d), right(i), up(i), and down(i) give the neighbors of node i in the interior of the
grid:

upli)

lefii) « wi = right{i)

downl(i}

A node i on the boundary of G takes on a boundary value u; = b;. Each node i in
the interior of G satisfies the constraint
Wion(iy T Upighe(iy + Hup(iy + Udown(i)
u; = .
4
The problem is to find values for uy,,u, If we define the coefficient matrix
A = (ay by
174 if i is an interior node and j € {lefi(i),right(i),up(i),down(i)}
4y = 0 otherwise

- 35 .

and boundary condition vector b = (b;) by
u; if i is a boundary node
b = 0 otherwise

then the vector u = (i;) satisfies the matrix equation u = Au+ b, and hence both
uzAu+bandu < Au+b.

This vector constraint may be solved iteratively [45]. Specifically, given any finite ini-
tial values for the interior nodes, the equation above may be used as an assignment,
u:= Au+b. Since A is positive, the function f(u) = Au + b is monotone, and since
A has spectral radius less than 1, the iteration always converges (though possibly in an
infinite number of steps).

4.3. Shortest Paths, Path Problems, and Dynamic Programming

Let G = <V,E> be a graph with vertices V and edges E, such that for each edge
<ij> € E there is a cost a;; 2 0. Each node i is assigned a path distance cost u;, which
is the swm of the costs of edges in a path between node i and the source node 0. The
single-source shortest path problem is then to find the minimum value for each u; [74].
For example, with the graph

Us U3 U
6 1
1 2 2
2 7
Uy Uy Uy

the shortest path from node 4 to node 0 first visits nodes 2, 3, and 1, having total cost
uy = 24+2+142 = 7. For simplicity, the domain D of values and edge costs here is res-
tricted to the nonnegative real numbers.

The requirements on the path costs can be expressed as the following partial order pro-
gram:

minimize <ug, . .. U,>

subjectto 4, 2 O
¥, 2 min a;+u (0).
' ogjen 0 4 (=0)

Assuming that the g are nonnegative and that we are given suitable initial values for
the u; (such as +eo), and we fix u; at (), then repeated execution of the following
ALGOL-like program may be used to find a solution:

u; = min a; + U,
! oggn 0

- 36 -

For example, with the graph above execution of the assignment statement above for
the variables up, uy, U, Us, Us, Uy, Uy, Us at respective times #; < ... < fg would produce
the following sequence of value assignments:

Time
Object ty 4 Iy I3 Iy 15 7 t; Ig Iy
Uy 0 0 0 0 0 0 0 0 0 0
Uy 1 4 1 2 2 2 2 2 2 2
Uy 1 7 7 7 7 7 5 5 5 5
Us 1 4 1 L 3 3 3 3 3 3
Uy 1 4 9 9 9 9 9 7 7 7
Us A L A 1 4 9 9 9 8 8

Assignments are marked in boldface, and the symbol _L represents the initial value
+o0, The values after 75 are unchanged by further iteration, and give the desired shor-
test path costs.

The ALGOL-like program is coincidentally a program in the recently developed
UNITY (Unbounded Nondeterministic Iterative Transformations) paradigm [22]. A
UNITY program is a collection of declarations and of assignment statements. Inspira-
tion for the paradigm came from studying difficulties arising in spreadsheet computa-
tions. Assignments can be single, as with

U =v
where u is a program variable, and v is an evaluable expression, or multiple, as with
U, « ol =V, 000,V

These assignments in a program are executed atomically but nondeterministically, in
any order, subject to the fairness constraint that every assignment is executed infinitely
often. UNITY is thus a paradigm for expressing loosely-coupled parallel and distri-
buted algorithms.

Results that are related to the method for solving the shortest path problem above
appear in [89] for path problems. The single-source path expression problem is to find
regular expressions u; specifying all paths from node i to the source node of a graph.
The problem may be expressed as follows:

minimize <ug, ... ,U,>
subjectto uy, 2 (g}
u; = (. aj; « U (1?‘50).
Jj adjacent to {

Here a; is a symbol for the edge between nodes i and j, U is union, € is the empty
string, and ¢ is concatenation. While iteration does not solve this problem, since it
does not reach a solution, we can reformulate it as an all-pairs shortest-path problem
that can be solved iteratively. If u; denotes the regular expression of all paths from

node i to node j, the problem becomes

SO[ELIEA JO UOmOAMOd B ST 2y ‘Ajeumod C[p6°6L‘LLOL 89 ‘6S ‘Tv O]
pasiadsip ST oImyeINI oyl CSIUTROSUOD JO 198 USAIS B SOUSHES 1Byl Avm ®
UI SO[QELIBA 9U3 O} S[2qe[USISSE 01 Y90S DUk ‘SI[QPLIBA JO UONII[[OD B PUR S[aqe] JO 138
e s uifaq ‘swafqord uonorjsIes JUTENSUOD PIf[ed osfe ‘swajqold Surjaqe] WSISUO)

SIIOMIIN JurenIsuo)) pue Jurpqe] judsisuo)) jewxoiddy “pp

U>n Ul oy M g Ty ﬁ?{ﬁ z T
a ! <
0 =2 'a o01109(qns

Yy ozmumuTUx

rwarqord Sururuieiford 1apro [enred Suimor(o] a3 se

1585 2q ueo vonejnuuoj SurmuerSord stweudp suotouow sy, fw Aq fx - xy
1onpoid wejqordgns oy Suioy Jo 1509 ewndo) Jjoudp [> 1 AeDIQIR O] PUB ‘SUOT]
-gondnnw duse 2q soomew dxw AQ wixu SurAdnpour jo 1500 o1 197 [Il ¥S1S]
Yux177y suorsuswip Jo ximgew e Sr gy araym Yy x ... x Ipy 1onpord xmmew oy
Suruoy Afewndo Jo waqord umou-[jam oyl IIPISUOD ‘SSAUSAIDUOD JO IYBS O} IO
*Aidde o1 LAnpewindo jo ordound s uswj[ag 0] JUIOYINS

st swarqordqns paulquiIod Jo 1500 Iyt Jo Awomwolouoly (woiqoxd syred-1so1roys
AP ur oIe A9yl SB) Juolouow are) [[e usym uonerdr jurod poxy Yilm IQBA[OS SI

msis ¢x - = x o1100(qns
<Uxt eIy sznunuTwa

wajqoxd Sumunueidord srureuAp [ersusl oul 1Y Moys [ge] TPMEN
pue ‘ueuRIUOl ‘ISauUn) ‘swajqoidgns pue swajqord usamiaq sdiysuonerar yed sougop
yoroadde sanonpar styy, ‘swejqoidqns su jo suonnjos [pwndo Sumnquiod £q psumiqo
aq wRqoxd ® jo uonnjos rewndo ay ey sae1op | Anpewndo Jo opdiound,, s uvwijeg
‘Sunuesgord omweudp ul csworqoid yied o1 porerar ospe st Sumaupidoad onuvudg

‘wd[qoxd uorssardxa yred syl 01 swapqord 3s3yE JO Yyord saonpar ay snyj, ‘[68] W
-qoxd uorssardxa yyed ay) 01 suonnjos jo safewr oswdiotwowoy are jeyl SUONN[OS JARY
— swesfoud zandwos jo sisAeue mopg 12qo[3 Suruzopad pue ‘suonenbs redury Jo swal
-sAs osieds Suiajos ‘syied isauoys Surpuy — swerqord jo L1ouea ® eyl smoys uelme]
((P—1)/1 = xP 91 PINOYS SUO SUTBWIOP JLIdWNU U()) ‘4 I10J uonuysp aeurdordde aip
uaA13 Sunoard noylm UONBUIII[Y UBPIOf-SSTBD) O JudeAmnba st yorym ‘[£¢] wyirode
2INSO[D JANISURL JUIIY-PAOL-[[BYSIEA dYi 01 Paje[al A[Ied[d> SI UOIR[AULIO] SIJ,

¥ 01 3uaoe(pe [
1 01 Juaoelpe ¥y

O#) e Pmye™n A c
(3} & ®Wn o110gns
<Wp - Wps> ozmumum

LE

{uru} x fw's] — yxy 3 <1'g>

{as}x {qu} x {qu} - vxvxv > <1'0'g>
{u) x {su} - vxv > <W'a>

{fu} x {su} - vxv 3 <F'q>

{qw's} x {qur's} x [qu} - vyxVyXxV 3 <W"T'Q>
{wu] x {q} - vxv 3 <d ‘D>

{wu) x {u} - yxvy 3 <q'g>

{q's} x {ursu} x {qur's} - yxvxV 2 <g‘D'd>
{a} x {su} - vxv 23 <1'D>

@ x {su} - vxv 3 <q ‘0>

(w'su) x (ursu} x {[Qu} - yxyxy 3 <1'd'D>
{wu} x {ur's} - yxvyv 3 <D 'd>

{u} x {wru} - vy xvy 3 < ‘D>

{qurs) x (@'} x {q'u} - vxvxy 3 <D 'E>
{fa} x {su} - vxy =3 < ‘g

{u} x {s'u} — vyxv 3 <d'gd>

{wis'u} x {q'ur's} x (qu} -~ vxvxv 3 <p'Q'd>
{urs}) x {wu} - yxvy 3 <1'd>

furs} x (wu} - yxvy E] <) 'g>

{qu} x (qu} x (a5} - vxvyxv 3 <190'd>

Hze) W T'aD'g swalqo ay 103 wapqoad Surfaqey 1udlsisuod Sul
-MO[[0] 911 01 JuareAInbo are (¢)-(1) surensuod uay *(,yloq, pue ‘ Ajuo preisnur, ¢ A[uo
nes, ‘. Joyeu, JoJ) {qQurs‘u) = v 195 B SB puolyy yoeo Joj sanipqissod ay) juasardar
M 31 "soEl PUSLY UOE3 SIUSWIIPUOD 9 JO YOIYm SUIULIRRp 01 St werqoid oyl

2u0 A[UO $93B) XI(J JO 07 I JJT pIeisnur Syl JIA
‘Slusunpuod yioq saxe) Sue 1o Aureq Jeyne JiT)Es saxe) [N (S)
"I9IIoU $9E] [[TA IO 9]0D) JAPIQ JII pIeisnw soye] Suey
QuAupuod U0 ATUo $3@] XI(] JO Aueq DN IJ1 ifes soqm Suey ()
“IDUIIU S [N JO SueT J9YTe JI1 PIRISnW S9¥E) ¥I(T
30q s9YE] 2[0D) JO JUSWIPUOD JOUU SyE] AIeq ISP JJ1 s soye x1iq (£)
‘1o soye) JueT J0 XK JAYND JII pIRIShW $OXE) 9100
{1o1I10u Sae) [[TA] 10 JUWIPUOD U0 AJUO SR AuRg I [I Ies SR 2100 ()

"10q S93e1 [[IA JO JUSWIIPUOD ISIIOU Soyel XI(] JOUIe JJI pIeIsnU SoyB) Alleg
‘STUSWIPUOD 2Ul JO U0 AJuo sayel SueT Io 9[0) Jayne I IEs soym Aueg (1)

:91qe) 12y Je s1eadde Jooq ISAdUAUM SiuTenSuOd SulMor[o) Yl £q apiqe o1 aude Aoy
I2ITOU JO ‘Ioq ‘PIBISTUU ‘J[ES — [BW JI9U) UM SIUSWITPUOD UTEIIaD 9YEl pue ‘ourp
0] A[IEp 120w OUM SPUILL 2B [[IA pue ‘Sue ‘Xi(q ‘910D ‘Aueg ‘[¢1] weqoxd piey
-SNJA] PUE I[BS,, S,[[01re)) SIMYT No1d 9m 210U 9JeNSN([I O], PA Auowod a1e sdew
reuepd yo Suniojos-moj pue waqoid susanb ¢ Yy 1nq ‘suonesydde [ear Auewr are 212Yy]J,

"SIUTRNSUOD Y} JO
[[& sogsnes Jey) SI[QELIBA 0) S]2qe] JO USWUIISSE UR “9°1 ‘SU1jaqD] JUISISUOD B q23S IM

Hy

.Itd 3<'"_In:...:l.1n>
UM SIWTI2TWIOS ST JUTeNSUOD
e I?C[Qwogp’ald arensuo) aygy 20utg

u

20 ‘(UOTIBIS.I 'B) ¥V JO 198(NS B SB PaMOTA 24 ued - '
.("‘?nc PN ;I_rn)'“_z . I_;d,

sareorpaxd
UIEDSUOd arxe axayl ‘p T w (w7} S (M- - - ‘I1} sootpur Jo siasqns pagroads
104 ‘V S[eqe[JO 19§ AIUY 2Y) JO SIIQUISWT Ylim PI[aqe] oq ued ey {#¥ 515 1|0}

-86_

W
1
a
D

uuuuu

ce g o0110[gns
<WTAD'g> szruixewr

rwe[qoad SuruureaSold Japlo [ented € se pajels Arisea st wapqoad mou Siyg

(W) > ({(wu}x{q} - vxVv)

W XTD x ({a's}x {wsu} x {wsu) - yxvxv)
(1 x ({wu) x {w's} = vxV)

(IXA@ M as}x(qu} x[qQu} - VXVXV)
(@ »q ((wu}x{u} - vxV)

(a@x) » (a's) x {wsy) x {quws} - yxyxy)
(O »q ({uu} x {ws} - vxV)

X2 » ({aus)x{q's} x(qu} - VXVXV)
) » Ha}x{sv} - vxV)

(@ »q ({u}x{su} - vxvV)

N x@ > (fwsu}x {qus) x {qw} - vxvxv)
(T X ({ws)x {wu) - vxV)

(D) »q (urs}x {wu} — yxvy)

(Tx2) » {{qu} x{gu}lx{q's} - vxvxy) 3 g

:9Y1] SY0O[Axrreq] 103 Jurensuod pareredas ays “yq se Iy Funum ‘srdurexs 10,

cccCcgCcCccocececceccecccc

.{n3<wxc...t[+2[x-‘[-—7[x¢...:[b pu’eda(wx‘“"lbqu:} = n:[Xd.

Aq pauyap s1 ‘uonerado uroflwas-, ¥y syl Tyq aroym

“y T+

-,
mMx ... x Tmx !

Mx ... x) Py

4y

ety 500

‘n

uTensuos |, pajeredass,; oY ‘W PUB [US3MI3Q ¥ YOI I0J ‘SA0IS]

w_:...T_rd 3 <'"_!n(. .. (I_!n>

uUTRNSUOD Y1 ‘S[eqe] 2nbrun Jo peaisut

S[aqe[JO $195 ylm pafeqe oq o {'n} safqo oy jmuaad sn 197 msjqord Sumuunels
-01d xap1o [enred e 01 worqord 9yl 1AAU0D 9m J1 ssaooid uonexe[al B Aq |, P9, 29
1SIg ued S3UI[aqe] JUASISUOSUI AUt JaAamol -saniqissod (e ySnomp Suryoenyoeq
UBY) IOyl ‘9A0QE SIUTRNSUOD 3Y) 9A[0S O) paln oq p[nod Suraqe] Ioj sonsunay AUy
"A[UO pIeisnuw JO 1[BS JIYIID S9ET 3[0)) Uaym A[UO pIBISOUI JO JUIWIPUOD OU IIYPII N8I
0] Aureq SPIQIOJ JUIBISUOD PUOIIS I, 'YI0oq 10 Iatau axyel Sue] pue [0 uaym I[Es
a3e} 01 Aureg SPIqQIOJ JUTRnsuod isiy 2y ‘oidwexs 10, -spuauyy Jo sied 10] 10 spuatLy
Jo sordm xoy Iayid sSurpaqer Surpprqioy ‘Aray SIUTRNSUOCD JO SPUD OM) IR I,

{s'u} x fu's} - yxy 2 <HW'a>

{(su} x fw's) — yxv 3 <N D>

{Qu} x {qu) x {[qu} - vxvxVv 2 <KN'dD>
[uru} x {q} ~ ¥y xVy 2 < 1>

fwul x{q} - vxv >3 <KW 'g>

{q's) x {w's'u} x {w's'y} - yxyxy 3 < "1'g>
{u} x {s'u} — yxVv 2 < “I1>

{su} x{u} - vxy = <T'D>

{quw's} x {qu} x {qw's) - yXVyXxXy 2 <KW'TD>
[wu} x {w's) — yxy 2 <7'a>

_6€-

se Ainperousd jo diysuonerar STyl SILM S\ “PIY) U} IO PUOIAS
aY) IOy Ueyl jpLouad asour St 213y uoissardxs adA) 1s1g oy -suoissordxs odAy arm

((uihisylisy ((Z'X)aodpsy (XIsi
‘opdwex 104 (" ‘7 ‘4 ‘X) Seiqeuea adA) pue
(1pd ‘3577 ‘U1 Se UYons) SIOONISUOD 2dA1 WOIf PAlonnsuod suue) are suorssardxd adA
‘suorssardxa adA1 urewras 320w 03 ampadsord 2yt jo siudw
-n31e oyl Sumomsax Aq suop st syl ‘sampesord oyroads Aq pojpury AJemoe sadA)
oyl uo axmonns asodwr o) spqemsap Aqensn st 31 ‘swerdord Sojorg o8re] Surdopaasp
uyp swral adA1 o18uis v Auo ynm a3enSuel e se pougdisop sem Sojorg ‘dsr1 ovry

uonjejaadidjuy Joensqy pue Jojoag Joj duasdyul adL I, owqdiow o ‘< p

"NIOMIU JUTRNS
-u0o & Aq patewnrxordde og ueo worqord Suroqe] 1UNSISUOD AUE TRyl SMO][0] 2I10]9IdL
1 WOl STyl Jo sjurensuod Areurq z/(1-udHw o) Aq paeunxordde aq ued waqord

erouaf oyt ur 1o g urensuod Are-ws oy 1yl [g9] S10ULIAYLING 1Mo sjutod LRUBIUOR

1=
g U [-fnx-f-’vu S 'm o11000gns
1

<un; PR 1In> QZImEX'Bm

waqord SunuuweiSord 1apio [enred
1 pue ‘109[qo yoes uo UENSUOd J[3UIS B JAIS O1 PauIqUWIos aq UBD SIUIBISUOD 959 J
{nursidpue‘vursi<fx>|x} = nyp aym ‘yderd o ur <fr> ore yoes 10J

Myl 5 m

Surensuod oae, pue ‘1 yora 10j

'q S n

Siurensuod apou, 01 12{gns a1e s1alqo asay], s[eqel si Sunousp 'z 103fgo uw ed
-osse om ydeid e Jo 1 apou yoed 104 wAqoId ysomMzPu JuIDAASUCD Y] PI][BD SIWNIUOS
ST 11 aroym ‘sydesd vo oom Apemmonged st woarqord Jurpaqer 1ws1suod aeunxordde g

‘Burno pareadar op o1 anbruyoa yoreas v Yim
pordnos oq ued 1o ‘wajqord reuiSuzo 2yl Ioj jutod Sunreis B se pasn 2q Usy) UeD NS
o} pue ‘UonIN[OS dATBIAN siuIad siurensuod pajeredas yim worqord sjewxordde oy
1ey) st jutod oyl ‘reaamof] [#1] osre st uonewrxoidde sup ‘a1oidurod-gN st woqoid
Burreqer juaisisucd ewiduo oyl se snl ‘moN Csiutensuod pajeredas 2yl Ajsnes ey
s1os Suraqe] [RWIXEW JO UONRUINLIAED 2aneial sjuad wajqoid ayy Jo uonewrxoidde
sty ‘erouwoyun,g c, uonvwrxordde,, Siy) 01 uonN[OS 2yl Ul PaUTBIUOD aq [[IM W[
-qoid ewiSuo o) Jo uonunjos Aue jeyl S1 swojqoid JO UOTIBWLIOISURN STY) JO 2IME3] Y

"sjurensuod pajeredos oreudordde oyl are sorgua . . . Ayl A1Aym

-OP_

:S9SI
-waid od£1 Sutpuodsaizoo oy pue ‘suco pue [wu Joj sadA1 yum uidaq am Jeyl SWNSSY
Ao JO 9Yes
o1 10f [T] pue [] uowiod arow 3yl JO PealSUl SUOD PUB [IU SIOIDUNJ 911 2SN IM
(€71 ‘71 ‘TDpuedde — ((TX)su0d ‘77 (17 X)sued)pusdde
(1 1 ‘pu)puadde
;werSoxd Sojorg Summorrog ayy 1oy SurdLi-[rom e puy sn 397 ‘ojdwrexs 104
-ojeorpaxd oy Jo Surd£y sy s£aqo dreorpaid B Jo asn A19A9 ‘SurdAi-[om e uf

.<uoc....-[_o> E <u1r...1[1>

£3snes 1snw SutdAy sy ‘asned oyl jo dpog sy ur st (M1 - ‘Ind wayp (7)
‘aeorpaxd sy jo SurdXy sy qimm saas8e asnep A19A2 ‘BurdL)-Jram e ug

.<u1:...c[l> E <ND:...c[D>
<!l.0(.. .('[D> E <lll(... l'[l>
A3snes isnw Furd£y oy ‘asnero oy Jo pray oy st (1 0 - ‘Ind uaymy (1)
:ugm s'llJt P :'[1
sjuswngre ay1 o1 Yo - v - ‘lo sadfy sudisse pue d 105 <2 - ‘la> 1 d ssmward odfy
sey SutdA1 oy I "4 Jo asnepd ® ur arsymawos Suureadde syuawndre pue ajeorpaid v og
(1" -+ “Ipd 197 'suonipuod Surmor[o} syl saygsnes 11 J1 Surddi-gram e st 4 Jo SurdKy y
Y
[Hly ¢ Uye v - Iy :f
<> id

se A[9ATI0odsar wanum ot sostwiard asayy, "4 JO Q[qE

-LIeA pue ‘orouny ‘aresrpaxd yoses o) uum 2dA) e Jurudisse sasnuasd adqy pue ‘g ur uLa)
-qns pue uud} yoes o) adA) papualxa-ucu e Butudisse Swawyopnup 2d<1 Jo 108 B JO SISTS
-u0o g jo Juid£r e ‘g werdord B usai) -suorssazdxe odA1 959yl uo sanienbaur jo 198
€ Jo uonnos 0} saonpar urerdoxd Sojoid v 105 9ouaragur adA3 moy umoys sey [¢Z] noy)
*(1oviut © Sutaes] pue) g1 Aq 2 Suroerdar uay ‘@1 = go IBY) Yous

g uonmusqns [exeudd 1sow & Surpuy Aq payfsups 9qQ 210J2I9Y1 ULD 1 £ O JUTENSU0D YT,

"2 = @O 1Y) YONs @ UOTIMITISQNS B SISIXd 213l JI 2 & O

:suonmusqns

JO SULId Ur pauyap 2q ued suoissardxo odA) Buowre Arrersusd jo Juuopio reured ayyj,
'sad£) 2satp jo e uo

‘uonduwmnsqns Jo ‘Ajerouad jo ropro fenred oyt 2q 01 & puoixs pue ‘g pue {1} sadky
toAld My <t Tas pue <400t ‘Tax sodA) popuaixa, sonponur OS[R 9M

((uisypsy & (xXhsy
‘Wz x)aodjisy £ (X)hsy

Iv

JuSUIISSE 2Y) 18 2ALLE A[[ENIUSAS am ‘urede (7'7D) Surxeral
pue um ur way Jurxe[day "paysues jou are (¢'zD) pue ‘(4'zD) ((€'70) (1'7D) MoN

<H'D'd> £ <IqQ ‘Iq (11)psy> (€7D

[—<H'T> £ (IFsy e <(Lisy'L> rzo)

[<dTd> £ (Disy e <(Ihsy'L> (€7D
<rqraq(rrhsy> g <fDI> (T2
<fODI> £ <Ia ‘1q (rrhsi> (1)
<I1q‘1q (rpsy> £ <@ ‘q‘(Lhrsy> (T10)
<q‘aq‘hsn> £ <1q ‘1 (1Lhsy> (1'10)

:0] POULIOJSUET] OI SJUTRNSUOD Y} pue

‘ra =D ‘@ =g LSy =y
uopmusqns Y1 urelqo am (' 10) Sumxerdy ‘senienbour oyl AJsnes 1ey)
suonnnsqns J[qeuea [erouad jsow Jurpuy “a71 ‘way) Surxepar,, Apawadar Aq sjurens
-U0D 982U JO UONORJSTIES 90I0J UOJAIAY) I\ ‘lou are ($'ZD) pue (£70) (T1D) Mg
paysues are ($°zD) pue (7'7D) (1°70) “(1'10) ‘werqoxd s1yl jo sanienbaut oy Suowry

(§7O-(1'1D) 01 109(qns
<D'g'v> szmuixew

sny} st yeorpaxd
puadde ay) 1oy Surdfy-[om erouad 1sowr oy soumuap eyl weiqord Suruueidoxd
1op1o tenred oy], -suorssardxaqns JO] PIdNPONUI SUMOUNUN 2I0W OM] 2I® £ PUR J 3IS]

<H'D'A> £ <D ‘g y> (€°20)
< <g'g> £ (Ihsy e <(psy‘r> a#e))
[e<d'd> £ (Ihsy < <(1hsy ‘1> (€£7D)
<J‘g'v> £ <f ‘DT> (TTD)
<fOr> ¢ <D ‘g ‘v> (170
<D‘g'v> £ < ‘d (Lnsi> (Z'10)
<q‘q(msy> g <D ‘gv> (1°10)

SMO[[0J SE Paurensuod uayl ae g7 “- ‘g ‘y sadA) umouun ayjJ,

H |

D T

A ‘11

q 'X

a 38 |

<) ‘g‘v> puadde

(Ihsn « <(Lhsy ‘1> : SUOd
(Lhs « T

Z-P

o “Aqreogroeds 'wesSoxd 1opio fenred e Jo SjuRNSUCD Y UWLIO] SUODINPAI ISAY],
(bvd)®((bvd)-vd) « (ba(bvd)-)vd

:8uimorpog 2yl se yons ‘s109lqo a3 Suowre

diysuonrerar (uoneoymdwis) uononpar e auyap SoNI 2yl ‘sejqeurea Teuomisodord jo
(B*d) 195 ' I2A0 = ‘= ‘C ‘A ‘v SurAfoAul suorssardxs Jo 195 o) asn am g1 ‘opdwexs o4
‘suotssaxdxo uwsjoog uo sanenboul JO BWIOYOS B JuUyIp SIINI NLIMII ISAY) ‘JUNOIIE
ojur uayel siojerado) Jo AIANBIOOSSE puB ANANBINWIIOD YIIm ‘JByl SI BIPI 9YJ,
‘101e12d0 JO-9AISUOXI, A1) ST

& pue ‘as[ey ST T ‘9nJj st | “o130] AIeurpIo sI v1qad[e uws[oO¢] Yl 2IIYM 3SBD O U]

ZvXx) & Uvxy) ¢« oD VX
T < TVX

X ¢ Xvyx

X <« 1l vy

T ¢ Xe Xx

X & T & X

L& x « X

1l ® 16X <« A =X

1 &xXx6 UV & A CX
AD® XD UVY) AANX

‘vIqa3[e uearood ® I3A0 suolssardxa SurAndums 10y pajuasaxd st semu
LML JO 195 SUIMO[[O] 9yt a1dym ‘[t ‘cp] ut ordwexs ayy ropsuo) [96] ST Jlom
U021 JO AIBUIUNS UMILM-T[o4 ¥ ‘uoissaxdxa ‘poarrduns jnq “uafeamnbs yayjoue o1
uorssaxdxs ue sonpar 0} pesn A[eo1dAl aIe 1B SI[NI JO SI195 JO ISISUOD SWIAISAS 21IMIY

uorPNpay pue SunLdIyY 9P

‘uonelaxdiour 10enSqe se paunoyrad 3q ued | UOIOI[0D
afeqred owm-oridwos,, moy smoys [g1] os[y uoneraidisiur 1oensqe Yim paurelqo
2q ued (samonns Jo Juueys ‘Adeuruudp ‘suoneredap spow) sweiord Zoord moqe
UOTIBLILIOJUT [nJasn JO Teap poo3 e moy umoys st 1 [9g] ur ‘ojdwexs 103 -Surwwerdoid
91307 UT 150197UT UMBIP sey 102[qns oy Apuoeosy uonelaxdiajur 10ensqe Jo sased reroads
a1om 9)2 ‘voneurwrs) weisord jo jooird ‘sjuerreaur weiford Jo AISAOISIP ‘SSUIDAII0D
wesSord jo uvoneoyuaa ‘sisAeue soueuuoprad weiSord ‘wvoneureas wrerford oroq
-wAs ‘Sunsoy werdoxd ‘Suppooyo odLy ‘sisATeue mopeiep [BqOIS MOY PIMOYS SI0SNOD)
oyl ‘soded [eurwes mayl up csweaford JO JOTABYIQ UONNOIXD SUIZLIdORIBYD JO §599
-o1d Teroua8 v ‘wouviaidiaruy 1ov415go jo pury ardus e st werSoad e 10] doudrayur 2dA T

<L)y (Zhsy (LS >
2q 01 pauajul A[Surpuodsarios st puadde
Jo 2df) ayy -uomnjos @ IS (Lsy =1 D (I)sny = g (I)sny = y swuamudsse
oy “‘uayy ‘warqord Surmuerdord yapio rented sup 10 -sanienbsur syl Jo (e Jurfysnes

(sihsy = D Ysphsy = g (SIhsy =y

-gv-

- 44 -

objects are the Boolean expressions, and the values are irreducible expressions, expres-
sions on which no rule can be used. The constraints are all the inequalities # 2 v such
that # — v, and the partial order 3 on values is therefore trivial. For example, if C
represents all the reduction relationships # 2 v among objects, the problem

minimize pA(—=(pAg)®q)
subject to C

is solved by assigning the goal expression pA(—=(pAg) ® q) the (irreducible)
value p. This follows from the following sequence of reductions:

pPA(~(pAg)®q)
(pA=(pAg))®(pAhg)
(pPAN(pNg)®T)®(pAG)
(pApANg)B(PAT N®(PAG)
(pAg)Y®(pAT)®(pAg)
(pANT)

p

The rewrite system here has nice properties. First, it is confluent, i.e., any sequence of
reductions ultimately will produce the same result (up to associativity and commuta-
tivity of A and @). Moreover, in [43] and very recently in [11] it is shown that this
system can be used as the basis for a complete first-order logic automated theorem
prover. (A system based on {AV,—} cannot, as ‘‘minterm’’ representation of expres-
sions is not unique.)

Lidlill

Traditionally rewrite systems are given a model theory obtained from some equality
relation. It appears that frequently this reliance on equality can be replaced directly
with inequality (reduction). Where the equality relation incorporates the axioms of
symmetry and substitution of equals for equals, the inequality relation uses antisym-
metry and ‘‘substitution of lessers for greaters in monotone contexts’’. Since equa-
tional systems are often intractable computationally, this approach may provide some
useful results.

4.7. Logic and Lattice Programming

We noted earlier that all logical implications are inequalities, and that the logical
implication P «- Q is equivalent to the constraint “‘truth(P)” 2 “‘truth(Q)’’. With
this insight we can view logic programming as a kind of partial order programming.
Horn rules are inequalities: the rule H <« G may be written as H JG. We will work
this out in detail later, but basically here our objects are predicates taking values over
the lattice {true,false}, and the familiar A and V operators are the greatest lower bound
and least upper bound operators on this lattice.

We can capitalize on this insight by permitting predicates to take values other than
true and false. This generalizes logic programming to take on a functional flavor,
For example, we can write the append predicate functionally as

- 45 -

append([], L, L) 2 true.
append([X|L1], L2, [XIL3]) 2 append(L1, L2, L3).

so that the object append({a,b],[c],[a,b,c]) will take the value true. We could also
write the predicate as

append([], L} = L.
append([XIL1], L2) 2 [X | append(L1, L2)].

so that the object append({a,bl,[c]) will take the value [a,b,c]. The scope of the
approach can range from an implementation intent on exploiting Prolog such as
[33,71], to a slower system with more general reduction capability.

A useful application of this approach is given by van Emden [34], who investigates an
extension of logic programming in which the semantics of a logic program are general-
ized from true-false assignments to assignments of real values between 0 and 1, which
can be viewed as representing some kind of certainty factor. The quantitative logic
program

«050- b&f
«050- c&d
«0.20-

«0.45—

«0.30-

+«1.00-

«0.50-

«090- e

a0 oR D

has semantics assigning the object b the value (greatest lower bound) 0.20, ¢ the value
max(0.45, 0.30) = 0.45, and a the value

max(0.50 * min(0.20, 0.90%(0.50)), 0.50 * min(0.45, 1.00)) = 0.225,
because the ‘&’ operator is defined to operate like ‘min’ and different clauses are com-
bined with ‘max’, with the various attenuation factors multiplied in. Thus the goal

< a will obtain the value 0.225.

The corresponding partial order programming problem makes the semantics of this
program evident:

- 46 -

minimize
subject to 0.50 * min(b, f)
0.50 * min(¢, d)
0.20

0.45

0.30

1.00

0.50

0.90 * e

b N S~V T S S~ R N
MIVINVNIVIVINVIVIV

This equivalence has been noted independently by O’Keefe [73].

We can generalize logic programming to lattice programming by replacing the usual
{true,false} value domain of Prolog with any lattice and its particular A, V operations.
Fitting shows how Ginsberg’s bilattices can be used as an interesting generalized space
of truth values for logic programs [36]. Although this generalization gives no real
increase in power over logic programming, since predicates can always generate values
with a supplemental argument, this generalization does result in convenience in many
situations (reduction computations, inexact reasoning, error handling, etc.), and declara-
tive semantics for such a system may be derived straightforwardly.

4.8. Numerical Iteration

There is a deep connection between solution of inequalities, mathematical program-
ming, ordering, iteration, and computation in general. Suppose that, given a number b
such that 0 < b < 1, we wish to find x satisfying the following conditions:

minimize X
subjectto x 2 1
x 2 x(2-bx).

This partial order programming problem can be solved iteratively. If initially x is
assigned the value 1 to satisfy the first inequality, repeatedly assigning x := x(2-bx)
then causes the value of x to increase until it reaches 1/b and satisfies the second.
(This iteration is often used to perform numerical inversion in computer arithmetic
units.)

Root finding frequently amounts to iterative solution of inequalities. Given a function
f defined over domain D, we wish to find an x in D that meets the constraint f{x) = 0
(equivalently, f(x) = 0 and f{x) £ 0). Often this may be done using Newton-Raphson
iteration

CS VI I)

Iy
with a suitable initial value X9, Specifically, if the initial value is in a region where
fIf’ is non-negative, monotone decreasing, continuous, and bounded by 29, the

- 47 -

iteration gives a monotonically increasing sequence <Y< .-+ converging qua-
dratically to the root. This is then equivalent to finding the least solution x to the sys-
tem

minimize Xx
subjectto x 2 P
2

X x = foo 1 f(x).

For example, with fix) = 1/x — b and D=1 we get the system of inequalities for
numerical inversion above. This equivalence follows directly from symbolically taking
limits of both sides of the Newton-Raphson iteration, using the property of limits of
continuous monotone functions, e.g.,

lim fx?) = fllim x9) = flx).
The iteration we use depends directly on the ordering defined by the constraints. This

can be demonstrated dramatically. Suppose we are given the partial order program-
ming problem

minimize <X, y>
subjectto <1, k> 2 <x, y>.

where kg is a value in [0,1], and 2 is the reflexive transitive closure of the relation
<u,v> 2 <Wu+v), u>

defined on the domain [0,1]x[0,1]. Taking x = 1, y = &k gives a starting value that can
be refined by repeatedly executing <x,y> = <Ya(x + y),¥xy>. Since initially x > y, this
iteration must reach a fixed point, because the arithmetic mean Y2(x + y) and geometric
mean Vxy then satisfy x = Y(x +y) 2 Vxy 2 y. The resulting value for <x,y> is the
least possible under 2

This iteration is known as the arithmetic-geometric mean (AGM) algorithm, and was
developed by Gauss at the age of fourteen. It is a quadratically convergent method for
computing the elliptic integral

do
V1 — m sin%0

for 0 £ m £ 1. With the initial values x =1, y = V1—m, both x and y converge to the
same value ®/(2K(m)) under the iteration.

w2
Km) = |
0

The point here is that the vector inequality for 2 cannot be decoupled into inequalities
on individual variables, and the vector assignment <x,y> = <Va(x+y),Nxy> cannot be
decoupled into the two assignments

A X Lix+y)
Ay y = \fx_y

To establish this, note that the AGM vector assignment iteration computes, for { 2 0,

- 48 -

< xHD D) 5 = < 1D 4), Vxy® 5

decreasing the value of the vector under 2 at each step. However, applying assign-
ments in the order A; A; A; A; A, - - - computes

< xED yD 5 = <y iy \}x(iﬂ)y(i) >
and in this case for m > 0 it can be shown from results in [20] that

1 = 1 = 1 arccosh

lim x® lim y® m

1
Vi-m]
Furthermore, if m <1 and we apply assignments in the order A, A; A, A; Ay -+ -,
then

1 1 1 In 1+ V1V1-m
lim x® lim y® 2N1-1-m 1-V11-m |

This simple demonstration shows how iterations must follow the inequality constraints
of the problem. This is not an artificial example; important similar iterations, such as
the CORDIC iteration [30], yield the same conclusion. It is also evident from the
example that the multiple assignment statements

U, o5l = V..V,

in UNITY [22] are important.

- 49 -

5. Semilinear Partial Order Programming

Many of the examples of partial order programming problems shown above are
somehow linear in nature. This is not too surprising, since almost all of the problems
use only continuous monotone operators, and continuous monotone functions can usu-
ally be ‘‘linearized’’, i.e., transformed to linear functions with some suitable changes
of variables. Also, many of the problems are path problems by nature. In this section
we clarify this linearity using the algebraic framework of semimodules, an elegant gen-
eralization of vector spaces, fields, rings, etc.

Linearity is interesting not only because it provides a new point of view, but also
because it permits us to draw on the vast arsenal of known algorithms for solving
linear algebraic systems. Specifically we can use elimination methods to find solu-
tions, such as Gaussian or Gauss-Jordan elimination, as well as relaxation methods.

5.1. Linearizable Problems
Some of the examples considered earlier have identical structure. The discretized
Laplace equation imposes the linear constraints
Ureni(iy t Urighai) + Uupi) + Udown(i)
P 4
for all points i in the interior of a grid, the single-source shortest paths problem has
least-cost path constraints

; < min(| min a;+u; | ., a;
for i#0, and the (approximate) graph consistent labeling problem has labeling con-
straints

n
u © | MaXy| N b
=1
Each of these three well-known problems is, in fact, a linear inequality system. That

is, for each problem there are binary operators B and R with which the problem can be
expressed as the vector constraint

u &4 A@BRu @b

where ®.R is the generalized inner product available in the APL programming
language, using the infix operators @ for (commutative, associative) addition and B for
multiplication. If X = (x;;) and Y = (y;;) are matrices respectively of size mxa and nxp,
the generalized inner product Z = X 8.8 Y is a matrix of size mxp defined by

"
zj = H xayy

The following table shows that @ is associative and commutative:

-50 -

Laplace’ s Equation Skortest Paths Consistent Labeling
= numeric = and < numeric 2 set inclusion C
H numeric addition numeric minimum sct intersection
& || numeric multiplication || numeric addition relational semijoin

These three examples are not close to being exhaustive. For example, Zimmermann
[95] lists many other problems that easily fit in this framework: path reliability, path
connectivity, maximum capacity paths, k-shortest paths, regular expressions, word
abbreviations, path and cutset enumeration, and certain scheduling problems. The
examples are representative, however. Most published applications of relaxation
reduce either to numeric linear systems, numeric path problems, or symbolic path
problems.

A simple result showing that many partial order programs are linearizable can be
derived for continuous monotone constraint networks, algebraic partial order programs
in which at most two objects participate in any inequality.

Theorem 10
To every partial order program over the complete lattice <D,2> with objects B =
{y; 1 1 £i < n} and constraints

U; = b,‘ 1<i<n,

i

i 2 aij'uj ISiSﬂ,lSjSﬂ,i;éj,

where the a; are continuous functions, there corresponds a nxn matrix A, an n-vector

b, and binary continuous monotone operators 6, 8 on D such that u = (u;) satisfies all
the constraints if and only if it also is a solution of

u 2 A@ERu @ b

Proof Let @ be the least upper bound ||, and let ® be « (functional composition).
Thus & : (D—=D)xD)—D is continuous monotone in its second argument when
its first argument is continuous monotone in all occurrences here. Since 8 is also
continuous monotone, commutative and associative, the combination of the con-
straints is continuous monotone, and is equivalent to the program
uABRu @ b O

5.2. Ordered Semimodules and Semilinear Programming

The result of Theorem 10 is not the most general possible when we can say more
about the coefficients ay. Specifically, when the values a; are taken from a special
kind of semiring, and the objects u; come from a vector-space-like structure matching
this semiring, the least solution of the inequalities has an explicit form. The theorem
below generalizes similar results for ‘‘closed semirings’” in [1,37,57] to take into

account the semimodule structure underlying many partial order programs.

The simple algebraic setting of semimodules generalizes all of the linear relaxation

-51-

examples in the previous section. While readers unaccustomed to the generality may
find it challenging to appreciate at first, it is worth the effort: many important prob-
lems fall out as simple special cases.

Definition
A monoid is a system <R,B,e> such that:

M1) 0 is closed on R (B:RXR—R).
(M2) € is associative.
(M3) e is an identity for O.

Definition
A semiring is a system <R,®,®,0,1 > satisfying the following conditions:

(SR1) <R,®,0> is a monoid.

(SR2) <R,®,I> is a monoid.

(SR3) & is commutative.

(SR4) @ distributes over @: for all x,y,z € R,

(xdy)®z = (x@z)@(y®2z),

x®@(ydz) = (x@y)®d(x®z).

(SR5) 0 is a multiplicative annihilator on R: for all x € R,
o0ex =20
x®0 = 0.

In particular, every lattice is a semiring <DAV,.L, T >.

Definition
A semimodule (a left R-semimodule) is a system <R,®,8,0.1, D.BR> satisfying the
following conditions:

(SM1) <R,®,®,0,1> is a semiring.
(SM2) B RxD — D.
(SM3) [is a left identity for ®: for all x € D,

Irx = x
(SM4) R distributes overm: forallae R, xy e D,
aR{x@y) = (aBx)@E(a®y).
(SM5) ® distributes over @ as® forallabe R, xe D,
(a®b)BXx = (amx)BE(bRX).
(SM6) @ associates with®@as®: forallabe R, xe D,
(a®b)mx = ar(brx)

Definition

-52 -

A complete ordered semiring (cosr) is a system <R.2,®,8,0,] > satisfying the follow-
ing conditions:

(COSR1) <R,>> is a pointed cpo, with least element 0.
(COSR2) <R,®,®,0,]> is a semiring.
(COSR3) @ is monotone: for all a,b,c € R,

a 2 b impliess (a@®c) 2 (bdc),
(cda) 2 (codb).

(COSR4) ® is monotone: for all a,b,c € R,
a2 b impliess (a®c) 2 (b®c),
(¢c®a) 2 (c®b).

Definition
A complete ordered semimodule (cosm) is a system <R,2,8,®,0,1, D 2mRA> satisfying
the following conditions:

(COsSM1) <D > is a cpo.

(COSM2) <R 2,8,8,0,1 > is a complete ordered semiring.
(COSM3) <R,®8,2,0,1, D.AaRr> is a semimodule.

(COSM4) ®E is monotone: for all x,y,z € D,

x 2y implies (xm@z) 2 (ym@z),
(zmx) 4 (z\@Yy).
(COSM5) ®is monotone: forallabe R, xe D,
a 2 b implies (a®x) 2 (bRx),
and foralla € R, x,y € D,
x 2y implies (a®mx) Jd (amy).

When @, B, &, and ® are continuous as well as monotone, we have a continuous com-
plete ordered semimodule (ccosm).

Finally, if a ccosm is pointed, satisfying the following restrictions, we obtain a pointed
continuous complete ordered semimodule (pccosm):

(PCCOSM1) <R 2,6,®,0,1, D,.2mR> is a ccosm.

(PCCOSM2) <D, 3> is a pointed cpo, with least element .
(PCCOSM3) <D,m, 1 > is a monoid,

(PCCOSM4) 0 is a left multiplicative annihilator for & for all x € D,

omx = L.
(PCCOSMS) _L is a right multiplicative annihilator for @: for all a € R,
awl = 1.

-53 -

Theorem 11
Let <R,2,8,8,0.1, D2MR> be a pccosm. Suppose u = (u;) satisfies the inequality

u 2 ABBu @ b,
where b; is in D and a;;is in R, 1 <ij < n. Then there is an A" in R™ such that
u=A"mEb
is a least solution of the inequality.

Proof
Define the closure A* by

A = @ A* = A'pAleAle ---
=0

where A? = I is the identity matrix (8,-j) on R, with entries

1 ifi=j
Sff = |1 0 otherwise,
and A¥ = A @&.® A¥!, for &>0. Using the properties of a pccosm, we can show
by induction on K that

K K
@ A"]Ea.lzb = [EEI A"Emb],
k=0 =0
and that
K
BH Afrmmb | = £5()
£=0

where f(u) = (ABRu @ b). SM3, PCCOSM3, and PCCOSM4 are used to prove
A’mmb = b, SMS to convert @ to B, SM6 to convert @ to K, and PCCOSM3-5 to
show f(L) =b. Now f is continuous monotone (by COSR3-4, COSM4-5) on D",
which is a cpo since D is. Therefore {f K+1(1 Y1 K €) is an ascending chain
with a least upper bound in D", and

A'mmb = [GB A"]Emb = lm
=0

K Ke

K
H A*mmb] = |J 5.
=0 0]
Thus
A'mmb = [E A"Ha.b].
)
So the value u = A" mm b satisfies

AmRu @b = AE.E[A*EB.mb] m b

AEE.E[EEI Ale.Elb] m b
20
= [EB A"‘Emb]

k20

= n O

-54 -

The result above on continuous complete ordered semimodules is very general! To
help make it more concrete, we show how Theorem 11 can be applied for the prob-
lems mentioned earlier in this section. Since the main issue here is how to phrase the
various problems as inequalities over a pccosm, we present a table giving a translation

for each problem, extending the brief table given earlier:

Laplace's Equation Single-Source Shortest Paths Consistent Labeling
R closed interval [0,1] nonnegative reals R, W {0} valid subsets of AXA
azb azb asbh aob
adob a+b min(a,b) anmb
a®b axbh a+b aMb
0 0 00 AXA
1 1 0 [<xx>lxe A)
D nonnegative reals R, « {eo] nonnegative reals Ry {eo) nonempty subsets of A
xJdy x2y X<y xXcy
x|y x+y min(x,y) XNy
aBx axzx a+x aXx
L 0 oo A
A =(ay /4 i interior, j adjacent matrix of arc costs matrix of permissible
=1 0 otherwise arc label sets
b=(b) u; i boundary vector with entries eo, vector of permissible
bi=) 0 otherwise except O for source node node label sets

The terminology for the approximate graph consistent labeling problem needs some
explanation. As before, X is a relational semijoin operator [14] defined by

{pl<pg>ea qex},
while M is a relational join operator:

aXx =

alb = {<pr>l<pg>eca <grreb).

(Order of the arguments is significant in both of these operators.) Also, a subset a of
A x A is valid if for each element p in A, there are elements <p,g> € a and
<r,p> € a. Without restricting R to valid subsets, <R,®,8,0,/ > is not a semiring,
since 0 fails to be a multiplicative annihilator.

In any event we see that the ‘‘semi-linear programming’” problem

minimize u
u

subject to 2 ApRu @b

is solvable either by elimination or by relaxation, when A is a square matrix. When A
is not a square matrix, relaxation techniques still apply, but a great deal of work
remains in understanding how such problems can be solved in general.

- 55.-

The excellent survey by Zimmermann [95] reviews known results in exactly this set-
ting for numerous problems in combinatorial optimization: path, eigenvalue, linear pro-
gramming, network flow, and independent set problems. Interesting forms of duality
can also be expressed on semimodules. Note also that in two of the three problems
above, ® is commutative, so <R,®,®,0,1 > is a commutative semiring, and R is a sub-
set of the real numbers. Zimmermann shows how each of these common situations
has been exploited with specific constraint satisfaction algorithms.

- 56 -

6. Partial Order Programming and Computer Programming

A significant feature of partial order programming is the perspective it gives on
different programming paradigms. First, it offers a way to abstract the essentials of
both least fixed point and procedural semantics of different paradigms. Second, it
offers a framework for investigating new ways to blend paradigms.

In this section we show how the logic and functional programming paradigms can be
expressed as continuous monotone partial order programming, where C is a reduction
relation on expressions or terms. Demonstrations for other ‘pure’ paradigms, such as
the message-passing and inheritance kemel of object-oriented programming, will be
similar, but we omit them in this presentation. We concentrate instead on how func-
tional and logic programming can be integrated.

6.1. Least Fixed Point Semantics and Partial Order Programming

Any recursive programming paradigm with least fixed point semantics can be
presented as partial order programming. This is immediate. Least fixed point seman-
tics assign to each program 7w a continuous monotone functional T;: D — D on some
space D of semantic ‘‘interpretations’’ of the program. These interpretations are typi-
cally subsets of the input-output relation defined by the program. The smallest
interpretation 7 satisfying I = T,(I) gives the least fixed point semantics for ®. See
[62, 82].

Given 7 then, consider the partial order programming problem

minimize I
subjectto [2 T (D)

where the program is P = <B,C,D 2> with

Term({T;}.{I}wD)
T

T
interpretations of ©

inclusion (<) among interpretations.

Lo Qb

Thus B is { T,%(x) |k e w,x=Torxe D), and <D,3> is a complete lattice whose
least element is the least fixed point of T,;. The least model is that valuation assigning
1 the limiting fixed point value

N T5L).

Any programming paradigm with least fixed point semantics is in this abstract sense a
special case of partial order programming,.

.57 -

6.2. Functional Programming

We adopt the lambda calculus as a prototypical functional programming language.
The lambda calculus has many different procedural semantics, just as it has many
different models [12]. One semantics is captured here with partial order programming,
We introduce terminology rapidly; for a very readable presentation, see [92].

Letting V be a countable set of variables {x,y,z, - - - }, terms are defined inductively:

(1) Every variable in V is a term.
(2) If M and N are terms, the combination (M N) is also.
(3) If x is a variable and M is a term, the abstraction (Ax . M) is also.

The A-terms are defined to be the equivalence classes under a-congruence of these
terms. Two terms are O-congruent if one can be converted to the other by renaming
of bound variables (of abstractions). A variable x occurs free in a A-term if it does not
appear within a subterm (Ax . - ‘); otherwise x is bound. A A-term with no free
variables is called a combinator.

The A-term ((Ax . M) N) is P-reducible to the term M[x:=N], ie., M with free
occurrences of x replaced by N. Free variables in N are renamed if necessary to avoid
being bound. The A-term ((Ax . M) x) is M-reducible to the terrn M, provided that x
does not occur free in M.,

Terms are “‘evaluated’” by eliminating A-abstractions using reduction. One A-term is
reducible to another if there is a sequence of B- or n-reductions from one to the other.
The normal-order reduction of one term to another is a sequence of leftmost reduc-
tions. In the A-term

lxl Mm_((((kx.M)N)M” e M),

the reduction of ((Ax . M) N) is called head reduction. Every sequence of head reduc-
tions is thus a normal-order reduction. A A-term is a normal form if it cannot be
reduced. If z is a variable, a A-term

At A (o (zMy) o M) (m20,n20)

is called a kead normal form. Every normal form is a head normal form, where each
of the A-terms M; is in turn a normal form. The significance of head normal form is
that some important A-terms such as the combinator

= (. dy.ylxx)y) x.hy.y((xx)y))

are reducible to a head normal form but no normal form, and head normal form cap-
tures exactly the notion of ‘solvability’ of A-terms [92,93].
To avoid writing out large terms, we use the symbol = to introduce names for combi-
nators. For example, writing

C) (A A)

A= Qx.ly.y((x0y)
is equivalent to the definition for ® above.

® has the nice property that if F is any A-term, then (@ F) reduces to F(® F). (This
makes © a fixed point combinator. Although Y = (Af . AlCx . fix X))(Ax . fix x)))) is a
better-known fixed point combinator, it turns out not to have this reduction property.

- 58 -

See [12]; (Y F) is A-convertible to F, not A-reducible to F.) Specifically, if 2
represents reduction, (@ F) has the following reduction:

OF) =(AAF =((x.y.y((x0)y)AF

2 (W.y(AAMF
J F((AA)F).

The final term is F (© F).

Combinators provide a computational structure for the lambda calculus. For example,
for factorials we can define:

® (A A)

A=k.My.0{(x0)y)

factorial = (© fact)

fact = Af. An. (if (zero n) 1 (times » (f (pred n)))).

Expressions using these combinators can then be evaluated reductively. For example,
the term (factorial 1) can be reduced to the value 1 as follows:

(factorial 1)
((© fact) 1)
((fact (@ fact)) 1)
((Af . An . (if (zero n) 1 (times n (f (pred n)))))) (© fact)) 1)
((An . (if (zero n) 1 (times n ((® fact) (pred n))))) 1)
(if (zero 1) 1 (times 1 ((® fact) (pred 1)))))
(times 1 ((® fact) (pred 1)))
(times 1 ((fact (& fact)) 0))
(times 1 (((Af . An . (if (zero n) 1 (times »n (f (pred n)))))) (O fact)) 0))
(times 1 ((Arn . (if (zero n) 1 (times n ((© fact) (pred n)))))) 0)
(times 1 ((if (zero 0) 1 (times O ((® fact) (pred 0))))))
- (times 1 ((if true 1 (times 0 ((® fact) (pred 0)))))
(times 1 1)
1

For simplicity, we have omitted definitions and reduction sequences for if, times, pred
(predecessor), and zero. Definitions for these combinators can be written given Suit-
able A-term representations for numerals including 0 and 1, such as:

o

0 = AX.x

1 = (succ 0)

suce = Ax.Az. ((z false) x)

pred = Ax. (x false)

Zero = Ax.(x true)

true = AX.AY.X

false = JAx.Ay.y

if = Ax.x

plus = (© (Aplus.hx.Ay. (if (zero x) y (succ (plus (pred x) y)))))
times = (O (Atimes.)x.Ay. (if (zero x) 0 (plus (times (pred x) ¥) ¥))))

With these definitions succ operates as a successor combinator, pred as predecessor,

- 50 .

and the application of zero to 0 (respectively any successor of 0) reduces to true
(respectively false). See chapter 6 of [12]. Also, following the convention that com-
bination associates to the left, (if true a b) is (((if true) @) b), and reduces to a.

At this point, we can express the reduction semantics of the lambda calculus with a
suitable continuous monotone partial order program. The program is constructed from
the following components:

e Recalling that V is the set of variables, let L be a distinguished new symbol and
define A=V u { L }. Let Op be the set of function symbols

{Ox.)lxeV}u {(CI}L

e The value domain D is the set including the distinguished term L. and the head
normal forms from the A-terms Term(Op,V).

e The set of objects is B = Term(Op,AUD). We call these objects partial A-terms.

e The partial order 2 on D is that of lifting. every term M in D satisfies M 3 _|.
Operators in Op then correspond to continuous monotone operators on D:

(1)

(2)

For every x in A, the abstraction operator (Ax ._) corresponds to the
mapping o, : D — D defined by

a, M) = (hx.M)
if M # L, and otherwise o (L) = L.

The combination operator (_ _) corresponds to the composition func-
tion »: D X D — D defined by reduction on A-terms and

LeM =1L
Mel = 1,

Specifically, on head normal forms in D
(lx]_ S S ((Z Ml) Mn)) . (}'yl yP . ((W Nl) Nq))
= (lxz O ((Z Ml) Mn)) [xl = (7Ly1 yp . ((W Nl) Nq))]

when m 2 1. (n-reduction can result when p = ¢ =0 and w = x;.) The
resulting A-term is a head normal form, even when z is x;. When
m=10,

M) .. M) o Oy ¥y (WNy) . Np)
= ((@M)) . M) Ay Yy (WND) . ND))

which again is a head normal form.

e (is head reduction on ordinary A-terms, using elimination of A-abstractions.* For
example, we have

*The redoction shown above for factorials is not exactly what C would produce, since it used
non-head reductions, However, this is only because we declined to show reduction of times
and the other arithmetic combinators.

- 60 -

C(((Qx . ky.x)a) b)) = ((Ay. a) b)
CC((Ax . hy .x)a) b)) = a
CCC((Mx.Ay.x)a) b)) = a

If M is any A-term including _L as a subterm, we include the reduction
C(M) = _L.

Given the facts above about operators corresponding to Op, since normal-order
reduction selects the leftmost expression for reduction, C meets the restrictions on
computation rules for continuous monotone partial order programs: C is the iden-
tity on D, C maps Term(Op,.D) to D, and C has a recursive definition on
B = Term(Op,AUD).

Summarizing, the lambda calculus can be expressed as a partial order program P =
<B,C,D,J> where

B: partial A-terms (o-equivalence classes)

C head reduction

D: head normal forms (a-equivalence classes), and _L
3 lifting (v 2 _L, for all v in D).

6.3. Logic Programming

We pointed out earlier that logical implications are just inequalities over the truth lat-
tice {true.(false}, so the implication H < G expresses the constraint “‘truth(H)’’ 2
“truth(G)”°. Intuitively, then, it is clear how logic programs might be expressed as
partial order programs: all Horn rules are inequality constraints, and the rule H « G
may be written meaningfully as H 2 G.

We see first how this intuition is sufficient for propositional logic programs. In the

propositional case the problem of evaluating a goal G amounts to finding a truth value
for G. All rules in these programs can be cast in the form

u « v
where u is a propositional variable in a finite set A, and v is either the value true or a
disjunctive normal form expression using propositional variables in A.

Any propositional logic program 1 can be expressed easily as a partial order program.
Define A as above, Op = {AV], and:

B: and/or expressions over propositional variables in A

C: Horn rule reduction for = with a suitable ‘evaluation rule’
D: {truefalse}

= logical implication («) (true 2 false).

Here B = Term(Op,AUD), for example, we can define a breadth-first reduction rule C
as follows. Let C be the identity on D. For every u in A, define:

- 61 -

v Hev istherule foruinw
CQ) false there is norule for uin ©

and for each and/or expression u in B, define:

r

false u; = false or u, = false
] ® uy; = true and u, # false
Chu) =7 uy = true and u, # false

| C(u;) A C(u,) otherwise,

”

true u; = true or u, = true
Uy u; = false and u, # true
—_ <
CoyVup = u u, = false and u; # true

C(u;) vV C(uy) otherwise.

This definition can be easily modified to implement other evaluation rules. Note that
C operates here like the continuation semantic function C of denotational semantics,
and like the fixed point computation rules of Manna [62]. Since C also meets the
requirements for continuous monotone partial order programs, P(n) = <Op,A,C.D,2>
is a continuous monotone partial order program with the same procedural semantics as
® under the chosen evaluation rule.

This construction for propositional logic programs could be extended for predicate
logic programs with logical variables. Basically the predicate logic case can be
reduced to the propositional case by viewing a logic program as the collection of ali
‘ground instances’ of its clauses [58]. Then if 0 is a ‘correct answer substitution’
derivable for a logic program goal G under some computation rule, then the
corresponding partial order program here assigns the goal GO the value true. How-
ever, this construction is unlike logic programming in that the answer substitution must
be provided in advance.
Instead, therefore, we use a direct translation of predicate logic programs to partial
order programs. We extend the value domain {true,(false} to a domain of bindings.
Roughly speaking, we permit a logic program goal to take as a value an and-or expres-
sion of equations between logical variables and first-order terms. For example, with
the logic program

plab) «

pled) «

the goal p(X,Y) takes as its value the binding
X=a ANY=b ¥V X=c NY=4d

- 62 -

while the goal p(b,Z) takes the binding false.

Let us quickly introduce more terminology. A first-order term is a member of
Term(Op,V) where V is an infinite set of logical variables and Op is a set of function
symbols. Each symbol fin Op has an associated arity giving its number of arguments.
The set A of all first-order atomic formulas consists of all terms of the form
p(ry,t,) where p is a predicate symbol of arity n 2 0, and each argument ¢; is a
first-order term. A binding formula is an atomic formula X = ¢, where X is a logical
variable and ¢ is a first-order term. Binding formulas are atomic formulas with predi-
cate symbol “‘="" of arity 2.

A goal is an and-or expression of atomic formulas. In other words, a goal is a
member of Term({ANV},A). A binding is a goal all of whose atomic formulas are bind-
ing formulas.

A logic program is a collection of rules of the form

oX,....X,) « G
where p(X;,...,X,) is an atomic formula with (universally quantified) variables
X5 ... X, and G is a goal. We assume without loss of generality that there is only

one rule for each predicate symbol of the program, and that the arguments in the head
of the rule are distinct variables. The collection of (m = 1) rules

p(tll,...,tln) «— Gl

p(tmls""tmn) « Gm
is logically equivalent to the rule

p(Xy,...,.X,) «
(X1=111/\...AXH=IIH/\G1) V..V (X1= mll\.../\Xn=rmn/\Gm)

provided we include the rule

X=X & true.

Colmerauer’s “‘equation systems’’ are conjunctions of binding formulas. In [26] an
algorithm is given that rewrites equation systems to equivalent reduced equation sys-
tems, conjunctions of binding formulas in which

(1) the left hand sides of the formulas are distinct variables, and

(2) there is no endless subsystem of equations, a collection of formulas in which
every left hand side also appears as a right hand side.

Reduced equation systems are always solvable in the algebra of rational trees (possi-
bly infinite first-order terms whose set of subterms is finite). The algorithm can be
extended for first-order unification with the occur check, corresponding to solvability
over first-order terms, if this is desired.

Bindings here generalize Colmerauer’s equation systems with disjunction. The gen-
eralization is only slight, since every binding is equivalent (via distribution of A over
V) to a disjunction of equation systems.

- 63 -

The procedural semantics for logic programming can now be viewed accurately as a
process of rewriting a goal to another goal that contains a reduced binding (reduced
equation system) as a disjunct. The rewriting process combines the Prolog II reduction
process for equations, presented in section 3 of [26], and goal elimination, the replace-
ment of atomic subgoals by goals corresponding to the bodies of rules. See [38].

Rather than reproduce the reduction algorithm formally as a function C, we give an
example that should illustrate the process clearly. With the convention above the stan-
dard ‘append’ predicate looks like

append(A,B.AB) «
(A=[IANB=AB) Y (A=[XI|L1AAB =[X|LB] A append(L,B,LB)).

The goal append(Y,Z,[a]) is reducible to a binding with the following sequence:

append(Y,Z,[a])

(Y=[1]ANZ=1a]) V
(Y=[X,1L] A [a] = [X;ILB,] A append(L,,Z.LB})

(Y=[1 ANZ=Ja}}) V
(Y=[XLj] A X;=a A LB, =[] A append(L,,Z,LBy))

(¥Y=[1ANZ=[a) V
(Y=[XIL] AX,=a A LB;=[] A
(Ly=[1AZ=(]) V
(Ly = [X31Lo] A [1=[X,1LB5] A append(Ly,Z,LBy))))

[1AZ=[a) V

[X,IL] A X;=a A LB =[] A
(Li=00AZ=01) V
(Ly = [Xa!Ly] A false A append(L,,Z,LB;))))

(Y=[1ANZ=[a]) V

(Y=[X1|Ll] A X1=a A LB1=[] A
(Ly=l1ANZ=[]) V
false))

(Y
(Y

IANZ=fa]) Vv

(Y={
(Y=[X;IL)] A Xy=a A LB =[1 AL ={]AZ=[])

nn

To translate logic programming to partial order programming, we need the components
<B,C,D > of a continuous monotone partial order program:

e B is the set of goals Term({AV},A). We impose on B the equivalence relation of
logical equivalence on and-or expressions, given that all variables are existentially
quantified.

e The computation rule C is the reduction process just illustrated. It is similar to
the “‘surface deduction’ process developed by Cox and Pietrzykowski formally in
[27], extending Colmerauer’s work., C meets the restrictions on computation rules
of continuous monotone partial order programs since it always replaces subgoals
by other goals that are either obtained from a constraint (rule) of the program, or

- 64 -

are equivalent over the algebra of rational trees (or first-order terms, as appropri-
ate). The example here shows a sequence of leftmost reductions, but parallel
reductions could have been used instead. In other words, the C reflected here is
depth-first reduction, but breadth-first reduction is possible as well.

At first it might appear from this example that C is not a function, since it intro-
duces different variables for different invocations of append. It is a function,
however, and treats logical variables as having common names but different
scopes determined by universal or existential quantifiers for the rule in which they
appear, as in the lambda calculus. The reduction above uses subscripts to distin-
guish among occurrences of variables with different scope.

e The value domain D can be either definite or irreducible binding sets, depending
on whether we need single solutions or all solutions. A definite binding is a goal
with at least one disjunction that is a reduced equation system. An irreducible
binding is a binding in which every disjunction is a reduced equation system.
The drawback of insisting on irreducible bindings is that goals whose proof trees
fail to terminate on one or more or-branches will be indefinite, i.e., fail to take on
a value.

e Finally, we use limited form of generality as a partial ordering =2 on bindings.
Specifically, every binding b satisfies b Jfalse. Thus, A and V are monotone
operators on D. By minimizing a logic programming goal we are therefore reduc-
ing it as much as possible; coincidentally the binding that results is a disjunction
of most general substitutions [58].

Summarizing, a logic program = is a partial order program with:

B: and/or goals (modulo equivalence of variables and and/or expressions)
C goal elimination determined from =, and binding reduction

D: definite bindings (modulo equivalence)

= limited generality among bindings.

Here _L is false, the value assigned logic programs that fail.

It appears that a number of extensions of logic programming now being proposed can
be represented with partial order programming by adapting the construction above.
Specifically we can generalize it for Colmerauer’s Prolog II with inequation constraints
[25], Jaffar et al’s Constraint Logic Programming with linear equality and inequality
constraints [47,48], and Ait-Kaci and Nasr’s system that generalizes first-order terms
and unification to a distributive lattice of “y-terms’ and a meet operator on the lattice
[2,3]. In each case we must generalize the bindings and function C given above to
handle more expressive constraints.

6.4. Integrating Paradigms

Historically, programming systems have offered only one computational paradigm.
Recently, however, a great deal of interest has been directed at developing systems
integrating multiple paradigms, particularly functional and logic programming. The

- 65 -

book [29] contains many proposals for integrating logic, equations, and functions, and
references the rapidly growing literature in this area. An excellent recent survey of
existing alternative approaches appears in [4].

Partial order programming provides some perspective in surveying the large number of
alternatives. Above it was shown that logic programming can be modeled by the
scheme

B;p: and/or expressions over atomic formulas
C;p: Horn rule and unification reduction
Drp: definite bindings

= p: limited generality among bindings

and functional programming by the scheme

Bpp: partial A-terms
Crp: head reduction
Dgp: head normal forms
gpp . lifting.

One way for viewing integrated functional-logic programming systems is to study how
they combine these two schemes. There are many combinations for integrating Byp
and D;p with Bgp and Dgp. For example, using the nomenclature of [4], the synractic
approach integrates D;p with Bgp, by permitting predicates to return arbitrary values.
This amounts to the ‘‘lattice programming’’ mentioned earlier, and is really a syntactic
sugaring of logic programming, since such programs can be translated directly into
logic programs. By contrast the algebraic approach uses the equality predicate (and
hence unification) as a point of integration of B;p with Bpp. It augments Hom logic
with a special equality predicate, and generalizes ordinary syntactic unification with
““E-unification’’, which is typically implemented operationally via rewriting. This per-
spective is sharpened by formalizing these approaches as continuous monotone partial
order programming schemes <Term(Op,AUD),C.D,2>. Approaches differ widely in
their treatment of the collected set of operators

Op c {(Au{VIv{(CIO}lu {(x.))lxeV]
and the set of goal terms A.

Partial order programming suggests another new direction for integrating these para-
digms. Both functional and logic programming rest on elimination mechanisms: A-
reduction and SLD-resolution are computation methods that repeatedly substitute one
expression for another. They can be generalized as methods for solving inequalities by
substituting one object by another that it dominates in some ordering. Previous
attempts to integrate these paradigms centering around E-unification methods operate
by “‘substitution of equals for equals’’. This slogan can be generalized powerfully to
“monotone substitution of lessers for greaters’’, or more precisely ‘‘substitution of
objects by their bounds, in monotone contexts’’. If a function f is monotone in its first
argument and a 2 b, fla.c) is reducible to f{b,c). This approach works whether f is a

- 66 -

user-defined function, or a monotone operator such as A in logic programming.

This generalization extends rewriting with the concepts of inequality and monotonicity.
It permits integration such as combining the rewrite system of Hsiang [43] for Boolean
algebras, and Traugott’s nested resolution rule {91] or the replacement rules of Manna
and Waldinger [64] mentioned earlier. It also permits very interesting treatment of
negation, since negation operators can be treated as introducing ‘‘anti-monotone’’ (i.e.,
monotone decreasing) contexts, in which one can ‘‘substitute greaters for lessers’” in a
reduction process.

The subject of formalizing integrated paradigms with partial order programming is a
large one and needs a much more thorough study than the brief discussion here. How-
ever, it would appear from this discussion that we are still only at the beginning of
exploring ways to integrate functional and logic programming.

- 67 -

7. Conclusions

A great deal of work has been done recently on generalizing existing programming
paradigms, particularly in connecting logic programming, functional programming, and
object-oriented programming. Also, programming styles based on fixed point concepts
have been proposed [22,31,75]. At the same time, researchers have made many pro-
posals on computational frameworks for knowledge representation. Invariably, these
proposals lack a foundation that is both general and formal.

This monograph has introduced the concept of partial order programming, and has
illustrated the power of the paradigm with a sequence of examples. Chandy and Misra
[22] point out, however, ‘‘the utility of a new approach is suspect, especially when it
is a radical departure from the conventional.”’ To conclude, then, we first summarize
what has been presented, and then offer some perspectives on the potential of partial
order programming.

7.1. Summary

Partial order programming is a new paradigm. It is general and formally defined.
This work has studied the following progressively restricted classes of programs:

Partial order programs
Reductive partial order programs
Algebraic partial order programs
Continuous monotone partial order programs
Semilinear partial order programs.

The examples listed earlier show important problems in diverse fields that can be
expressed naturally with the paradigm.

Partial order programming encompasses a number of novel concepts:

(1) A paradigm based on ordering can be useful in modeling complex systems.
Ordering is basic to human knowledge representation. Structures can be
modeled with partial orders with an effectiveness that is not possible with
total orders.

(2) Many results in logic can be naturally and profitably viewed as properties of
ordering and monotonicity.

(3) Generalizing mathematical programming by introducing partially-ordered
value domains has real applications.

(4) Relaxation, an iterative constraint satisfaction technique, has a natural for-
malization in terms of monotone operators on partial orders.

(5) ‘*Assignment refinement’’ semantics can be used as a replacement for
single-assignment semantics. The assignment G :=d made in a reductive
partial order program can be superseded by G :=d’ provided that 4’ Jd.
Assignment refinement is an alternative foundation for formalizing destruc-
tive assignment.

(6) Programming paradigms with a least fixed point semantics map straightfor-
wardly into partial order programming,.

- 68 -

(7) Logic programming and functional programming can be naturally expressed
in partial order programming. The constraints of the partial order program
reflect both the constraints of the original paradigms as well as their pro-
cedural semantics.

(8) Lattice programming is a way to generalize on logic programming, and on
conventional inexact reasoning mechanisms.

(9) The common distinction between numerical and symbolic computing blurs if
we view domains of values as partial orders having specified properties.
When the domain is a semiring with an addition and multiplication operator,
for example, certain partial order programs correspond to linear inequality
systems and can be solved as such.

(10) Partial order programming permits exploitation of monotonicity. Monotoni-
city is important for a variety of reasons:

¢ Monotonicity is order preservation.

¢ Monotone operators have useful properties, notably that the composition
of monotone operators is monotone,

e Monotonicity is the foundation for dynamic programming and
Bellman’s principle of optimality: when f is monotone, to maximize
fxy, . . . x,) one must maximize x;, . . . X,

. Continuous monotone constraints can be solved iteratively, with a
unique minimal solution.

e Iterative solution of monotone constraints can be terminated early, pro-
viding approximate solutions.

e There is a strong connection between linearity and monotonicity. On
certain ordered domains, monotone operators are linearizable.

7.2. Implementation

Earlier we presented the conjecture behind this work, that partial order programming
will prove useful in modeling complex systems. It is beyond the scope of this mono-
graph to investigate implementation of partial order programming, but for concreteness
let us outline how the ideas covered in this monograph might be incorporated in an
implementation.

Let us call a hypothetical partial order programming system based on the foregoing
Mo~NoTONE. Among other things, MoNoTONE should provide different methods for
solving systems of inequalities. In appropriate contexts it could use all of the methods
discussed earlier: reduction with ‘‘monotone substitution of lessers for greaters’’, relax-
ation (assignment refinement), and elimination.

Up to this point all examples of partial order programs have used only a single partial
order 2 and domain D. Recall however that the partial order can be a sum or product
of n partial orders:

- 69 -

<D,3> = <D,3> + .. + <D, >
<D,3> = <D;,q> X .. x <D, 2>

MonoToNE should provide an extensible library of partial orders, with for example:

generality among logic program bindings

generality among first-order terms

numeric ordering

set containment (Boolean algebra ordering)
i type inclusion

partof part inclusion

2 VI

More broadly, MonoToNE should incorporate a library of systems <B,C,D 2> that are
useful. Domains D with operators Op having certain structure (e.g., monotonicity,
monoid properties, etc.) should be declared and exploited in constraint solution.

Problems in MONOTONE can take the form
minimize(Goal,Constraints)

Minimization is performed relative to the partial order determined by the Goal object.
This problem is in turn an object, whose value is the solution of the problem. In ways
minimize is similar to the Prolog call metapredicate, but specifies the constraints to be
used. Note that this may avoid some of the problematic issues surrounding meta-level
inference in the logic programming framework [15, 16, 17]. Also, this construct intro-
duces the possibility for recursive minimization, a feature that may be of interest for
mathematical programming problems.

Monorone should include two basic components, then:

(1) A definitional component, for announcing that certain <B8,C,D, 2> systems exist,
that operators are monotone (or anti-monotone) in certain arguments with respect
to certain partial orders, that systems are pointed continuous complete ordered
semi-modules, and so forth.

(2) An inequality handling component, defining how the minimization process works
for each <B,C,D,2> systems, or combined systems. It is not necessary for these
solution mechanisms to be programmed in MONOTONE, although this would be
desirable.

The syntax of MONOTONE programs is an open matter. It is attractive to use something
like Prolog syntax, because Prolog programs can elegantly generate constraint pro-
grams. For example, ordinary Prolog programs naturally generate equality constraint
programs (bindings). These constraint programs can be solved either concurrently with
their generation, or somewhat later. This concurrent (‘‘on-line’’, *‘incremental’’)
approach is used both in Prolog H [25] and in CLP(R) [47,48].

To see how inequality solution can be useful, consider an example: use of first-order
term inequality (=). Every Prolog clause

- 70 -

p(tl,...,tn) «— G
can be written
p(Xl”"’Xn) «— (Xl;tlAtl;XI)A"‘A(Xn;}tnAtn:—:}Xn)AG’

so a system that handles = constraints generated by expansions of clauses like this one
is enough to interpret Prolog programs, and the term inequality primitive = can be
quite useful. Among other things, it can be used for type inference and abstract
interpretation as in the example given earlier. Also =2 can provide a simple type sub-
sumption mechanism for knowledge representation systems as in LOGIN [3], and pro-
vide a kind of ‘‘one-way unification’ for logic programs. One-way unification is use-
ful in stream processing and functional computations in general.

MOoNOTONE would not be a trivial extension of Prolog. For example, it does not appear
possible to implement = directly in Prolog, even on Prolog systems supporting
Colmerauer’s dif and freeze primitives [21,25]. Although the evident implementation

X 2Y :— dominates_currently(X,Y), dominates_henceforth(X,Y).
dominates_currently(X,Y) :— copy_term(X,T), unify(T,Y).
dominates_henceforth(X,Y) — ...

forces X to be more general than Y at the point of invocation, it is not clear how the
future generality constraint dominates_henceforth can be implemented. To see the
difficulties here, notice that the Prolog goal

?7— pair(X,Y) 2 pair(U,V), X =Y.

should result in the unification U = V, but this will not be achieved without internal
modifications to the unifier (goals frozen in the execution of = will not be executed
when X = Y is executed), or extensions to the definitions of dif and freeze. Interest-
ingly, however, an implementation is possible using the general delay primitive [21],
which activates its delayed goal whenever the variable upon which the delay is done is
bound to any value, variable or nonvariable.

MonoroNE is also different from Constraint Logic Programming in several respects.
Primarily, MONOTONE emphasizes monotonicity and multiple partial orders, rather than
constraint processing in general. CLP(R) currently covers an important class of con-
straints over a total order (linear equalities and equalities over the real numbers).
Naturally, it is advantageous to handle many kinds of partial ordering constraints and
thereby provide multiple ‘‘paradigms’. Also, it would seem to that a modularization
mechanism that distinguishes subproblems (like the minimization operator above) is
useful in decomposing large constraint systems into smaller ones. Decomposition can
be very important; practical use of existing elimination methods often requires con-
straints to be solved in modest batches.

This discussion is brief and abstract, but hopefully conveys what is possible here. The
field of constraint programming languages is an exciting field, and we can expect rapid
improvements in the next years. Because of the generality of partial order

-71 -

programming, its implementation is an open area for research, and will continue to
offer interesting challenges for some time.

7.3. Partial Order Programming Prospects

In closing here, it seems appropriate to state why we are optimistic about the future of
partial order programming.

The past few years have seen an increasing emphasis on concurrent computation,
declarative programming, and constraint-based formulations of problems. Some of
these problems are not easily solvable, or solvable at all, using conventional pro-
cedures. Examples of difficult-to-treat problems are learning (inductive or otherwise),
and adaptive behavior or control in changing environments. These problems involve,
by their essence, the modeling of complex systems: adaptive behavior involves the
application of a model of the environment, while learning involves the construction of
models.

Current approaches to solving these problems tend to be informal. Suggestive terms
such as spreading activation, connectionism, hill-climbing, and relaxation are used rou-
tinely. Although intuitively reasonable or correct, however, these terms are often left
imprecise. As these problems grow in importance, and as parallel machines become
more commonly available to support these solution approaches, a formal framework
will become imperative.

It would seem that any formal setting for these problems will necessitate formal treat-
ment of concepts such as iteration, convergence, monotonicity, and fixed points. These
concepts are fundamental in constraint satisfaction and adaptive search for equilibria.
Therefore, if partial order programming is not the right framework for these problems,
it at least has the right basic foundations.

Of course, we believe partial order programming is the right framework for these prob-
lems. First, although a great deal of research is routinely performed on systems of
equalities, ordering relationships and inequalities are more basic and, in many models,
more natural. Humans are evidently better at reasoning about inequality than about
equality, and partial order programming brings ordering to the fore.

Not by coincidence, partial orders make natural models of concurrency and *‘flow’’.
Any sort of precedence or sequencing constraints induces a partial order, and recently
interest has grown in partial order models of concurrency. As Pratt points out in [78],
some concepts of concurrency are definable only for partial orders, the meaning of
concurrency of two events in partial order models does not depend on the granularity
of atomicity of the events, and in certain cases partial order models are easier to rea-
son about than linear models.

Second, partial order programming is a natural setting for exploiting monotonicity, or
order-preservation. George Dantzig has observed that while the world is not linear,
linear programming is still useful. In the same way, the world is not monotone, yet

72 -

many worldly problems can be abstracted to continuous monotone partial order pro-
gramming problems. Korf’s macro operators [54] illustrate how abstractions of non-
monotone phenomena can be monotone, and Pearl [76] has pointed out how many
heuristics for solving problems use methods for solving approximate versions of the
problems. Because of the relationship between monotonicity and iterative fixed point
solution of constraints, monotone models are able to ignore detail and tolerate inaccu-
racy, remaining simple yet robust.

Finally, partial order programming offers perspective. It is difficult to get perspective
these days, since current field boundaries artificially separate notions such as logic and
ordering, symbolic and numeric computing, computer programming languages and
mathematical programming, solution by elimination and solution by relaxation, to
name a few. A century ago, as early as 1880, the mathematician-semioticist C.S.
Peirce generalized upon Boole’s algebraic system of logic for the laws of thought with
a theory of ordered sets and, ultimately, what we now call lattices. Sadly, these ideas
of Peirce have not attained the eminence they should have, and today we find our-
selves with formal logics that are unable to deal effectively with various important
problems (such as learning and adaptive behavior or control). Partial order program-
ming is a platform for cutting across field boundaries, using Peirce’s basic tool of ord-
ering.

-73 -

Acknowledgement

The author is grateful to Paul Eggert for many great ideas and suggestions that have
helped shape this work. Alan Stoughton patiently and carefully explained concepts in
denotational semantics, and provided a number of improvements in the definition of
partial order programming. Hassan Ait-Kaci, Howard Blair, Arman Bostani, Kam
Chow, Rina Dechter, Mel Fitting, Forouzan Golshani, Mike Gorlick, Shen-Tzay
Huang, Richard Huntsinger, Dean Jacobs, Carl Kesselman, Rich Korf, Koen Lecot,
Bob Meyer, Yiannis Moschovakis, Dick Muntz, Roger Nasr, Sanjai Narain, Steve
Russell, Matt Stillerman, Loring Tu, Judi Uttal, Victor Vianu, Scott Wilson, the UCLA
Logic-based KR group, and many others provided greatly appreciated comments and
suggestions that are reflected here.

T2el

- 74 -

Appendix I: Proofs of Fixed Point Theorems

Theorem 1
Let f : D—D be a continuous monotone map on the pointed cpo <D,2>. Then f has a
least fixed point equal to

fixf = J{f{D ke 0}

where f* is fiterated k times.*

Proof
We claim that, for every £ 2 0,

L) 2 AR,

This can be shown by induction: f{_1) 2 L establishes ¥=0, and monotonicity of f
gives the induction step. As a result,

S = (L AL, AL,)
forms a chain, and
fhixf) = AUS) = UAS = U(AfAL) ke) = fixf
so fix f is a fixed point of f.

fix f is also a least fixed point. For any other fixed point z we must have
z f%) for all £21. To see this, note that z 2 _L, and applying monotonicity of
f gives f(z) 2 f(L). Since z = f(z), it follows inductively that z 2 fix £. O

Theorem 2
Let f: D—D be a monotone function on the complete lattice <D,2>. Then f has a
fixed point in D.

Proof
Let S be the set of all x in D such that fix) 3x. Now let z= [] x. Since fis

xes
monotone, and z Jdx for every x in §, it follows that f{z) J f{x) J x for every x in
S. So f(z) is an upper bound for S, so z must be a member of S, since then
f(z) 2 z. Applying monotonicity to this inequality, we get f(f(z)) 2 f(2), so f(z) is
in § as well. But zJx for every x in S, so z 2f(z). Thus f(z) = z, and f has a
fixed point. O

*Recall) is the set of natural numbers.

-75 -

References

1.

10.

11.

12.

13.

14,

15.

16.

Aho, A.V,, I.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

Ait-Kaci, H., ““‘A Lattice-Theoretic Approach to Computation Based on a Cal-
culus of Partially Ordered Type Structures,”” Ph.D. dissertation, University of
Pennsylvania, Dept. of Computer and Information Science, Philadelphia, PA,
1984,

Ait-Kaci, H. and R. Nasr, ““LOGIN: A Logic Programming Language with Built-
in Inheritance,”” Journal of Logic Programming, vol. 3, no. 3, pp. 185-215,
October 1986.

Ait-Kaci, H. and R. Nasr, ‘‘Residuation: A Paradigm for Integrating Logic and
Functional Programming,’” Technical Report Al-359-86, MCC, October 1986.

Ait-Kaci, H., P. Lincoln, and R. Nasr, ‘“Le Fun: Logic, equations, and Func-
tions,”” Proc. Symp. on Logic Programming, pp. 17-23, IEEE Computer Society
#799, September 1987.

Allgower, E. and K. Georg, ‘‘Simplicial and continuation methods for approxi-
mating fixed points and solutions to systems of equations,”” STAM Review, vol.
22, pp. 28-85, 1980.

Allgower, E. and K. Georg, ‘‘Predictor-Corrector and Simplicial Methods for
Approximating Fixed Points and Zero Points of Nonlinear Mappings,”” in
Mathematical Programming: The State of the Art, ed. A. Bachem, M.
Groetschel, B. Korte, pp. 15-56, Springer-Verlag, New York, 1983.

Apt, K.R. and M.H. van Emden, ‘‘Contributions to the Theory of Logic Program-
ming,”” Journal of the ACM, vol. 29, no. 3, pp. 841-862, July 1982.

Aspvall, B., “‘Efficient Algorithms for Certain Satisfiability and Linear Program-
ming Problems,’”’ Report No. STAN-CS-80-822 (Ph.D. thesis), Stanford Univer-
sity, Stanford, CA, September 1980.

Attardi, G. and M. Simi, ‘A Description-Oriented Logic for Building Knowledge
Bases,”” Proceedings IEEE, vol. 74, no. 10, pp. 1335-1344, October 1986.

Bachmair, L. and N. Dershowitz, ‘‘Inference Rules for Rewrite-Based First-Order
Theorem Proving,” Proc. 2nd Symp. on Logic in Computer Science, pp. 331-337,
IEEE Computer Society #793, June 1987.

Barendregt, H.P., The Lambda Calculus, North-Holland, New York, 1984.
Bartley, W.W., Lewis Carroll’s Symbolic Logic, Clatkson N. Potter, Inc., New
York, 1986.

Bernstein, P.A, and D-M.W. Chiu, ““Using Semi-Joins to Solve Relational
Queries,’” Journal of the ACM, vol. 28, no. 1, pp. 25-40, January 1981.

Bowen, K.A. and R.A. Kowalski, ‘‘Amalgamating Language and Metalanguage in
Logic Programming,”’ in Logic Programming, ed. K. Clark, S.-A. Tarnlund, pp.
153-172, Academic Press, New York, 1982,

Bowen, K.A. and T. Weinberg, ‘A Meta-Level Extension of Prolog,”” Proc. Sym-
posium on Logic Programming, pp. 48-53, IEEE Computer Society #636, Boston,
1985.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27,

28.

29.

30.

31.

32.

33.

- 76 -

Bowen, K.A,, ““Meta-Level Programming and Knowledge Representation,”’ New
Generation Computing, vol. 4, 1986.

Bruynooghe, M., G. Janssens, A, Callebaut, and B. Demoen, ‘‘Abstract Interpreta-
tion: Towards the Global Optimization of Prolog Programs,”” Proc. Symp. on
Logic Programming, pp. 192-204, IEEE Computer Society #799, San Francisco,
September 1987.

Bundy, A., The Computer Modeling of Mathematical Reasoning, Academic Press,
New York, 1983,

Carlson, B.C., “‘Algorithms Involving Arithmetic and Geometric Means,”’ Ameri-
can Math Monthly, vol. 78, no. 5, pp. 496-505, May 1971.

Carlsson, M., ‘‘Freeze, Indexing, and Other Implementation Issues in the WAM, "’
Proc. 4th Intnl. Conf. on Logic Programming, pp. 40-58, MIT Press, Melbourne,
Australia, May 1987.

Chandy, K.M. and J. Misra, ‘‘Parallel Program Design: A Foundation,’’” book pre-
print, University of Texas, February 1987. To be published by Addison-Wesley,
1987.

Chou, C.-T., ‘‘Relaxation Processes: Theory, Case Studies and Applications,”
Report CSD-860057 (M.S. Thesis), UCLA Computer Science Dept., Los Angeles,
CA, February 1986.

Clancey, W.J., ““Classification Problem Solving,”’ Technical Report STAN-CS-
84-1018, Department of Computer Science, Stanford University, 1984,

Colmerauer, A., H. Kanoui, and M. van Caneghem, ‘‘Prolog, theoretical princi-
ples and current trends,”’ Technology and Science of Informatics, vol. 2, no. 4,
Pp- 255-292, 1983.

Colmerauer, A., “‘Equations and Inequations on Finite and Infinite Trccs,” Proc.
Intnl. Conf. on Fifth Generation Computer Systems (FGCS’84), pp. 85-99, North-
Holland, Tokyo, November 1984.

Cox, P.T. and T. Pietrzykowski, ‘‘Surface Deduction: a uniform mechanism for
logic programming,”” Proc. Symposium on Logic Programming, pp. 220-227,
IEEE Computer Society #636, Boston, 1985,

Davis, M., Computability and Unsolvability, Dover Publications, Inc., New York,
1982. Appendix 2.

DeGroot, D. and G. Lindstrom, Logic Programming: Functions, Relations, and
Equations, Prentice-Hall, Englewood Cliffs, NJ, 1986.

Despain, A.M., ““Fourier Transform Computers Using CORDIC Iterations,”” JIEE
Trans. Comput., vol. C-23, no. 10, pp. 993-1001, October 1974.

Dijkstra, E.W. and C.S. Scholten, ““Termination Detection for Diffusing Compu-
tations,”’ Information Processing Letters, vol. 11, no. 1, pp. 1-4, 29 August 1980.
Dodgson, C.L., Solution, B:=b, C:=n, D:=n, L:=m, M:=s (Barry-both,
Cole—neither, Dix-neither, Lang-mustard only, Mill-salt only), November 2,
1896.

Eggert, P.R. and D.V. Schorre, ‘‘Logic Enhancement: A Method for Extending
Logic Programming Languages,”” Proc. 1982 Symp. on LISP and Functional

34.

35.

36.

37.

38.

39.

40,

41.

42.

43.

44,

45.

46.
47.

48.

49.

-77 -

Programming, pp. 74-80, Pittsburgh, PA, August 1982.

Emden, M.H. van, ‘‘Quantitative Deduction and Its Fixpoint Theory,”” Journal of
Logic Programming, vol. 3, no. 1, pp. 37-53, April 1986.

Fitting, M., ‘““A Deterministic Prolog Fixpoint Semantics,”” J. Logic Program-
ming, vol. 2, no. 2, pp. 111-118, July 1986.

Fitting, M., ‘‘Logic Programming on a Topological Bilattice,”” Technical Report,
Dept. of Computer Science, CUNY, New York 10036, 1987.

Fletcher, J.G., ‘A More General Algorithm for Computing Closed Semiring
Costs Between Vertices of a Directed Graph,”” Comm. ACM, vol. 23, no. 6, pp.
350-351, June 1980.

Fraenkel, A.A., Abstract Set Theory, 1st Ed., p. 172, North-Holland, Amsterdam,
1953.

Gnesi, S., U. Montanari, and A. Martelli, *‘Dynamic Programming as Graph
Searching: An Algebraic Approach,’”” Journal of the ACM, vol. 28, no. 4, pp.
737-751, October 1981.

Haralick, R.M. and L.G. Shapiro, ‘“The Consistent Labeling Problem: Part I,”’
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2, pp.
173-184, April 1979.

Haralick, R.M. and L.G. Shapiro, ‘“The Consistent Labeling Problem: Part II,"
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-2, no. 3, pp.
193-203, May 1980.

Hitchcock, P. and D. Park, “Induction Rules and Termination Proofs,”” in Auto-
mata, Languages, and Programming, ed. M. Nivat, pp. 225-251, North-Holland,
1973,

Hsiang, J. and N. Dershowitz, ‘‘Rewrite Methods for Clausal and Non-Clausal
Theorem Proving,”” in Proc. 10th ICALP, ed. 1. Diaz, pp. 331-346, Springer-
Verlag, LNCS #154, Barcelona, 1983.

Huet, G., ‘““Deduction and Computation,”’ in Fundamentals of Artificial Intelli-
gence, ed. W. Bibel, Ph. Jorrand, pp. 39-74, Springer-Verlag, LNCS #232, New
York, 1986.

Isaacson, E. and H.B. Keller, Analysis of Numerical Methods, J. Wiley & Sons,
New York, 1966. (Chapter 9, Section 2: Solution of Laplace Difference Equa-
tions,)

Jacobson, N., Basic Algebra I, W.H. Freeman, 1974.

Jaffar, J. and J-L. Lassez, ‘‘Constraint Logic Programming,” Proc I2th ACM
Symposium on Principles of Programming Languages, January 1987.

Jaffar, J. and S. Michaylov, ‘‘Methodology and Implementation of a CLP Sys-
tem,”’ Proc. 4th Intnl. Conf. on Logic Programming, pp. 196-218, MIT Press,
Melbourne, Australia, May 1987.

Kaeufl, T., “‘Program Verifier ‘Tatzelwurm’: Reasoning abut Systems of Linear
Inequalities,”” in Proc. 8th CADE, ed. JH. Siekmann, pp. 300-305, Springer-
Verlag, LNCS #230, Oxford, 1986.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.
63.

64.

65.

66.

67.

68.

69.

70.

-78 -

Keenan, E.L, and L. M. Faltz, Boolean Semantics for Natural Language, D. Reidel
Publishing Co., Boston, 1985,

Keeney, R.L. and H. Raiffa, Decision with Multiple Objectives: Preferences and
Value Tradeoffs, John Wiley & Sons, New York, 1976.

Kleene, S.C., Introduction to Metamathematics, Van Nostrand, New York, 1952.
Section 66, Theorem XXVI.

Kneale, W. and M. Kneale, The Development of Logic, Clarendon Press, Oxford,
1984,

Korf, R.E., Learning to Solve Problems by Searching for Macro-Operators, Mor-
gan Kaufmann Publishers, Palo Alto, CA, 1985.

Lassez, C., K. McAloon, and R. Yap, ‘““Constraint Logic Programming and
Option Trading,”” IEEE Expert, vol. 2, no. 3, pp. 42-50, Fall 1987.

LeChenadec, P., Canonical Forms in Finitely Presented Algebras, J. Wiley &
Sons, Inc., New York, 1986.

Lehmann, D.J., ‘‘Algebraic Structures for Transitive Closure,”” Theoretical Com-
puter Science, vol. 4, pp. 59-76, 1977.

Lloyd, J., Foundations of Logic Programming, Springer-Verlag, New York, 1984.
Mackworth, A.K. and E.C. Freuder, ‘“The Complexity of Some Polynomial Net-
work Consistency Algorithms for Constraint Satisfaction Problems,”” Artificial
Intelligence, vol. 25, pp. 65-74, 1985.

Manna, Z., S. Ness, and J. Vuillemin, ‘‘Inductive Methods for Proving Properties
of Programs,”” Comm. ACM, vol. 16, no. 8, pp. 491-502, August 1973.

Manna, Z., Mathematical Theory of Computation, McGraw-Hill, New York, 1974.
Chapter 5: The Fixed-Point Theory of Programs.

Manna, Z., Mathematical Theory of Computation, McGraw-Hill, New York, 1974.
Manna, Z. and A. Shamir, ‘“The Theoretical Aspects of the Optimal Fixedpoint,”
SIAM J. Comput., vol. 5, no. 3, pp. 414-426, 1976.

Manna, Z. and R. Waldinger, ‘‘Special Relations in Automated Deduction,”” Jour-
nal of the ACM, vol. 33, no. 1, pp. 1-59, January 1986.

Mellish, C.S., Computer Interpretation of Natural Language Descriptions, John
Wiley & Sons (Ellis Horwood Ltd.), New York, 1985.

Mellish, C.S., ‘“‘Abstract Interpretation of Prolog Programs,”” Proc. 3rd Intnl.
Conf. on Logic Programming, pp. 463-474, Springer-Verlag LNCS 225, London,
July 1986.

Minsky, M., The Society of Mind, Simon and Schuster, New York, 1986.

Montanari, U., ““Networks of Constraints: Fundamental Properties and Applica-
tions to Picture Processing,”” Information Sciences, vol. 7, pp. 95-132, 1974.

Mosses, P.D. and G.D. Plotkin, **“On Proving Limiting Completeness,”” SIAM J.
Comput., vol. 16, no. 1, pp. 179-194, February 1987.
Nadel, B.A., ““The General Consistent Labeling (or Constraint Satisfaction) Prob-

lem,”” Technical Report DCS-TR-170, Dept. of Computer Science, Rutgers
University, New Brunswick, NJ 08903, January 1986.

71.

72.

73.

74.

75.

76.
77.

78.

79.

80.

81.

82.
33.

84.

85.

86.

87.

38.

89.

-79 -

Narain, S., ‘*“A Technique for Doing Lazy Evaluation in Logic,”” J. Logic Pro-
gramming, vol. 3, no. 3, pp. 259-276, October 1986.

Nelson, G., ‘“The generalized limit theorem,”” Note CGN46, in errata to Report
SRC-16, DEC Systems Research Center, 130 Lytton Ave, Palo Alto CA 94301,
June 1987.

O’Keefe, R.A., ““Finite Fixed-Point Problems,”” Proc. 4th Intnl. Conf. on Logic
Programming, pp. 729-743, MIT Press, Melbourne, Australia, May 1987.
Papadimitriou, C.H. and K.S. Stieglitz, Combinatorial Optimization, Prentice-Hall,
Englewood Cliffs, NJ, 1982.

Parnas, D.L., ‘“‘A Generalized Control Structure and Its Formal Definition,”
Comm. ACM, vol. 26, no. 8, pp. 572-581, August 1983.

Pearl, J., Heuristics, Addison-Wesley, Reading, MA, 1984.

Peleg, S., ““A New Probabilistic Relaxation Scheme,”” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. PAMI-2, no. 4, pp. 362-369, July 1980.

Pratt, V., “Modelling Concurrency with Partial Orders,”” International J. Parallel
Programming, vol. 15, no. 1, 1986. Also Stanford Tech. Report STAN-CS-86-
1113, June 1986.

Rosenfeld, A., R.A. Hummel, and S.W. Zucker, ‘‘Scene Labelling by Relaxation
Operators,”’ [EEE Trans. Systems, Man, and Cybernetics, vol. SMC-6, no. 6, pp.
420-433, June 1976.

Saint-Dizier, P., *‘On Syntax and Semantics of Adjective Phrases in Logic Pro-
gramming,”’ Rapport de Recherche 381, INRIA, B.P. 105, 78153 Le Chesnay
Cedex, FRANCE, March 1985.

Scarf, H.E., ‘“‘Fixed-Point Theorems and Economic Analysis,”” American Scien-
tist, vol. 71, no. 3, pp. 289-296, May-June 1983.

Schmidt, D.A., Denotational Semantics, Allyn and Bacon, Inc., Boston, 1986.

Shostak, R.E., ‘‘On the SUP-INF Method for Proving Presburger formulae,”
Journal of the ACM, vol. 24, no. 4, pp. 529-543, October 1977.

Shostak, R.E., “‘Deciding Linear Inequalities by Computing Loop Residues,”
Journal of the ACM, vol. 28, no. 4, pp. 769-779, October 1981.

Smart, D.R., Fixed Point Theorems, Cambridge University Press, New York,
1980.

Southwell, R.V., Relaxation Methods in Engineering Science, Oxford U. Press,
1940.

Stoy, I., Denotational Semantics: The Scott-Strachey Approach To Programming
Language Theory, MIT Press, Cambridge, MA, 1977.
Stoy, J., ‘‘Some Mathematical Aspects of Functional Programming,”” in Func-

tional Programming and its Applications, ed. J. Darlington, P. Henderson, D.A.
Turner, Cambridge University Press, New York, 1982,

Tarjan, R.E., ‘A Unified Approach to Path Problems,’’ Journal of the ACM, vol.
28, pp. 577-593, 1981.

?

90.

91.

92.

93.

94.

95.

- 80 -

Tarski, A., ‘“‘A Lattice-Theoretical Fixpoint Theorem and its Applications,”
Pacific J. Math, vol. 5, pp. 285-309, 1955.

Traugott, J., ‘“Nested Resolution,”” in Proc. 8th CADE, ed. J.H. Siekmann, pp.
394-402, Springer-Verlag, LNCS #230, Oxford, 1986.

Wadsworth, C.P., ‘““The Relation Between Computational and Denotational Pro-
perties for Scott’s D_-Models of the Lambda-Calculus,”” SIAM J. Comput., vol. 5,
no. 3, pp. 488-521, September 1976.

Wadsworth, C.P., ‘‘Approximate Reduction and Lambda Calculus Models,”
SIAM J. Compuz., vol. 7, no. 3, pp. 337-356, August 1978.

Waltz, D., ‘‘Generating Semantic Descriptions from Drawings of Scenes with
Shadows,”” in The Psychology of Computer Vision, ed. P. Winston, pp. 19-92,
McGraw-Hill, New York, 1975.

Zimmermann, U., Linear and Combinatorial Optimization in Ordered Algebraic
Structures, North-Holland, New York, 1981. Annals of Discrete Mathematics,
vol. 10.

