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ABSTRACT

A new system of defeasible inference is presented. The system is made up of a body of six rules
which allow proofs to be constructed very much like in natural deduction systems in logic, Mul-
tiple extensions do not arise. Five of the rules are shown to possess a sound and clear probabilis-
tic semantics that guarantees the high probability of the conclusion given the high probability of
the premises. The sixth rule appeals to a notion of irrelevance: we explain both its motivation
and use. 1
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T This is a revised version of the report {Geffner et. al. 87]. The main departure here is the ehmmanoq of
the notion of ‘monotonicity in context’ in favor of the more primitive notion of ‘potential relevance’ in
section 2.3,
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Abstract

A new system of defeasible inference is presented. The system is made up of & body of six rules
which ailow proofs to be constructed very much like in natursl deduction systems in logic. Multiple
extensions do not arise. Five of the rules are shown to Possess & sound and clear probabilistic semantics
that guarantees the high probability of the conclusion given the high probability of the premises. The
sixth rule appeals to a notion of irrelevance; we explain both its motivation and use.t

1 Motivation

Belief commitment and belief revision are two distinctive characteristics of common sense reasoning. Classical
logic as well as probability theory have been shown to be incapable of capturing these features by themselves.
The former due to its inability to revise old beliefs in the light of new information; the latter due to its lack
of commitment: propositions are believed only to a certain degree which dynamically changes with new
information.

In recent years there has been an effort to enhance both formalisms in order to overcome these limitations.
Those working within the probabilistic framework have tried to devise ‘acceptance rules’ to work on top of
a body of probabilistic knowledge, as to create a body of believed, though defeasible, set of propositions [see
Loui 85, Pearl 86b]. Those working within the logic framework have developed ‘non-monotonic’ inference
systems [AI Journal 80] based on classical logic, in which old theorems can be defeated by new information.

The purpose of these extensions has been to produce an inference machinery capable of generating all
conclusions that ‘reasonably’ follow from a given body of knowledge. It is in fact in this respect that the
probabilistic approach has enjoyed a significant advantage over the logicist approach. A body of probabilistic
knowledge together with an acceptance rule uniquely determines the conclusions that can be derived. Both
the probabilistic knowledge base and the acceptance rule can be modified so as to capture those conclusions
that seem reasonable. Non monotonic logics, on the other hand, have lacked such clear semantics. Not only
it has been difficult to tune the set of defeasibie rules so as to ‘entail’ the desired conclusions [see Hanks and

! This is a revised version of the report [Geffner ¢, sl 57]. The main departure here is the eimination of the notion of
‘monotonicity in context' in favor of the more primitive notion of ‘potential relevance’ in section 2.3.




McDermott 86], but it has even been difficult to characterize what the desired conclusions are [see Touretzky
et al. 87, “A clash of intuitions ...”).

While well understood, the probabilistic approach seems to be both too expensive and precise for the
task at hand. Too many parameters are needed to fully specify a body of probabilistic knowledge? and,
moreover, these parameters are sometimes very difficuit to assess in & consistent way. For example, while
We can estimate the probability of birds flying; it is much more difficult to estimate the probability of non-
birds flying. Furthermore, the expense of computing with numerical parameters does not seem necessary for
coarse-grained acceptance rules.

In this paper we show that it is possible to achieve the best of both worlds by presenting a system
of defeasible inference which operates very much like natural deduction systems in logic and, yet, can be
justified on probabilistic grounds. The resulting system is related on one hand to the logic of conditionals
developed by Adams [Adams 86], in which conditionals of the form ‘if P then Q’ are interpreted as alserting
that the conditional probability of Q given P is close to one. On the other hand, the appeal to a notion
of relevance in our formulation bears a close relationship to those approaches in which the structure of
arguments supporting contradictory conclusions are examined in order to eliminate the effacts of spurious
extensions [Loui 86, Poole 85, Touretzky 84].

The structure of the paper is as follows. In section 2 we define the language as well as the rules of
inference that make up the system. In section 3 we illustrate its applicability by going through a set of
examples. We discuss related work in section » and summarize the main contributions in section 5.

2 A System of Defeasible Inference

2.1 Rules of Inference 1-5

The language of the system is a straightforward extension of the language of FOL. Besides the logical
formulas, it comprises defeasible rules of the form P — @, where both P and Q are closed logical formulas,
A contert is a pair (L, D) of logical formulas L and defeasible rules D. A default schema of the form
p(z) — ¢(z) in D, where p(z) and ¢(z) are logical formulas with z as their only free variable, stands for the
infinite collection of defeasible rules obtained by substituting by each the ground terms comprised in the
language. We will sometimes refer to the elements of L simply as formulas, and refer to the members of D
as defaults,

A theory T = (K, E) is composed of & background contert K = (L, D) and an evidence set E of additional
facts learned. We will sometimes find useful to refer to the global context (L U E, D) associated with the
theory T = (K, E) as Ex. The system of inference implicitly defines the set of conclusions A that follow
from Ex. We will denote such a relation as E Iz A, and say that h follows from the evidence set F in context
K, or simply that A can be derived from £ in X. The initial set of rules we are going to consider is given
by:

Rule 1 (Defaults) If £ — h ¢D then E k- 4

Rule 2 (Logic theorems) If LU E | A then £ k &

Rule 3 (Triangularity) If £ bz h and E kg £’ then E, E' g h
Rule 4 (Bayes) If £ |z £’ and E,E' Iz h then Elzh

Rule 5 (Disjunction) If £ Iz A and E* khthen EVE lth
?Though not as many as is usually thought. See [Pearl 88a] for a discussion of structuring probabilistic knowledge.




Rule | permits us to conclude the consequent of a default when its antecedent is all that has been
learned. Rule 2 states that theorems that logically follow from a set of formulas can be concluded in any
theory containing those formulas. Rule 3 permits the incorporation of a set of established conclusions to
the current evidence set, without affecting the status of any other derived conclusions. Rule 4 says that any
conclusion that follows from a context whose evidence set was augmented with conclusions established in
that context, also follows from the original context alone. Finally, rule 5 says that a conclusion that follows
from either of two evidential sets, also follows from their disjunction.?

Rules 1-5 can be shown to share the inferential power of the system of rules proposed by Adams in {Adams
66] for deriving what he calis the probabilistic consequences of a given set of conditionals. Interestingly, rules
3 and 4 also appear in [Gabbay 85] as relations among wfls to be satisfied by any non-monotonic logic.

We proceed now to investigate some of the properties of the system of defeasible inference defined by
ruies 1-5. Later on, we shall discuss some of its limitations as we enhance the systemn with a sixth rfule.

2.1.1 Some Meta-Theorems

Theorem 1 (Logical Closure 1) IfElgh and E,hF A then E Iz A,
It follows by sequentiaily applying rules 2 and 4.

Theorem 2 (Logical Closure 2) IfE Iz A, E kA, and E,A A’ h", then E kA",
By rule 3, we obtain E, A kg A'. From rule 2, weget E h h' Iz A", Applying rule 4 twice, the theorem is
proved,

Theorem 3 (Equivalent Contexts) IfE = E’ and E lh, then E' iz h .
Since E I~ E’, by applying rules 2 and 3 we get E, E' [z h; which together with E’ - £ and rules 2 and
4, leads to E' ¢ .

Theorem 4 (Exceptions) IfE,E' Iz h and E Iz ~h, then E k-E'.

From E, E’ Iz h, we can obtain by theorem 1, E,E'lghv -E'. On the other hand, from rule 2 we
can conclude E,~E' |z hv —E', Combining these two results by means of rule 5 and theorem 3, we get
Elz hv =E’ and, therefore, E bk ~E’ by virtue of theorem 2 and F I —A.

Some non-theorems:

EF E' and E' Iz h does not necessarily imply £ I A
Ek h and E' Iz h does not necessarily imply E, E' i A

Note that the first non-theorem is clearly undesirable, If accepted, it would endow our system with
monotonic characteristics of classical logic, precluding exceptions like non-flying birds, etc. Let us just say
that neither of them is sound or, what amounts the same, that it is possible to find counter-examples which
intuitively violate those rules.

As we shall see later, the system of rules 1-5 defines an extremely conservative non-monotonic logic. In
fact, the inferences sanctioned by these rules do no involve any type of assumptions regarding information
absent from the background context. To illustrate this fact, let K = {L,D} and K’ = (L', D’} denote two
background contexts, such that K < K’,ie. LC L' and D C D’. We have the following theorem:

Theorem 5 (K-monotonicity) [fE g h and K < K’ then E kh.

This theorem follows easily by induction on the minimal length n of the derivatior_: of ERh Ifn=1,it
means that A was derived from E in K either by rule 1 or by rule 2. In either case it is easy to show that

Rule § can be shown to be squivalent, in the context of rules 14, to rule: ‘If £, E' bz h then Elg ~E' v A ', The latter was
used, instead of rule 5, in the formulation reported in [Geffner et ol 87].



h can be derived from E in K’. Let us assume now that A is derivable from £ in X in n steps, n > [, and
that the theorem holds for all the proofs with length m < n, Clearly the laat step in the derivation must
involve one of the rules 3-5. In any case the antecedents of such a rule must be derivabie in a number of
steps smaller than n and, therefore, by the inductive assumption, they are also derivabie in K', from which
it follows that, using the same rule, 4 is also derivable from E in K',

Finally, we can show rules 1-5 to be probabilistically sound. For that purpose we define probabilistic
models in the following way. A probability distribution Px(-) is a probabilistic mode! of the background
context K, iff:

Px(LIE) = 1 for any body of evidence E, and
Pi(ald) = 1 for every defaulta — b e D,

 Theorem 6 (Probabilistic Soundness of Rules 1-5) Let the expressions Eilkh,i=1; .;.,n,-, 'dénote
each of the antecedents of rule jabove, j =1,....5; and let £ kz A stand for the consequent of such a rule.
Then for any probabilistic model of &, Px(+), such that Pg(hi|E) = 1, for i = L,....nj; then Py (h|E) = 1.

A proof can be found in the appendix. This theorem guarantees the high probability of conclusions
derived by means of rules 1-5 from a set of highly likely premises.* Adams (Adams 86] additionally provides
a completeness result for a systern of inference with equivalent expressive power to the one defined by rules
1-5.

We now turn our attention to an example that shows how the body of rules introduced so far can account
for simple patterns of non-monotonic reasoning.

2.2 Example

Example 1. Let us consider the theories I = (K,E\)® and T3 = (K, E3), with background context
K = {L,D), and L = {Vz. penguin(z) D bird(z)}, D = {penguin(z) — flies(z), bird(z) — flies(z)},
E) = {penguin(Tim)}, and E; = {penguin(Tim), bird(Tim)}. :

bird

Tlies

panguin

Figuze 1: The penguin triangle

Concluding that ‘Tim does not fly’ in context X knowing that ‘Tim is a penguin’ amouats to
proving penguin(Tim) g ~flies(Tim). The proof gets reduced to a single application of rule 1, since
penguin(Tim) — ~flies(Tim) ¢ D.

1. Pearl [Pearl 87] has also recently advocated the use of probability theory to fill the ‘semantic gap' that have chara.cteriud
algorithms dealing with inheritance hierarchies with exceptions. He proposes an c-semantics, which implicitly defines, in terms
of probability theory, the set of conclusions which ought to follow from a given default hierarchy. While we also appeal to
probability theory to define the semantics of the system proposed, its soundness will follow directly directly from the soundness
of its rules of inference.

SAs it is usual, we display the relationships embedded in a given theory by means of graphs. Pasitive defaults P — Q and
implications P 3 Q are depicted by Positive links (~). Negative defaults P = —Q and implications P 3 ~Q on the other hand,
are represented by negative links {4).




Proving E; Iz - flies(Tim) is slightly different since a new fact, bird(Tim), needs to be assimilated. The
proof goes as follows:®

1. penguin(Tim) bz ~flies(Tim) rule 1
2. penguin(Tim) Ik bird(Tim) rule 2
3. penguin(Tim), bird(Tim) kg —~ fliea(Tim) rule 3; 1, 2.

Note that the new piece of information available in T3, bird(Tim), does not alter the consequences that
followed from the older theory T} since, as reflected by rule 3, the new information learned was itself one
of the consequences of T}. It is interesting to note that the system proposed here, in contrast with other
systems of defeasible reasoning reported in the literature, has different proofs for the proposition = flies(Tim)
in theories T) = (K, E,) and Ty = (K. E3). In fact, in the first theory, the resulting proof qualifies as a single
shot proof : it was not even Decessary to consider the impact which the consequences of being a penguin (its
birdness} could have on its (in)ability to fly. .

To better illustrate this difference, let us consider a new theory T} = (K’, E}), with K = (L. D", L' = {},
D’ = {penguin(z) — —flies(z),bird(z} — flies(z)}, and E| = {¥z. penguin(z) > bird(z), penguin(Tim)};
in other words, T} is identical to T} except for the fact that the class inclusion penguin{z} D bird(z) is
now treated as a learned fact, rather than as part of the background context. We find that, although
both theories share the same set of defaults D and the same set of logical formulas, [’ U E} =LUE|, the
conclusion — flies(Tim), shown to be derivable in theory T}, is not derivable from T}, i.e., E{ &~ flies(Tim).
The reason for this unusual, but desirable behavior, is that the system now takes the relation ‘penguins are
birds’ as a new piece of knowledge, independent of the background knowledge used to assume that most
Penguins do not fly, and which happens to support the opposite conclusion. 7

In our framework, the preference for the conclusion that penguins do not fly in spite of beings birds, is
not to be explained in terms of class specificity alone, but in terms of the knowledge that went into defining
the default rules. If the system cannot ensure that the default stating that ‘most penguins do not fly’ already
took into account the facts that penguins are birds, and that birds usually do fly, it cannot guarantee, upon
learning the former, that it should not revise its conclusion,

This shows that formulas cannot be freely moved between the background context and the evidence set
without altering the meaning of the theory they define. Propositions in a background context K represent
knowledge shared by all the defaults in K. Unlike formulas in the evidence set, they do not represent pieces
of evidence that need to be assimilated in order to reach a conclusion. That is the proof theoretic significance
of rule 1.

2.3 Relevance

The common interpretation of defaults of the type a — b is in the form of a disposition to believe b when
a is believed and no reason for not doing 30 is apparent. This reading has two implications we shail be
concerned with: one which requires conclusions to be retractabie in the light of new refuting evidence; the
second which requires conclusions to persist in the light of new but irrelevant evidence. Rules 1-5 excel at the
first requirement: their soundness prevents preserving a conclusion in a context in which its high probability
cannot be guaranteed. In example 1 we have shown, for instance, that while birds can be assumed to fly,
birds known to be penguins cannot. On the other hand, it is eagy to discover that the same body of rules
fail miserably in the second aspect. To illustrate these limitations, let us consider the background context
K = (L,D) with L = {} and D = {a —b}. Rule 2 allows then to conclude a kg b. However, if a new piece
of information e, that bears no relation to b is discovered, rules 1-5 fail to prove a,¢ Iz b and, therefore, to
maintain the belief in b in the new context.

° i ina bhas smsocisted both a number and a justification. The latter
dicare the s el 1 Seing th o o ol o o e cciaied bt mmber sad o _ _

TIf this behavior does not seem convincing, consider for instance the case in which you have been assuming your neighbors

to be respectable people and you suddenly come to know that they were found suspect of drug dealing. Surely learning the
latter might lead some people to doubt, at least, about the previous assumption.




It is clear that if Wwe want the system to exhibit reasonable inferences, like the one illustrated by the
example above, we need to restrict the family of Probabilistic models relative to which a given conclysion

extensions.

The characterization of the conditions under which the acquisition of new information does not affect
the status of a given derived Proposition is closely related to the problem of charu:terizing the conditions for
argument defeat investigated by Loui, Loui (Loui 86] provides a set of rules which specify the conditions under
which an argument supporting a given conclusion is defeated bya counter-argument supporting its negation.
Rather than appealing directly to a notion of provability, these rules provide the means for comparing pair
of arguments solely in terms of their structure,

Arguments in his system represent reasons for belief in a Propasition given a set of logical formulas and
defaultsl?, Informally, in our terms, the background context K = (L, D) and the evidence set £ provide
D argument in support of formula A, in the case where either & logically follows from LUE, or there is
aa argument supporting a formula A’ and a default A’ — 4 ip p. For instance, we might take figure 2 a
epresenting the context {r}x, with X = (L,D), L={} and D = {r~fia=fr- “%f =g} Insucha
context, there is an argument supporting —g, referred as Ax (g, {r}), which corresponds to the path r 1 g
in the figure. There is also a counter-argument, Ay (g, {r}), which cotresponds to the path r — f—gq

* a set of formulas J 1 justifies a formula f ifJ;, but no proper set of it, logically entails 5
* a formula £ justifies 9, if there is a default f—ginD,

¢ aformula fvp Jjustifies g v A, if there is a default f — gin D,

'A.nothu-wlyoﬂoohn" at this example is by considering the background context X' = L'\ D% > K =(L D), with L' = {}
and DY = {a-ob,al\e—o-b}. Clearly K’ does not permit the conclusion b from a and e, However, if X sanctioned such a
conchuion, 30 should K', in light of the K-monotonicity of the rujes {Theorem 5}. . )

’Thamuonfcrchoodn‘defuduutheobjocuddd’m, ra&u&a&cwd&mdﬁuduwmuexphmd
below. ) ) i

1%Very much like Poole’s thecries [Poole 83) in default logic and Tourstsky's paths in inheritance hierarchies [Touretziy 84)




r a

Figure 2: Paths as Argumenta

Additionally, we require arguments to be both consistent and non redundant. An argument Ax(h E)
is consistent if the set which comprises the formulas in Ax(h E) together with the formulas in £ U [ is
consistent whenever the latter set is. For an argument to be redundant, let f denote a formula in Ag(h, E),
with parents J; = {f!, ..., f*, .., f*} and ancestors J7, and let f* denote a non-source formula. Then' we say
that Ax(h, E) is redundant if there is a formula f in Ag(h, E) which is logically entailed by the formulas

in the set EU L U J} =~ {f'}. In such a case we aiso say that the justification of f in such an argument is
redundant.

For instance, the path a — f — g in fig. 2, does not qualify as an argument for ¢ in a context having
E = {a, f}, since as f belongs to L U E but does Dot appear as source, it makes the justification of g
redundant. Note however that in the same context, the path f — g does qualify as an argument for g-

The support of an argument refers to the set of formuias in L U E which actually take part in it, i.e., to

the formulas which appear as sources in the argument graph. For instance, both the arguments Ag(g,{r})
and Ag(-g,{r}) above, have support {r}. )

Rather than defining defeat by comparison of pairs of arguments as Loui does'!, we appeal to the notion
of irrelevance. The defeasibility criterion we shall propose asserts essentially, that a formula e would defeat
a default a — b only if it is relevant to ~b. As a first step in formalizing such an idea, we introduce the
following definition.

We say that a formula e is potentially relevant to formula A in the context Ex, where K = (L, D), if and
only if e does not logically follow from £ U E and there is an argument Ay (h, L U {e}), with support S, such
that e¢ S. When ¢ represents a formula not potentially relevant (p.r.) to A in Ex we will write / kih. e E).
Sometimes we will use the notation Ix(h, ¢) as an abbreviation for Ix(h, ¢;9).

For instance, from the argument that corresponds to the path a — f — g, it follows that a is p.r. to g in
the context {r}x. This is no longer true however in the enhanced context {r, f}x, because the presence of
f in the context renders a no longer p.r. to g. We refer to those situations as saying that f blocks a from g.

Note that the definition of potential relevance can be easily extended to deal with set of formulas, i.e.
if we let ¢(E’) denote the formula obtained by conjoining the formulas in E’, we say that £’ is potentially
relevant to 4 in context Ey, if and only if ¢(E’) is. As an illustration we might consider fig. 2 again. Clearly
both formulas f and a A f are potentially relevant to ¢ in context {r}x. Notice however that ~a A f is not.

As argued above, defauits of the form g — b are usually understood to state that ‘a is a reason for
believing b, as long as there is no reason for believing —4’. In our terms, that amounts to say that if there is
a default a — b in D, and q is all that has been learned, the belief in the conclusion b should persist upon
acquiring a new piece of evidence ¢, as long as ¢ is not potentially relevant to ~b. Expressed as a new rule,
we have that, given a theory T = (K, E), with K = {L,D):

Rule 6’ (Explicit Irrelevance) If a — b ¢ D and Ix(-b,¢; {a}), then a,e Iz b.

Rule 6’ expresses a condition under which a new piece of evidence ¢ can be safely assumed t!:) be :'rr'ele:‘mnt
to a given proposition in a given context. Together with rules 1-5 it indeed succeeds in producing the desired

t! That would turm out to be tco involved for our purposes and sometimes would render results slightly different than thoee
that follow from our definition.




conclusion in the example discussed at the beginning of this subsection.

We are now in a position to provide a justification for choosing defaults, rather than the consequents
of defaults, as the objects of defeat. Let us consider the context K = {L,D), with L = {} and D =
{dita—5, dyzaAe— =6, dy:ancAd—b}. Clearly, from d; we can prove a fz b. Furthermore. if we
consider the new piece of evidence e = cA d, we can still show a, e Iz b. Notice however that latter conclusion
does not follow from the presence of d; in D, but from the presence of d;; the evidence ¢ defeats dy, though
not its consequent b. On the other hand, had dy not been defeated by e, rule ¢’ guarantees that ¢ would not

have defeated its consequent either. Defeat of defaults appears in our framework as a finer grained notion
than defeat of formulas.

The question that we shall address now, is whether there are other formulas which can be reasonably
assumed to be irrelevant to a given proposition, even when they are potentially relevant to it. .In the penguin
example, for instance, the fact that Tim is a circus bird would be p.r. to flying, via the argument’that
corresponds to the path Tim — circus-bird — bird — fly. Thus, if we know that Tim is a penguin, further
discovering that he is also a circus-bird would lead us to retract the conclusion that Tim does not fiy. Note
that such retraction should be prevented because, as we argued earlier, the default ‘penguins typically do not
fly’ placed in a background context together with ‘penguins are birda’, and ‘birds typically do fly’, already
presumes that Tim, the penguin, is also a bird. This suggests that for a new piece of evidence ¢ to cast
doubt upon Tim’s flying handicap, e must support Tim’s flying on grounds different than birdness. Learning
that Tim is a circus bird should not lead to such a retraction, unless the background context contained
information suggesting that circus birds have exceptional flying abilities!2,

These considerations show that some propositions should not affect the status of the default consequent,
even if they can appear to be potentially relevant to its negation. The identity of these propositions can be
uncovered by means of ruie 3 (triangulazity). As a special case, the triangularity rule states that, if a — &
is a default in K, then any piece of evidence ¢', which can be explained in terms of a, i.e. alkze, will not
defeat @ — 5. This suggests that any other piece of evidence e, which is potentially relevant to ~b only on
the grounds of ¢/, should not defeat a — b either. Expressed as a new rule, we obtain:

Rule 6 (Implicit Irrelevance) .
For any defauit @ — b in D, if there exista a formula s such that
alzs , aelgs and Ix(-b,e; {a,s}), then a,e bz b .

Clearly, rule 6’ is a special case of rule 8 in which s appears restricted to s = true. That is the reason
we refer to rule 6’ as capturing ‘explicit’ irrelevance relationships, while to rule 6 as capturing irrelevance
relationships only implicit in the structure of the background context.

Note that for any non-tautological formula s, rule 8 imposes the requirement that a,e gz # must hold.
This is necessary since, while we have presented the reasons for preserving the conclusion & upon learning
e in the context {a,s}x, s is not known with certainty and, therefore, we have to make sure that s is not
defeated by e. The antecedent of rule 8 precludes such a possibility.

3 Examples

In this section we shall illustrate the inferential power of the system of default inference proposed by analyzing
several examples. To simplify notation, we will associate with each default schema of the form oz) — q_( x)
a name d;. When no confusion arises, we will use that name, d;, to refer to the particular defeasible

13That would be the case for instance, if an additional defanlt stating that ‘typically umu bu-dl fly' would be added to a
context which already containe the default that ‘typically birds fly'. Rather than ndundm uﬂormuon. the ﬂ.rlt default 'wil\d
be taken to imply that for some bird instances, coming to know that thyn%mbﬂ?@nm?dﬂmu the
time we want to predict their flying abilities. See {Pearl 87] for a brief discussion of the probabilistic semantics associated with
these assumptions.




rule of interest, e.g. p(a) — g(a). Moreover, for such a rule we will sometimes abbreviate the predicate
Ix{=q{a},r(a); {p(a)}) by the simpler expression {x(d;, r), in which the ground term a is left implicit. With
the same purpose, we will often appeal to the following proposition which trivially follows from rules 1 and
3:

Proposition 1. ifa — b and @ — ¢ then a, b ke

Example 2. Let us consider the theory T = (K, E), with K = (L, D}, L = {} and

D = {d;:ustudent(z) — adult(z), dy : adult(z) — work(z),
d3 : ustudent(z) — —work(z), dq :adult(z) A under 22(z) — ustudent(z)}.

under 22 adult

university studant

Figure 3: Adults under 22 usually do not work

We want to show that if all that we know is that Tom is an adult under 22 years old, then, with high
likelihood, Tom does not work. The proof proceeds as follows:!3

1. adult(Tom), under 22(Tom) I ustudent(Tom) rule 1; d,

2. ustudent(Tom), under 22(Tom) bz ~work(Tom) tule 6’; ds, Ix(ds, under_22)
3. u.student(Tom), under 22(Tom) iz aduli(Tom) rule 8% dy, Ix(dy, under_22)
4. u.student(Tom), under 22(Tom), adult(Tom) kg —work(Tom) rule 3; 3, 2

5. adult(Tom), under 22(Tom) k ~work(Tom) rule 4; 4, 1.

It is interesting to note that from the same background knowledge, we can also derive that most adults
are not university students. For that purpose let a stand for an arbitrary constant, then we obtain:

L. u_student(a), adult(a) Iz ~work(a) prop 1; d,, dy
2. aduit(a) bz work(a) rule 1; dy
3. adult(a) g ~ustudent(a) theorem 4; 3, 4.

Example 3.(Sandewal 86, Touretsky et. al. 87). Let T = (K.E), K=(L,D) and :

= {¥Yz.royal elephant(z) > elephant(z), Vz. african_clephant{z) D elephant(z)},
{dy :elephant(z) — gray(z), d, :royal elephant(z) — —gray(z)},
{royal_clephant(clyde),af rican_elephant(ciyde)}.

L
D
E

The proof for ~graey(ciyde) in Ex proceeds as follows:

1. royal.elephant(clyde) Iz elephant(ciyde) rule 2
2. royal_clephant(clyde), african elephant(clyde) Iz elephant(clyde) rule 2
3. royal_clephant(clyde), a frican 2lephant(clyde) bz ~gray(ciyde) rule 6; dy, 1, 2, Ix(-)

' We implicitly use the results of theoreme 1-3 within proofs to fresly change the order of conjuncts both to the left and to
to right of the provability symbel




gray ‘* elophant

SN

royal-slaphant africen-stephant
Clyde

Figure 4: Clyde is not gray

The last step uses the fact Ix(-gray,african; {royal, elephant}), which can be understood as carrying
the implicit assumption that the default ‘most royal elephant are gray’, also hoids among african elephants,
We assume that if this were not the case, the default set D in the background context would be modified
accordingly, either by explicitely asserting that most african elephant are gray, or by qualifying the default
that states the most royal elephants are not gray'4, In either case, the conclusion we have derived in this
context would be blocked.

Example 4. [Touretzky et. al. 87]. Let us consider now the theory T = (K\E), with K = (L, D), L = {}
andD:{dl :A—bﬁ, dz:A—O-"G, dg:B—'G, d4:B~C, ds:C—tF, dq:G—"‘F}.

F

"
%

A
Figure 5: A’s are F's

The goal is to derive proposition F from A. The intuition is to show that both C and -G follow from
A, and that the latter blocks A from —F. The proof proceeds as follows:

L. C,~G,AlgF rule 6 ds, Ix(ds, -G, 4)
2. AR-G rule 1; d,

3. AkB rule 1; d,

4. B AkC rule 6°; dy, Ix(dy, A)

5. AkC rule 4; 4, 3

6. ARCA-G theorem2; 2,5

7. ARF rule 4; 1, 8.

'4We have not shown however how to accommodate defaults with exceptions in our framework. The modifications for such
men.hnncemcmmm.inor.andrquinonlytomndi!‘ynﬂeﬂ.utoaﬂowanewpiecqofevidmmetoddmadefa.ulta—-b
with exception c, not only when ¢ is relevant to —& but also when it is relevant to c.
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Note that Ix(ds, -G, A) holds due to the fact that ~G renders thepath A - B &3 # F inconsistent,
preventing it to qualify as an argument.

Example 5. Let us consider now the theory T = (K, E), K = (L, DY, with

L = ({Yr.miserable(z) = —happy(z)}

D = {worksat(z,university) — happy(z), works at(z,of fice) — happy(z)},
works. at(z,of fice) A works_at(z, university) — miserable(z)}

E = {works.at(John, university), works_gt(John, of fice)},

i.e. working either at the university or at the office makes everybody happy. However, working simultane-
ously at both, creates a conflict that makes everybody unhappy. Rule 1 together with theosrem 1 feads to
E tz —happy(John). If E were reduced to either works_at(John, university} or work.at(John, of fice), or
even the disjunction of both, the opposite conclusion would be obtained. No inconsistencies appear.

Example 6. The Nixon diamond is encoded by the theory T = {K,E), with X = {L, D}, L = {}, and
D = {quaker(z) — pacifist(z), republican(z) — —pacifist(z)}.

In this theory, no conclusion regarding Nixon’s pacifism can be drawn knowing that Nixon is both a
quaker and a republican. In cur opinion, drawing no conclusion is, in this case, preferred to drawing two
conflicting extensions, as in normal default theories. It clearly indicates that the knowledge embedded in K
is not sufficient to integrate the available pieces of evidence to arrive at a conclusion. Enhancing the back-
ground context to include another default, like quakers who also are republicans are still pacifists, would
solve the ambiguity without introducing any inconsistencies.

Example 7: (M. Ginsberg) Let us consider the T = (K,E), K = (L, D},
L =}

D = {d;:quaker(z) — dove(z), ds :republican(z) — hawk(z), ds : dove(z) — —hawk(z),
ds : hawk(z) — ~dove(z), dy : dove(z) — p-motivated(z), de : hawk(z) — p.motivated(z)}
E = {quaker{Nizon), republican(Nizon)}.

The conclusion that Nixon is politically motivated would follow if we could derive that he is either a hawk
or a dove. However the latter does not follow from ruies 1-8, since D does not provide sufficient reasons for
believing either that quakers who are also tepublicans are still likely to be doves, or that republicans who
are also quakers are still likely to be hawka.1® !¢

Exampile 8. Let us finally consider the theory T = (K,E), K=(L,D), L = {}, D =
{a ¢, =baAc— b} and E = {a}. The theory turns out to be incomsistent: both & and —b can
be concluded, and then by theorem 1, any other proposition. Note that most default logics will not re-
gard this knowledge base as inconsistent. Yet, a theory comprising the sets L' = {}, I’ = {a — b} and
E' = {a,~b} would be perfectly consistent.

18]f this lack of commitment seamw countar-intuitive it s becauss the information contained in the fact that ‘typically
republicans are politically motivated’ (independently of whether they are hawks or doves) has not bonoodiﬁ.din_th- bnckpm_.nd
context. In fact, if we replace ‘politically motivated’ by ‘having an extreme position in defense issues’, not drawing a conclusion
secms o be the most reasopable choice. ) _

19The system reported earlier in [Geoffiner ot al 87, ‘Sound ... Inference’), mistakenly pcmltud to emdudn that N:xlon is
politically motivated. This was due a consequence of a wrong definition of the monotonicity-in-context predicate M, which is
no longer needed in the present formulation.

11



p-motiveted

aove 2T TR o
e

Quaker republican

< .

Nixon
Figure 8: Is Nixon politically motivated ?

4 Related Work

As noted in [Reiter et al. 81), the logic for defauit reasoning proposed in [Reiter 80} requires exceptions
to be explicitly stated in order to Prevent the multiplicity of spurious extensions. Recently, several novel
systems of defeasible inference have been proposed, motivated by the intuition that it should be possible
to filter the effect of spurious extensions, without the need to make exceptions explicit. Among them, the
system closest in spirit to the scheme proposed in this paper is the system of defeasible inference proposed
by Loui.

Loui’s system [Loui 86] is made up of & set of rules to evaluate arguments. He defines a set of (syntactic)
argument attributes (like ‘has more evidence’, ‘is more specific’, etc.), and a set of rules, which allow the
comparison, evaluation, and selection of arguments. This set of rules seems to implicitly embed most of the
inference rules that define our system, and can be mostly justified in terms of them. Still, it is possible to
find some differences. One such difference is that Loui's system is not (logically) closed. It is possibie to
believe propositions 4 and B, and still fail to believe A A B (Loui 86]. In our scheme, the closure of the
propositions believed follows from theorems 1 and 2, In particular, if the arguments for 4 and B in a given
theory are completely symmetric, and AA B does not follow for some reason (like conflicting evidence), then
neither A nor B will foilow.

Another difference arises due to the absolute preference given by his system to arguments based on
‘more evidence’. As the following example shows, this criterion might lead to counter-intuitive results.
Consider the context K = (L, D) with L = {} and D = {A—~B,Cw=-B,AAF — C}; Loui's system
would conclude B, given the evidence E = {A, F}, merely because the evidence supporting the argument
A — B, constitutes a proper subset of the evidence supporting the competing argument AAF — C — - 5.
Yet, if proposition C, whose truth was presumed in the argument supporting ~B, were learned. Loui's
systemn would retract its belief in =B, since C renders both F and A irrelevant to ~B and, therefore, neither
the argument which supports B, nor the argument that supports ~B, could be said to be based on ‘mote
evidence’ than the other. Our system, as expected, will draw no conclusion in either case, since the joint
influence of both A and C on B (or ~B) cannot be derived from the given context.

The system reported by Touretzky in [Touretzky 84] was motivated by the goal of providing a se'mant.ica for
inheritance hierarchies with exceptions. He argues that there is a natural ordering of defaults in 1nher1ta.9ce
hierarchies that can be used to filter spurious extensions. In this way, his system succeeds in capturing
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inferences that seem to be reasonable, but which escape unaided, fixed-point semantic systems like Reiter’s.
Still, Toureztky’s system can be regarded more as a refinement of Reiter's logic than as a departure from it
(see {Etherington 87]). As such, it still requires to test, cutside the ‘logic’, whether a given proposition holds
in every (remaining) extension. Moreover, requirements of acyclicity are at the heart of the definition of
the inferential distance principle, restricting therefore its range of applicability. It is interesting to note that
rules 3 and 6 seem to convey ideas very simiiar to Touretzky’s inferential distance. Still, while the inferential
distance principle is used to discard ‘inadmissible’ arguments, the rules presented in section 2 are used to to
prevent them from ever evolving to a ratified conclusion.

In {Poole 85), Poole has proposed another mechanism for dealing with the problem of multipie, spurious,
answers that arises in Reiter’s default logic. This mechanism consists of comparing the ‘specificity’ of the
knowledge embedded in the arguments supporting contradictory conclusions. An argument shown to be
strictly ‘more general’ than another argument, can be discarded. This criterion seems in fact very close to
Touretzky's inferential distance. Still, they seem to differ in an important aspect. Unlike Touretzky, Poole
compares the specificity of the arguments isolated from the rest of the knowledge base. It seems that this
might lead to undesirable resuits. For instance, in example 2 (fig. 3), none of the arguments supporting
the conclusion that Tom works, or that Tom does not work, can be determined to be more specific if the
default that states that most students are adults— which does not take part in the competing arguments—
is ignored. Like Reiter’s and Toureztky’s, Poole's system seems to also require to test, outside the *logic’,
whether a proposition holds in every (remaining) extension in order for the proposition to be accepted.

5 Summary

The main contribution of the proposed framework for defeasible inference is the emergence of a more precise,
proof theoretic and sernantic account of defaults. A default P — Q, in a background context K, represents
a clear cut constraint on states of affairs, stating that if P is all that has been learned, then @ can be con-
cluded. We appealed to probability theory to uncover the logic that goveras this type of ‘context dependent’
implications when other facts besides P are learned. We have then shown that the inferences permitted by
our system are authorized in light of the probabilistic interpretation.

Additionally we have introduced a notion of irrelevance as a set of sufficient conditions under which belief
in the consequent of a given default can be preserved upon acquiring new information. This notion is used
very much like a frame axiom: beliefs are assumed to persist upon acquiring a new piece of evidence ¢, unjess
¢ provides a ‘reason’ for not doing so.

The scheme proposed here avoids the problem of multiple, spurious extensions that normally arises in
default logics. Moreover, we do not need to explicitly consider all the extensions in order to prove that a
given propoeition follows from a given theory. Proofs in our system proceed ‘inside the logic’, and look very
much like proofs constructed in natural deduction systems in logie.

The system is also clean: the only appeal to ‘provability’ in the inferential machinery is to determine
when a proposition can be safely assumed to be irrelevant to another proposition in a given context. But,
in contrast to most non-monotonic logics, the definition of non-monotonic provability is not circular. The
irrelevance predicate used for constructing proofs can be inferred syntactically in terms of arguments only.
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A Probabilistic Soundness

[n order to prove the system sound, we will enumerate the standard axioms of probability [Cox 46]; they are:

P-1. 0 < P(Qle) <1

P-2. P(trueje) =1

P-3. P(Qle) + P(~Qle) = 1

P-4. P(QRle) = P(Q|R,e)P(Rle) = P(R|Q.e}P(Qle).

A sound inference rule would be one that, given highly likely premises, only derives highly likely conclusions.
For that purpose, statements of the form E k& will be mapped to probabilistic statemnents of the form
Py (h|E) = 1; meaning that h is an almost certain conclusion of £ in the background context K. Py(.)

denotes any probabilistic model of K. That is, Px(.) stands for any probability distribution over the
formulas of the language, such that, if ¥ = (L, D) then Py(-) satisfies the following conditions:

Py(LIE) = 1 for any body of evidence E, and
Pg(ald) = 1 for every defaulta — b e D

To prove an inference rule sound, we show that for any such probability distribution, the probability of
its consequent is ciose to one when the probability of its antecedent is ¢lose to one.

Rule 1 is clearly sound from the definition of Py (). Toshow the soundness of rule 2, we need to show that
if Px(h|E, L) = 1, then Px(h|E) 2 1. This follows by noticing that Px(h|E) > Py(h|E,L) Px(L|E) = 1.

To prove rule 3 sound, we have from axioms P-3 and P-4 that :
Pi(h|E) = Px(h|E, E) Px(E'|E) + Px(ME,-E") Px(-E'|E),

so that if, as in rule 3, we have that Pi(h|E} = 1 and Px(E’'|E) = 1 (and therefore Py (=E’|E) 2 0), then
we must also have Px(h|E, E') = 1.

Rule 4 is a straightforward consequence of axiom P-4. To show the soundness of rule 5 we use rules 1-4
shown already to be sound. First notice that £ Ik E v E’ holds by rule 2, thus, knowing that E k£ A, we
can derive £,Ev E' iz h. Analogously, from E’ ke h, we can derive E',E'V E' k- h. Now from Pi-P4 the
following equation holds:

Px(~A A E3|Er) = Px(-h|Ey, Ey) Px(E3|E;) ,

from which we can show that if E;, E; Iz A holds, so must E\ Iz E3 D h. We can show then that if £k h
and E' Iz h, we must have both EV E' [z E;, D A and E v E' %% E2 D h, from which the conclusion of ruje 5
follows by virtue of theorem 2.
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