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Abstract. A logic can be formulated with information systems as elements,
The calculus of this logic is similar to, but not identical with, Boolean
algebra. The logic is inductive--conclusions have more information than
premises. Inferences have a strong justification; they are valid for all
proper scoring rules.

DOMINANCE.,

Information systems (IS) are well-known constructs in the knowledge
sciences. Examples are: experiments, communication coding schemes, signal systems,
pattern recognition techniques, surveillance systems, medical diagnosis, many expert
systems, etc. Despite the wide variety of applications /S have a common underlying

structure:

1. A set of events E (hypotheses, events of interest, target events, states of the
world,...)

2. A set of events I {observations, data, signals, messages,...)

3. A joint probability distribution P (E. I') on hypotheses and observations (the
period in P (E.1) denotes the logical conjunction “‘and’’.)

IS have a significant property from the standpoint of creating a logic, they allow
dominance --one information system can have a higher expected value than another for
all payoff functions. This property contrasts sharply with probability distributions. If P
and Q are any two non-identical probability distributions, then there is a payoff function
(decision matrix) that engenders a higher expected value for P, and another payoff
function that engenders a higher expected value for Q.

Representation of expected value is simplified by the notion of proper scoring rule. Let
P be a probability distribution on the partition of events £ = (¢, ..., &,) and let S (P, €)
be a function which assigns a score (rating, reward, payoff) to P given that the event e
occurs. S is called proper (admissible, reproducing, honesty promoting) if it fulfills the
condition
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YP(e)SP.e)2F P(e)S(Q.e) (n
E E

That is, a score rule S is proper if the expectation is a maximum when the score is
determined by the same distribution as that determining the expectation.

There is an infinite family of functions that fulfill (1). Among them is the logarithmic
score S(P ,e)=1log P (e), and the set of decisional scores. For the latter, let I/ (@ ,e) be
the payoff if action a is taken and the event e occurs, and let a* (P ) be the optimal
action if P is the probability distribution on E. S(P.,e) = U(a* (P), e) is a proper score.
The expectation of the logarithmic score is the negative of the Shannon entropy of £
(often called the information in P ) and links the theory of proper scores to information
theory. Decisional scores tie the theory of proper scores to decision theory.

Abbreviate ¥ P(e)S(P.e)by G(P)and 3, P(e)S(Q,e) by G(P,Q). The expected
E E

score of an IS is given by

HP)=3PGE)GP(E L))
1

where P (i) = Y, P (e.i) is the initial probability of the observation i. H (P) is thus the
E
average over the potential observations of the expected score of the posteriors. The

expected relative score is defined analogously,

HP,Q)=XPEGP(E ), Q(E L))
1

It is readily verified that H fulfills the analogue of (1), that is
H@P)zHP,Q) 2)

It is also straightforward to demonstrate that H (P ) is convex, and H (P ,Q) is linear in P.

(Dalkey 1987).

An IS P is said to dominate an IS Q, in symbols P 2 @, if H(P) 2 H(Q) for all proper
score rules S. It is clear that > is a partial order, i.e., it fulfills:

1. Transitivity. P2QandQ 2R 5P 2R

2. Reflexivity: P2P.
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3. Antisymmetry: P2QandQ 2P 5P =0

In addition, for a given set of events £ and a given prior distribution (£ ), 2 has an
absolute upper bound P* where for each e, P*(e {i) = 1 for some i, and O otherwise,
P* is often called ‘‘perfect information’’ in decision theory, or more jocularly, ‘‘the
clairvoyant.’’ 2 also has an absolute lower bound PO where PYe.i) =P (e)P (i). P% in
effect, consists in implementing the prior distribution. It is readily verified that

px>p 2 pl (3)

The second inequality P > P is often called the positive value of information principle
(PVI), any IS is at least as valuable as the prior /S (assuming that information is free.) (3)
is a well-known illustration of the fact that 2 is not an empty relation. {LaValle 1978).

LATTICE STRUCTURE

To proceed further in using the dominance relation us the basis for a logic,
it is pertinent to examine the lattice properties of the relation. Lattices have received
extensive attention as foundations for logics. (Birkhoff 1940).

A partial order such as 2 is called a lattice if for each pair of elements P ,Q there is least
upper bound (l.u.b) w.r.t. 2 and a greatest lower bound. Examples can be found of pairs
of IS that do not have a L.u.b., and thus 2 is not in general a lattice. However, for an
important subclass of IS, namely, those with binary hypotheses, 2 is a lattice.

Theorem 1. For the set of IS with binary hypotheses, 2 is a lattice.
Proof: Theorems 8 and 8’ in (Dalkey 1980).

IS with binary hypotheses are those which address a yes-no question: Does the patient
have AIDS? Is there life on Mars? Will a Republican be elected president of the U.S. in
19887 Is the crystal structure of the substance octahedral? In practice, binary hypotheses
are part of the stock-in-trade of the analyst. In addition, although the typical IS is not
binary, decisional problems often ‘‘boil down to’’ a binary question.

Denote the Lu.b.of P and Q by P+Q,and the glb. by P - Q. P - Q expresses the
information that P and @ have in common. P +Q expresses the ‘‘sum’’ of the
information in the two.

THE CALCULUS
Given the operations + and *, a calculus can be formulated. Listed below
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are a set of postulates for the calculus. They are listed in parallel, one set for + and the
analogous set for *. Although they are listed as postulates, they can be verified by the
construction methods described below. The calculus differs from Boolean Algebra in
that it does not have complements (negation) and is not distributive. The lack of a
negation is partially compensated for by the duality rule described below.

Pl. P+P2P PP<P
P2. P+Q 2Q+P P-Q<sQ-P

P3. P+Q 2P P-Q<P

P4, P2QandP 2R 5P 20Q+R P<Q andP<R 5> P<QR
PS. P+Q =P+R - P+Q =P+Q'R P‘Q=P'R—>P'Q=P(Q+R)

It is noteworthy that the first four postulates for + are homologous to the basic four
postulates for the propositional calculus; however, they are not as powerful because of
the lack of a negation. The first four are true of any lattice. PS5 expresses a property that
does not hold for lattices in general and distinguishes IS logic. I do not have a proof that
P1-5 are complete. The existence of a model--the canonical representation described
below--shows that the postulates are consistent.

The basic inference rules for the calculus are the transitivity of 2 and the rule of
replacement--in any statement, if P = Q, then P can be replaced by @ in any position.

In addition, the usual rules of substitution for variables and the inference rules for two-
valued logic (e.g., modus ponens for — ) are assumed. A derived rule, the duality
principle, is particularly useful. It states that any postulate or theorem remains true if +is
replaced by * throughout, and 2 is replaced by <. Note that with the duality principle,
only the + versions of P1-5 are needed. The - versions can be derived immediately with
the duality principle.

From P1-5 a variety of theorems can be generated. Among the more familiar:

T1. Idempotence: P+P =P,P'P =P.

T2.  Associativity: (P+@HR =P+HQ+R),P(Q'R)=({P Q)R.
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T3. Consistency: P 2Q,P+Q =P, P Q = Q are mutually equivalent.
T5. Absorption: P =P+P Q0 =P (P+Q).
T6.  Semi-distributivity: P (Q+R)2P Q +P R, (P+Q)Y(P+R)2P+QR.

The next three theorems are provided with proofs as an example of using the calculus.
Let P 1Q mean that P does not dominate Q and @ does not dominate P .

T7. P1Q - P+Q >P and P+Q > (Q,ie., P |Q implies that P+Q strictly dominates
both P and Q.

Proof: Suppose P 2P+Q. FromP3, P+Q 2 (Q, and thus by transitivity of
2, P 2 () contrary to the hypothesis.

T8. P=Q 5 P+R =Q+R.
Proof: FromP 1, P4+R = P+R. Whence, by replacement, P+R = Q+R.
T9. P+Q =P+R - P+Q =P+Q+R.

Proof: From the hypothesis and T8, P+Q+Q =P+R+Q.FromT1,Q+Q =0,
and thus by replacement, P+Q+Q =P+Q =P+Q +R.

T9 is of special interest with regard to the design of information systems. It states that
even though P, Q, and R are mutually non- dominating--i.e., each contains information
neither of the other two contain--if P+Q =P +R, then either Q or R is eliminable. This
contrasts with T7, which states that if P |Q , then the sum is strictly more informative
than either alone.

T10. P+Q =P+R - P+Q+R =P+Q 'R.
Proof: Immediate from P5 and T9.

T10 states that if the sum of P and Q is the same as the sum of P and R, then the sum of
all three is just the sum of P and the common part of Q and R.

INFERENCE

One mode of application of IS logic stems from elaborating the set of
theorems derivable in the calculus. This body of results appears promising in the design
of information systems, ¢.g., design of experiments. In a sense, this mode is deductive,
determining the consequences of the postulates.
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A somewhat different mode stems from applying the logic to the problem of combining
evidence. This mode is inductve. The basic inference rule in this mode is: If P and Q
are known, but the dependencies (correlation) of P and Q are not known, assume P+Q .
The justification for this rule requires some preliminaries.

Let the observation set for P be [ and the observation set for O be J; i.e.,, P is the joint
distribution P (E.I') and Q is the joint distribution Q (EJ) Let I.J denote the cartesian
product of I and /. The composition of P and Q, denoted by P.Q is a joint distribution
R(EIJ). Knowing P and @ is not sufficient to determine R. All that is known is that R
must be compatible with both P and Q, i.e.:

PEI=YR(EL) 4
J

QEJ)=YR(ELT)
I

Let K (P, Q) be the set of R which fulfills (4). K is the set of compositions of P and Q.
It is an immediate consequence of PVI that forany R inK,R 2P andR 2 Q. Since (4)
is a set of linear constraints, X is convex and closed. K does not contain all /S which
dominate both P and Q ; however, for any R which dominates P and Q, thereis an R’ in
K such that R > R’. (Dalkey 1987).

P+Q isin K, since P+Q dominates both P and Q, and if P+Q were not in K, there is
anR’inK,P+Q 2R’. If P+Q#R’, P+Q would not be the Lu.b. of P and Q. Thus,
P+Q isthe gl.b. of K.

The justification for assuming P +Q when P and Q are known is based on the following
theorem:

Theorem 2. IfR isinK(P,Q)then H(R,P+Q)2H(P+Q)2
max [H (P), H(Q )] for every proper score.

Proof Since K is convex,R’=aR +{(1-a)}P+Q)0<a<1,isinkK , and
since P+Q isthe glb.of K, H(R") 2 H(P+Q); thus, H(R") is
monotonically decreasing (with decreasing a) between R and

P+Q. H(R’, P+Q) is the line tangent to H (R") at P+Q. Thus, since
H(R")is convex, H(R, P+Q) 2 H(P+Q) (cf. Figure 1).
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HR Y

! H(R,P+Q)
H(P+ !

F+Q R’
HP+Q)zmax [H(P), H(Q)] from P3.

We can assume that the actual composition R of P and Q (i.e., the R that would be
observed in a sufficient set of observations of E.L]) is in X'. The theorem states that
whatever R may be, the actual relative expectation of P+Q H (R, P+() is greater than
the apparent expectation of either P or @. In other words, the expectation of P +( is
guaranteed and guaranteed to be greater than that of P or 0, no matter what the payoff
function of the user. Itis this guarantee which justifies the use of the term logic.

Note that the inference from P and Q to P+Q is inductive. We cannot derive P +Q
from P and Q by deductive reasoning. We could derive the actual composition R from
P and Q if we knew the dependencies between P and Q, e.g., if we knew they were
independent. Without knowing the dependencies, however, we can recommend
accepting P+Q on the basis of the strong guarantee.

In the interesting case where P and Q are mutually non-dominating (if 7 dominates Q
for example, then from consistency, T4, P+Q = P) T7 assures that P +Q strictly
dominates P and Q.

COMPUTATION
For the case of IS with binary hypotheses, the computation of P+Q and
P *Q is particularly simple. Let t(i) denote the vector (P (i le),P (i |€)), the supra-bar
indicating negation or *‘non-e.”” Order these vectors in the decreasing order of the ratio
P (i le)/P (i |&), and reindex the observations numerically in the new order. Define
TE)=YTy). TO)=(,0).Since 3 P(ile)=1, if there are m observationsin/,
i I

Jjsi
T(m)=(1,1).

The vectors T (i) can be plotted in the plane, and joining them with straight lines
generates a concave, piece-wise linear curve in the unit square lying above the diagonal,
as in Figure 2. The convex closure C (P) of this curve--i.e., the points between the curve
and the diagonal and including the curve and the diagonal—-can be called a canonical
representation of the IS P. It can be shown that P 2 Q ifand only if C(Q) < C(P).
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(Dalkey 1980).
i cP)
5 ]
T(e) B P@le)
B 5
€ 5
i -9
€ 1
1 1 ! | ] t 1 ] {
0 5
T(e)
Fig. 2

If two IS P and Q are plotted, then C(P+Q ) = <C(P), C(Q)> the convex closure of
C(P)and C(Q). P'Q =C(P). C(Q), the intersection of the two representations. This
construction is illustrated in Figure 3. For small IS--those with a relatively few
observations-- the construction is readily made by hand. For larger IS, the construction is
easily programmable for a computer.
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C(P+Q)

T(e)
5
T(e)
Fig. 3
EXAMPLE

Suppose you are worried about AIDS. You know there are two tests, each
developed by a different organization. You know that each has been studied by its
developer, and relatively good statistics exist concerning its diagnosticity. However,
statistics are insufficient concemning the joint diagnosticity of the two tests taken together.
You would prefer the (potentially) greater information of both tests, but you have no way
of interpreting the results if the two tests give conflicting results. Let A mean “‘The
patient has AIDS,’” and + mean ‘‘The test result is positive.”” Suppose the likelihoods of
test results are: (Any similarity between the numbers in the table and those for actual
tests is a miracle. I made the numbers up.)

center box tab(;); cclclcclclclc. 3T To _Ai+.5.9;:-.5..1 _ A+.1;5; .9:5

The diagnosticity of T ,, if the patient has AIDS, is low, but it is high if the patient
doesn’t have AIDS. These characteristics are reversed for T',. For the minimal
composition T ,+T , of the two tests, there are four possible outcomes: both positive, both
negative, or the two mixed cases.
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center box tabG);cccleclee!n ;TTuP (0 | Ty Ty L Ai+H+H.5 ;4-5.0 4.4 -5
w1 _A++.1 4.0 5+..4 55,05

The O ’s at + — are a mathematical artifact. In practice, the likelihoods for these cases
would be determined by a separate computation.

The table gives the likelihoods of test results given the disease state. To determine the
posterior probabilities of the disease states given test results, it is necessary to know the
prior probabilities of the disease states for a relevant population. The table below lists
the posteriors for prior probabilities of AIDS of .5 and .2.

Posterior Probability

center box tab(}); clclclc. T;;T4P (A)=5P (A)=2 ++;.83;.56 +;-;7,7 -1+:.5,.2 ;-
.17;.05

Note that the double negative is a good deal more reassuring if the prior probability is
low. The values for this example are those used in Figures 2 and 3. The joint likelihoods
were read from the graph in Figure 3.

IS WITH NON-BINARY HYPOTHESES

Although IS with binary hypotheses are of practical importance, most /S
arising in practice have multiple hypotheses. (I recently read of a computerized medical
diagnostic service with a list of over 1900 disease states and over 4000 symptoms and
test results, It was called ‘‘Hypochondriac Heaven.’”) Examples can be devised with as
few as three hypotheses where a pair of IS do not have a l.u.b. w.r.t. 2, Thus 2isnota
lattice for non-binary IS. On the other hand examples are easily devised for pairs of
non-binary 7S which do have a Lu.b. It should be clear from the preceding analysis that
for pairs of IS with non-binary hypotheses, if P+Q exists, then the inference from P and
Q to P+ is just as solid as it is for binary /S.

At present there is no algorithm for determining whether a pair of non-binary hypothesis
IS have a Lu.b. This is clearly an area inviting research.

There is a non-trivial fall-back possibility. If a specific payoff function--¢.g., the
logarithmic score--is considered ‘adequate,’” then the H function imposes a complete

order on /S, and P+Q and P 'Q w.r.i. that score always exist. For this case,
P+Q =I‘§’(§,“5“)H(R). Define the set L(P,Q)={R|P 2R, Q 2R}.

PQ= chz)g)méx) H (R). The guaranteed expectation for H (P +Q) holds for the given

score rule. This formalism was the basis for a weaker inductive logic proposed earlier.



(Dalkey 1985).
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