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ABSTRACT

This paper deals with the task of establishing a complete axiomatic basis for the probabilistic independen-
cy relation “‘x is independent of y >*. This relation is shown to be an Ammstrong relation. A set of axioms
is presented and shown to be complete for this relation. Some other dependencies in probabilistic models
are presented for which a tractable membership algorithm is given. We also justify the use of Undirected
Graphs as a represantation scheme for probabilistic dependencies.

* This work was supported in past by the National Science Foundation Grant, IRI-8610155.






2. COMPLETENESS AND ARMSTRONG RELATIONS.

As a metaphor for the concept of completeness, consider a multivariate probabilistic phenomena
for which the probability model (distribution) is unknown. For example, the search of oil involves many
variables such as: earth surface, soil, earthquake history etc. Each combination of these events (i.e instan-
tiation of the variables) has some probability to occur, however the exact distribution is unknown. An ex-
pert may supply us with a list of dependencies and independencies (i.e constrains) between the various
parameters. Such assessments, free of any numerical reference, describe constrains of the phenomena re-
gardless of the exact distribution. Our task is to find inference rules (axioms) that are powerful enough to
infer all the constrains that are logically implied by the original list given by the expert. Clearly the
desired axioms depend on two factors: the type of constrains given by the expert and the family of distri-
butions from which the model is drawn. The latter, if unknown, is taken to be the family of all distribu-
tions.

we consider three types of constrains:

1) Conditional independency constrains, syntactically denoted /(x,z,y).Where x ,y and z are
non-intersecting sets of variables and 7 (x ,z,y ) is assigned a truth value if
P(x,y lz)=P(x 1z)yP(y |z) 48]

These constrains will be referred as conditional statements. For technical convenience we shall adopt the
convention that every variable is independent of the null set,i.e., [(x ,z , D).

2) Fixed-context Conditional independency constrains. These constrains are denoted by I (x,z , ¥)
and their truth values is also determined by equation (1). The difference from the first type lies in the res-
triction that x {_y ¥ {_J z must always sum to a fixed set of variables I/. These constrains are named U-
statements. Clearly every U-statement is a conditional statement and the converse is not true.

)] Marginal independency constrains. These constrains, named marginal statements, are denoted by
(x , y) and their truth value is determined via

P(x,y)=P(x)P(y).
Note that every marginal statement can be regarded also as a conditional statement by denoting
I(x,D,y) iff P(x,y)=P(x)P(y).

The following families of distributions are considered in this paper:

1) The family of all models denoted PD.

2) The family of all non-extreme models, i.e models for which every instantiation of variables is
assigned a non-zero probability, denoted PD ™,

3 The family of all binary models, i.e models for which every variable is binary, denoted PB.

4) The family of all Normal (Gausian) models, denoted PN.



In all definitions throughout this section, we assume a fixed family of models P and a set of con-
strains § from a fixed type. An element s; of § is called a statement.

Definition: An axiom
s & s.& & s, > SorSy0r---0r$,

is sound in P if every model in P that obeys the antecedents of the axiom also obeys at least one of the
statements of the disjunction on the right hand side of the implication. When m=1 the axiom is said to be
a Horn axiom.

Notation: Let £ < S be a set of statements and let G € S be a single statement. Let A be a set of axioms.
When G is logically implied by L, i.c, every model in P that obeys I also obeys G we use the notation:
Y |== 0. When © can be derived from X by using the axioms in A we write: T |==, ©.

Definition: A set of axioms is weakly complete if for every set of statements £ C S we have
Zl=ociff Z|=, G.

In other words every logical consequence of Z can actually be derived by using the axioms in A
and visa versa every statement that can be derived is a logical consequence. Clearly, a necessary condi-
tion for A 10 be weakly complete is that every axiom of A is sound in P.

Intuitively, one would desire that the completeness of a set of axioms A would imply that every
sound axiom is derivable from A. However the definition of weak completeness does not imply such a
property. Weak completeness, as will be shortly shown, only implies that sound Hom axioms are deriv-
able from A and not necessarily an arbitrary non-Hom axiom. For this reason we define the following:

Definition: A set of axioms is complete if for every set of statements X and for every disjunction
G, 0r Gpor - - G, wehave

T l=o0y0r 6yor - 0, iff Z|l=4 G or c,or *-* G,,.

The symbols |==and |==4 are defined in the same way as for single statements.

The next two propositions give equivalent definitions for weak completeness and completeness. It
demonstrate that completeness of a set of axioms A means that every sound axiom is derivable from A.
The concepts of completeness and weak completeness are taken from database theory. In [10], Fagin
proved a proposition similar to proposition 1, for which A consists of Hom axioms. This constrain is now
relaxed. We point out, however, that Fagin‘s remarkable papers ([10], [11]) are an important basis for the
work reported herein.

Proposition 1: The following conditions are equivalent.

a) A is a weakly complete set of axioms.



b) Every sound Hom axiom is derivable from A.

¢) For every set of statements X closed under a set of sound axioms A and for every
¢ & X there exist a probability model P 4 that obeys all statements in X but does not obey G.

Proposition 2: The following conditions are equivalent.
a) A is a complete set of axioms.
b) Every sound axiom is derivable from A.

c¢) For every set of statements X closed under a set of sound axioms A there exist a
probability model P that obeys exactly the statements in .

Proof: We prove only the first proposition. The second proof is very similar and therefore omit-
ted.

a—b: LetA;: 6, & 0, & - - & 6, — G be asound Hom axiom. Let Z={0y, - , G, }.
Due the soundness of A | we have L |==0. A is weakly complete. Therefore given I we can derive G by
the axioms in A. Thus A ; is derivable from A.

b—c: Assume, by contradiction, that ¢ € X and that every model P that satisfies X also satisfies
o. Let £={0y, -+ ,0,}. Consider the axiom A;: 6, & 0, & - - & G, — ©. This axiom is
sound in P. Z is closed under A. A cannot be derived from A, for otherwise & would belong to X, con-
tradicting our selection of G.

c->a: Assume A is a set of sound axioms that is not weakly complete in P. Thus, there exists a
set Z and a statement & such that L |=0 and £ |=/=, . Let £ be a supper set of X that is closed under
A and does not contain ©. Such a set always exists because I {=/=, ¢. Construct P , that satisfies £ and
— 0. P4 also satisfies X and therefore o is not logically implied by X, contradlctmg our selection of G.

O

From the above definitions it is clear that completeness implies weak completeness. The con-
verse, however does not always hold. {An example can be found in [10], but it is long and i still hope to
bring an example from marginal statements in PB}.

We now um on to an interesting property of dependencies in PD, namely, that every complete
set of axioms is also complete. It is surprising that after differentiating these two concepts, we now state
that they are equivalent. Indeed, this result does not follow from the definitions of completeness and weak
completeness rather it is due to the following property of PD stated in the next theorem.



Theorem 3: Let S be a set of statements. Then there exist an operation © that maps finite se-
quences of probabilistic models into probabilistic models, such that if ¢ is a statement in S and if
P; i=l..n are models in PD, then G holds for &(P; i=1..n} iff ¢ holds foreach P;.

Proof: We shall construct the operation © for conditional statements. The same construction
holds for U-statements and marginal statements. First we construct a binary operation © such that if
P =P &P, thenforevery o € S we get

Pobeyso iff P,obeyso and P, obeysG.
The operation ©is defined in terms of ® as follows:
OP; li=l.n}=((P{©P,)EP)® - -P,).

Let Py(xy, - x,)and Py(xq, - ,x,) be probabilistic models (without loss of generality we
assume both models use the same variables, because if @ contains a variable that does not appear in P (
or similarly in £, ) then G trivialy does not hold in P ). LetA,, - - -, A, be the domains of x, - - -, x,,
in Py and let an instantiation of this variables be &, -, o,. Similarly, let By,---,B, be the
domains of x4, - -, X, in Py and By, - - -, B, an instantiation of these variables in P 5. The domain of
P =P,@ P, is the product domain A;B,, --,A,B, and an instantiation of the variables of P is
0By, ", 0B, Define

PPy ogBs.  r 0uBa) =Prlon, 00,00, 0) - PoBy . By oo, Ba). 2)

To prove that & satisfies the required conditions, we need the following lemma:
Lemma: For every subset {x;, » =+ * »x;, } of the variables of P, the following equality holds:

Pog B 0B, - oy B)=Piloy 0, -, 05) PoBy o Biys oo s By 3

Proof: We first prove the lemma fori, =1,i,=2,---i; =/.Forl=n equation (3) is identical
to equation (2). We proceed by descending induction. Assume the lemma holds for /= k& < n. Then,

PouBy, 0 Be) =X P(oyBy s o0ty Beg » Xy

X

= Y Pyoy, oy, 0) PaBya o, Beor s Br)
(o, Prye ALBy

oy €A, 51 € B,g

= EPl(al""vak—l’ak):"[ Y PoBr, B B

=Py(og, 0 ) PoBy, e Beot)

The proof is completed by repeating the induction step for all the n! orderingsof {x;, --,x,}.0



Let I (x, z, y) be an arbitrary statement. Let ¢t o, O, be an instantiation of x, y, z in P, and
let B, B), , B, be an instantiation of x, ¥, z in P,. It is left to prove that

Px,z,y)=Px,z)- POy | z) iff Pix,z,y)=Pix,z)- Py |z) and

PZ(xsz’y)z‘PZ(xsz)'PZ(y IZ)

<-=:

P(axﬁxvayBy’asz)=Pl(ax!ay’az)'PZ(Bx’By’Bz)
=P (0, o) - Py(oy | 0p) - Py(By, B,) - PaBy | B,)

_ [ Pitey . 00)-PoB, B
=P (o, By, o, B;) _ P (o) - Po(B,)

_P( . .
=P(axBx’a2Bz) ??&' Ba;B )‘|

'_"P(axBx’a‘sz)'P(ayﬁy t(}"sz)

P(axBx’ ayBy’ asz)
PZ(Bx’ By! ﬁz)

_ P(axﬁx’azﬁz)'P(ayBy’asz)
PZ(ﬂx'By!Bz)'P(azﬁz)

= Pl(ax’az)-Pl(aJ”az) . PZ(Bx’Bz)'PZ(By:Bz)
Pl(az) PZ(Bx’ ﬁy’Bz)'P2(Bz)

P2(Bx’ﬁz)'P2(By I Bz)
PZ(Bx’ By’ Bz)

Poog, o, 0,) =

=P1(axaaZ)Pl(ay Iaz)

L P (0, 0,) P (e | &) Const
By summing over all values o, we get that Const =1, Hence 7 (x, z, y ) holds both in P, and P,. [J
Definition: A set of constrains S is said to be an armstrong relation in P (a family of distributions ), if ex-

ists an operation & that satisfies the requirement of theorem 3 in P. For example conditional indepen-
dence is an armstrong relation in PD.



Corollary: If a set of constrains is an armstrong relation in P then every weakly complete set of axioms
is also complete.

Proof: If A is weakly complete, then by part (c) of proposition 1, for every £ < S closed under A
and G € X there exist amodel P ; € P that realizes Zand -~ 6. Let P = ©(P ; | 6 & I}. P satisfies part
(c) of proposition 2, hence A is complete,

Remark 1: The operation ®is well defined in P, if for every P; i=1.n we get @P; € P. For
example, conditional independence is an armstrong relation in PD ™, because the model @P; has a pro-
duct form of non-zero quantities and therefore ©P; is also a non-extreme model that belongs to PD .
However, conditional independence is not an armstrong relation in PB. We first note that if P and P,
are both binary, P, © P, is not binary. We now need to show that there exist no operation € that
satisfies theorem 3. This proof is postponed until after equivalent definitions of armstrong relation are
given.

Remark 2: If conditional independence is an armstrong relation in P then also marginal indepen-
dence is an armstrong relation in P. The converse, however, does not hold. For example consider the Nor-
mal distributions PN. In normal models P (at, B)=P (a0} - P (B ) iff pup =0 where pyg is the correla-
tion factor of the variables o and }. Given a set of normal models we construct the normal standard dis-
tribution ©P; by assigning pyg =0 in ©P; iff Pop =0 in every P;. All other correlation factors are as-
signed a non-zero quantity p ( p satisfies n -p2 < 1 to assure that the covariance matrix of ©P; is positive
defined ). Therefore, marginal independence is an armstrong relation in PN. The proof that conditional
independence is not an armstrong relation in PN is postponed until after equivalent definitions of
armstrong relation are given.

Theorem 4 (Fagin [10]): Let S be a set of statements and P be a family of distributions. The fol-
lowing conditions are equivalent.

(a) S is an armstrong relation in P.
(b) Foreveryset £ C S and © € S there exist a model P € P such that
Pobeyso iff L l=o¢c
(c) ForeverysetL < Sand 0; € S i= l..n the following holds.
Ll=o0;0ro; -+ or 6, iff Thereexistanisuchthat Zl=g;
Remark 3: This theorem holds regardless of the existence of a finite complete set of axioms for
P. For example define P by specifying infinite sequence of independent Hom axioms that every P in P

obeys. S obeys part (c) and therefor would be an armstrong relation in P. By definition S does not have a
complete set of axioms in P.



Remark 4 : We can now justify our previous claim that conditional independence is not an
armstrong relation neither in PB nor in PN. We present the following axiom that does not satisfy condi-
tion (c) of theorem 4 neither in PB ([5]) nor in PN (appendix):

o, B,B) & I(o,y,B) = Ia, D, v)or I1(y, D,B).

3. A COMPLETE AXIOMATIZATION OF MARGINAL DEPENDENCIES

Completeness theorem: Let X be a set of marginal statements closed under the following ax-

ioms:
Symmetry x,y)y—=(0(.,x) (5.3)
Decomposition x,yw)->(x,y) (5.b)
Mixing x,y)& (xy ,w)—> (x ,yw) (5.0)

Then for every marginal statement ¢ =(x , y) there exist a probability model P 4 that obeys all state-
ments in X but does not obey ©.

Proof: Let ¢ be an arbitrary marginal statement not in £. Without loss of generality assume that
for every non-empty sets x” and y’ obeying x* Cx , ¥y €y and x' Uy #x Uy we have
(x*,y")e L. A marginal statement obeying this property, is called a minimal dependency. If
O =(x ,y) is not a minimal dependency then find a minimal dependency 6‘ = (x*, y*) where x‘* Cx
and y' Cy . Clearly, 6° always exists because ¢ is a partial order. Construct P 5. that satisfies T and
violates (x“ , ¥*). Due the decomposition axiom (5.b) we have

_'(x‘ sy‘)_)_'(x ay)
thus P 4. violates ©. Therefor, pick Py =P ..
Let 6=(x ,y) be a minimal dependency where X = {X;,x3 - * ;},Yy =(¥1,Y2 " * Y}

and all other variables appearing in Z are z = {z,,2, --- 2, }. Construct P as follows: Let all vari-
ables except x , be independent fair coins and let

i m
xij=3yx + EJ’;‘ {mod2).
i=2 i=1
Clearly, P 4 has the product form:

k
PoXy, o s Xt Y10 s Yma 210 Z) =P g0y o X, ¥ 1 oo Y )~ [TP o(20)
i=1
We first show that 6 = (x , y) does not hold in P ;. Instantiate x; to one and all other variables in x U y
to zero. Clearly for this assignment of values



PO(xl xh)’l ym)¢P0(x1 xl).PO’(yl ym) (6)

because the LHS of equation (6) is equal to 0 where the RHS consists of a product of two non-zero quan-
tities.

It is left to show that every statement in X holds in P 4, or equivalently, that for an arbitrary mar-
ginal statement {(# , v) we have:

U ,v)eX — Pylu,v)=Psu) P4 v).

This is done by examining (u , v) for every possible assignment of variables to the sets 4 and v and
showing that either P 5(u , v)=P4(u) - P4(v) orthat (u ,v) e Z.

Casel: Eitherun(x Uy)= or vnx wy)=0.
Assume un(x Uy)=& (the other case is similar), then u Cz. Therefor,
Psu ,v)=Pqslu) Py(v).

Case 2: Both # and v include an element of x U y.

Case2l: x Uy #u Wy —2z.

Projecting Psonthesetu W v results Py(u ,v)= J[ Psw;)
W, S U\

hence clearly P (u ,v)=Pgu) P4 (v).

Case2.2: x Uy=uwvv-z

This is the only case for which (i , v) is definitely not in X.
Letu =x'yz’,v =x"y"z” werex =x’x" ,y =y’y"” and 2’ Uz” < z. We continue by
contradiction. Assume (u ,v) = (x"y'z" , x”y"”2z"") belongs to Z. I is close under decom-
position. Therefore, (x"y" ,x”y”)e Z. To reach a contradiction we shall show that
o= x" ,y’y”) must have been in Z, contradicting our selection of . The proof uses
the mixing axiom to infer ¢ from (xy" , x”y") by "pushing”" all the x’s to one side and
all y’s to the other side. We further assume that x", x”,y’, ¥” are non-empty sets. If
some of these sets is empty, not all the derivations that follow need to be performed to

reach the contradicting conclusion that (x ,y) e Z.
(x" ,¥") belongs to I because (x , y) is a minimal dependency. Due to the mix-
ing axiom
(xl ,y') & (xlyl ,xllyll) _) (xl ,y’x”y”)
we conclude that (x” , x”y) € Z. Using the mixing axiom again,

O X)) & x" X))@, xx)

leads to the conclusion that (x , y) € X, contradiction. [
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Remark 1: Axioms l.a-1.c are also complete for PD ™ because marginal independence is an
armstrong relation in D~ and because we can modify the construction of P 5 such that it will be an
non-extreme model.

Remark 2: It is straight forward to show that symmetry, decomposition and
composition [(x,z,y)& I(x,z,w) — I(x,z,yw)

are complete for marginal independence in PN,

Remark 3: This theorem shows that axioms 1.a-1.c are weakly complete for PB. However I be-
lieve that they are not complete for PB. For the proof I need to find a non Horn axiom that holds in PB
(verma [?]). Regardless of the completeness in PB, axioms 1.a-1.c are powerful enough to solve the
membership problem in PB. Thus an algorithm that solves the membership problem in PD would work
also for PB. This is why weakly complete is considered "complete” in database and our completeness is
called "strongly complete”.

4. THE SOUNDNESS OF GRAPHICAL REPRESENTATIONS

Undirected graphs have been used ({11) as a graphical representation of probabilistic dependen-
cies. This representation scheme uses the device of vertex separation as a machinery for capturing the
dependencies embedded in a probabilistic model.

In undirected graphs we define
I(x ,z ,y)c iff Removing the vertexes z from G renders x and y on two disconnected components.

An undirected graph G is said to be a perfect-map of a probabilistic model P if
P,y lz)=Px lz)-P(y lz) iff I(x,z,y)

Clearly not every probabilistic model can be perfectly represented by an undirected graph. The next
theorem, however, states that the converse is true, i.e every undirected graph can be perfectly represented
by a probabilistic model.

Soundness theorem: For every undirected graph G, there exists a probability model P such that
Px,ylz)=Px 1z)- Py lz) iff I(x,z,y)

Proof: Let Z be the set of all statements that hold in G. For every statement G € T we construct a proba-
bilistic model P , that satisfies £ and does not satisfy 6. Note that the statements in X are the only state-
ments obeyed by all the P’s. Let Pbe ©{P 5 | ¢ & L}. P obeys exactly the statements in I, therefore
P satisfies the requirements of the theorem.
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Letg=1(x ,z ,y)q be an arbitrary statement not in Z. From the properties of / (x ,z , ¥ ).
there exist an element &€ x and B € y such that 6* =/(c, z , B); & Z. Construct P ; such that T
and —¢” are realized. Due the decomposition axiom for probabilistic models, P 5 does not satisfy ©. The
construction of P 5 follows:

I(a,z ,B)g does not hold in G, therefore, there is a path bypassing z between & and [. As-
sume this path is (ry=Q,ry,,..., r, =B ). Let R be the set of all nodes on the path (&, B) and
S ={s1,52,..., 5} be all the nodes in G not appearing in R . In P 5 all the variables are binary, and
obey the distribution

Pc(rl,...,r,,,sl,...,sk)=K'
i=1

n-1 k

I1f (i ,fm)] : [Hf (51‘)] ¢
J=1

where '

a  ifs=0 1=0
Ioa ifs=0 =1 % ifs=0
FG.D=1 g ifs=1 =0 TO={1 jfs=1

a if s=1 t=1

and K is a normalizing factor

n-1
K= = [Hf("i a’i+1)] '

e, Fn oS1 Sty € (0, 1) | i=1

k
[1f G =¢a)"?
1

J=

The value of a is determined such that P 4(ct, B [ z) # P (00 12) - P (B ! z). The following argument
shows that such a value always exists. Form equation (7) it is clear that for every subset z of S we have
P, B 1z)=P4(ce, B). Therefore, it is enough to satisfy P (o, B) # P 4(@) - P4(B). In fact it is
enough to show that this inequality holds for one specific assignment of values, say, =0, =0. A
straight forward calculation reveals that

n-1
Pola=0)=PB=0=K- ¥  f0,r) [Hf(r,- ,rm)} B
(rz = ra)e {0, i=2
Hence it is left to show that for some value of a a we get
Psla=0,=0)=1

However, P 4(0t =0, § = 0) is a polynomial in a of degree n~—1. Therefore there must be a value of a in
the interval (O, %%) that satisfies this inequality.

It is left to verify that P ; satisfies all the statements in Z, or equivalently that for every non-
mtersecting sets & ,v ,w we get:

Iu,w,v)gel - Pu,vIiw)=Pulw)-Pv tw)

Casel: u "R =D (or v "R =)
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Assume 4 M R = (the other case is similar). An equivalent condition is that & is a subset of
S. We show that

Pou,v lw)=Pgsu | w) Psv | w),
In fact, we prove a stronger version of this equality, namely,
Pou,v,w)=Pu) Pslv,w) (7.3)

From equation (7), by summing over all variables in R, it is evident that
k
Pslsqy,..., Sk)=nf(sj)-
J=1
Therefore, for every u ¢ § we get,
Pou) =TT f(s)).

S;EU

The proof of equatton (7.a) follows. From equation (7),

Psu,v,w)= ¥y K-

T WS € wvw

n-1 k
Hf(ri ,r‘-+1)} ) [Hf(sj):l
J=1

i=1

By first summing over the §; ‘s, we may rewrite the last equation.

Psu ,v,w)= 3% K-

T € uvw

n-1
I1f ,ri+1)] . [ II f(Sj)]
i=1

5; € uvw

Since u contains only §; ‘s and, in addition, u#, v and w are disjoint, we may further modify the
1ast equation to obtain equation (7.a).

n-1
IS ,’£+1)] : [ IT f(Sj)}
i=1

§; € vw

Po(u,v,w)=[nf(sj)jl . > K-

S Eu ri € uvw

=l: Hf(sj)] ’ Y K- ['ﬁf(rx ,"i+1)] [ Il f(Sj)]
i=1

S;E U r,v,s,-va 5 € vw

=Psu) - Pyv,w).

Case 2: Bothu and v contain an element of R
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Case 2.1: There exists an element 7; in 4 and 7;, in v for which no element r,» of w satisfies
- . . . . ¥ .
iy <i® <iyor iz<i’ <ip.

I(u ,w,v)g @ Zbecause no element of w blocks the path between r; andr;..

Case 2.2: For every element r; in & and r; in v there exists an element 7;+ in w that satisfies
. PR . . ¥ '
1 <i <ip(orip<i <iy).

In this case, we show that there exists two functions g, h such that
Polu,v,w)=gu,w) h(v,w). (9.3)

This equality is equivalent ([13]) to the standard definition of conditional independence, i.e. it is
equivalent to asserting

Pou,viw)=Pgslu | w)-Pslv | w).
Let z be all the variables of R not appearing in #vw . Let 2” and z” be a partition of z. We prove
a stronger version of equation (9.a), namely, that
Psu,v,w,z2)=gW,w,2’)-hiv,w,z”). 9.b)

From equation (7) we have

n-1

Pou,v,w,z)=K -{ TIf (r; . riy))| - [ IT fGp)
i=1 5; € uww

The factoring of P 4 into g and h follows:

If s; € u then f (s;) is a factor of g. If {r; , r;y1)w # D then f (r; ,r;y,) is a factor
of g. All other terms are factors of h. The restriction that an element of w immediates between
every element of 4 and v assures that every factor f (r;, 7;,1) of g, does not contain an element
of v and every factor f (r;, ;1) of k, does not contain an element of 1 . Hence this factorization
of P 5(u, v, w, z) satisfies equation (9.b). [J

5. FIXED CONTEXT STATEMENTS

Fixed context conditional statements (U-statements ) are an interesting relation in non-
extreme probability models (PD ™) mostly because a tractable algorithm is given for inferring alt
statements which are logically implied from an arbitrary set of U-statements. In this section we
find a complete set of axioms for U-statements, both in PD and PD . For PD ™ we translate these
axioms to a tractable algorithm.

Theorem 5: For every set of U-statements X satisfying the axioms:

symmetry Ix,z,y)=>I(y,z,x) (11.3)
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weak union Ix,z,yw)=>1(x,zy,w) (11.b)

Weak contraction Ixy,z, w)y& I(x,zw,y) = I(x,z,yw) (11.¢)

there exists a probability model P obeying all statements in X and no other U-statement. More-
over, if X is closed also under

intersection Ix,z2w, )& I(x,zy,w)—=1I(x,z,yw) (11.d)

then P is a non-extreme model.

Proof’s main ideas: Let o =7(x,z,y) be an arbitrary U-statement not in I. Let
x={xy, X}, y=(¥p ¥y} and z={z,, - ',z,}. Zis closed under weak union.
Therefore, without loss of generality, assume that © is a maximal dependency i.e., for every non-
empty sets x',x”,y’,y” such that x'Ux” =x and y'Uy”’ =y the statement

L

I(x’, zx"y", ¥") is in Z. The construction of P 5 follows:

% if (1,y)=0
P (X oy, Y i) =4 % if @,y )=1
0 otherwise

where all other variable are independent fair coins. P 5 can be shown to realize £ and —0.

If £ obeys also the intersection axiom then without loss of generality we may assume that
6 =1I(w, z, ) where o and P are single variables. Thus the following non-extreme model can
serve as the required P .

Po()=f@B)- JI fG.

Z; € U—QB

Remark: Weak contraction is implied by weak union and intersection therefore sym-
metry, weak union and intersection are complete for U-statements in PD ™.

Our task at hand is to find an efficient way to use axioms 11.a, 11.b and 11.d to infer all
the U-statements that are logically implied from a given set X in the environment of non-extreme
models. The constructive proof of the following lemma provides the desired algorithm. In fact,
the algorithm uses an additional axiom

Decomposition I(x,z,yw)—>1I(x,z,y) (11.0
That guarantees that every statement (and not only U-statements) are inferred from X.
Lemma: Let X be a finite set of U-statements of size k and let £* be the closure of T,

under symmetry, decomposition, intersection and weak union. Then, there exists a non-extreme
ars . . *
probability model P that satisfies exactly the statements in X .
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Proof: We first construct an undirected graph G that satisfies exactly the statements in .
The soundness of undirected graphs assures that a non-extreme probability model that is a per-
fect map of G, always exists. The construction of G is due to Paz ({6]) and is repeated for the in-
tegrity of this section.

Construct G, a graph over U by removing from the complete graph over U every edge
(0.B), such that ce x , B € y for some statement 6; =/ (x,z,y) € I, and only these edges.
The constructed graph satisfies the requirements. This can be shown as follows:

Let 61,04 *** Ok, Cg4ps " " * »0,, be the list of all statements in £° ordered in a way
such that ant G;,{ >k is derived from previous statements in the list by one of the axioms. We
can show now that every statement in the list is represented in the graph by finite induction: This
proposition is clearly true for 0y, - - ,0, and the truth for j >£ is implied by the fact that
graphs satisfy the 4 axioms, and by the induction hypothesis. The other direction, namely that
every statement satisfied by G belongs to T* follows from [Pearl & Paz] (The minimal-edge I-
mapness theorem). []

Remark: With slight variation of the proof of proposition 1 it can be shown that this
lemma implies that G represents exactly all the statements logically implied by Zin PD ™.

The algorithm is now clear. Given I, construct G. This requires O (k -n?) time units,
wheie k is the size of Z and » is the number of variables. To verify if a specific statement belongs
t0 £ would require O (n) time units,
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COMMENT

In section 5 an algorithm was presented to find the closure of a set of U-statements in
PD~. The idea was to represent the closure in a compact way and then query this representation
for any statement of interest. This comment shows that a similar approach for marginal state-
ments is not feasible.

Using the methodology of [5], it is enough to show that there are O (2%°) different proba-
bilistic models ( with respect to marginal statements). Because then, a representation scheme
must require, in average, exponential number of bits. Let U= {x, x,, -, x, ] be all the vari-
ables. Consider the following set of marginal statements:
B ={(x;,C) | C contains exactly | n/2] elements}. This set contains O(2") marginal
statements. For each truth assignment T of the statements of B we construct a probabilistic model
P that realizes T. Let POS be the statements that are assigned a truth value under T and let NEG
be the statements that are assigned a false value. Let 6 = (x x;, " * - ,X;, ) be an arbitrary margi-
nal statement in NEG. Construct a probability model as follows: Let all the variables x; i=2..n
be independent fair coins and let

k
x1=3 x; (mod2)
j=1

This model P, clearly satisfies every marginal statement in B except 6. Hence the model
®(P 4 | 0 € NEG ) satisfies the truth assignment T. There are O (22°) truth assignments for B
hence at least that many different probabilistic models exist.

Hence solving the membership problem by specifying a generic mode! for the closure is
not feasible. The question now is if there is any other polynomial solution for this seamingly easy
problem. It might be still possible that given an arbitrary set of marginal statements ¥ and a sin-
gle marginal statement © to answer the query is ¢ implied by £ in polynomial time. The ques-
tion is only HOW ?
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