DECIDING CONSISTENCY IN INHERITANCE NETWORKS

Judea Pearl September 1987
CSD-870053

Technical Report
R-96
August 1987

DECIDING CONSISTENCY IN INHERITANCE NETWORKS*

Judea Pearl
UCLA Computer Science Department
Cognitive Systems Laboratory
Los Angeles, CA. 90024-1596

ABSTRACT

An Inheritance Network is a labeled directed graph, I" = (V,EY UE"), where the ver-
tices V correspond to a set of atomic properties and £+ and E~ are sets of positive and negative
arcs, respectively. Positive arcs correspond to default rules of the ype “p is a ¢ (e.g.,
“‘penguins are birds,”’ “*birds fly’*) and negative arcs correspond to default rules of the type “‘p
isnotag” (e.g., “‘penguins do not fly’").

An inheritance network is said to be consistent if there exists a probability model in
which all the defaults are highly probable. This report establishes the following criterion for de-
ciding consistency: I" is consistent iff for every pair of conflicting arcs ®1,9)e E™ and
2.9)e E*,p, and P2 must be distinct and there is no cycle of positive arcs that embraces both
Py andp,,

* This work was supported in part by the National Science Foundation Grant, IRI-8610155

Technical Report
R-96

August 1987

DECIDING CONSISTENCY IN INHERITANCE NETWORKS

Judea Pearl]

1. INTRODUCTION

An Inheritance Network is a labeled directed graph, I'=(V,E* y E7), where the ver-
tices V correspond to a set of atomic properties and £+ and £~ are sets of positive and negative
arcs, respectively. Positive arcs correspond to default rules of the wpe “p isag” (eg,
“‘penguins are birds,’’ ““birds fly’’) and negative arcs correspond to default rules of the type ‘‘p

isnotag” (e.g., ““penguins do not fly’").

An inheritance network is said to be consistent if there exists a probability mode] in
which all the defaults are highly probable (Adams 1966, Pearl 1987). Formally, I is consistent
if, for any € > 0, there exists a probability function P such that:

Plglp)21-¢ whenever @,.q)e E*
P(glp)<e whenever w.q)e E-

Thus, consistent networks represent sets of default rules where conflicts can be explained away

by appealing to rare exceptions, while inconsistent networks represent inexcusable contradic-

tions, usually due to sloppy design or thoughtless inputs.

This report establishes the following criterion for deciding consistency: I is consistent iff
for every pair of conflicting arcs (p,g)e E” and (p,, ¢) € £*, p; and p, must be distinct and
there is no cycle of positive arcs that embraces both p, and p,. The proof of this criterion is
based on a theorem by Adams (1966) which provides a decision procedure for probabilistic con-

sistency of general sets of formula.

Def - An assignment ¢ of {0, 1} values to the vertices of T is said to falsify a positive arc
(x,y)e E*if x=1 and y=0 under ¢, and to verify (x,y)e E¥ifx=1, y=1 under¢. A nega-
tive arc (x, y) € E" is falsified and verified by the respective assignments (1, 1) and (I, 0).

Def - A setof arcs £ < E¥ U E™ is said to be confirmed by a particular 0-1 assignment ¢ , if no
arc in E is falsified and at least one arc in E is verified under ¢.

Theorem (Adams, 1966) - T is consistent if every non-empty subset of E =EY UE™ is

confimrmed by some assignment 7.

Given a network T, our task is to devise a graph-theoretic criterion for deciding if T is
consistent. Theorem 1 establishes such a criterion for the case where the positive arcs of [do

not form a cycle while Theorem 2 extends the criterion to general networks.

2. CONSISTENCY IN ACYCLIC NETWORKS

Theorem 1: If I'" = (V, E*) is acyclic, then I is consistent iff it is locally consistent, i.e., it does

not contain conflicting pairs, (e.g.,p - ¢ & p — —q), nor self loops (e.g..p — —p).

Proof: The proof is by induction along any total order consistent with the directions of the posi-
tive arcs E¥. We will assume that the theorem holds for any I and show that it is always possi-

ble to add a new vertex y to I" without perturbing consistency, as long as y does not sprout posi-

tive arcs back to I,

We need to prove that for any subset of arcs § which contains y, there exists a truth-
value assignment ¢ which confirms § (if § does not contain y, it is trivially confirmed, by the in-
duction hypothesis). Let I's = (Vs, Es" U Eg) be the subgraph induced by the arcs of S and
I's _, the corresponding graph with y and all arcs incident to y removed. Let P, =Py+ U Py
and Cy = C;’ w C stand, respectively, for the sets of parents and children of y in Iy, with the
superscript indicating the type of arcs involved. Acyclicity dictates Cy+ =& while the require-

ment of no conflicting pairs means x € P," => x ¢ P,

The cases where either P;' =& or ;" # & can be proven immediately. If P} = then
the assignment ¢ =¢ U {y =0} obviously confirms S, where is any assignment that confirms
S -y by the induction hypothesis. If C,#4© we can use the wivial assignment
t={y=1x=0,Vx e Vg -y}, which confirms § because the negative arcs emanating from y

are verified and no other arc can be falsified.

It remains to consider only conditions where P; #{J and C, =& and these require the

separate examination of several cases.

Case-1: Py = J, i.e., S contains no negative arcs pointing to y.

Define the following two sets of nodes in Vg _ 3
Ay nodes connected by negative arcs to at least one of their positive descendants in T'§ _ y-
A nodes connected by negative arcs toward some non-descendant in [’y _ y-
Definition: For any set Q of nodes, we shall say that a node x is a voungest Q-node if
xe V§_ y M @ and no other (positive) descendant of x isin Vg _ yNQ.

Let x be the youngest P,Y UA | U A, — node

Case- 1.1: x isin A, ie.,x has adescendant z in I"s+_y and (x,z) e Eg, as in Figure 1.

Figure 1

z cannot be a direct positive child of x because conflicting pairs are prohibited. Thus, there ex-
ists another node x” on a positive path between x and z such that (x”, z) ES*. Let ¢ assign 1 to
x" and all its positive descendants in I'{_, and O to any other node in I'. ¢ confirms § because
all the positive arcs at the subnetwork rooted at x” are verified while no arc is falsified -- the as-

sumption that x is the youngest P;'LJAI A, — node, precludes any l-assigned node from

sprouting negative arcs.

Case - 1.2: x isnotin A, and, since P," # &, x must be in P,* U 4, (see Figure 2). Thus, ei-

ther

y=1
Figure 2

y receives a positive arc from x or there exists a non-descendant Z receiving a negative arc from
x. Lett assign 1 to x, y and all positive descendants of x and 0 to all other nodes in Ty _,. ¢
confirms § because there must be at least one verified arc sprouting from x while no arc is
falsified -- no positive descendant of x sprouts any negative arc and those sprouting from x are

verified, ending up at nodes assigned 0’s.
Case - 2; Py 3, 1.e., S contains negative arcs pointing to y.
Again, let x be the youngest P;" WA, U A, node.

Case-2.1: x e A,

The assignment of case 1.1 still confirms S, because y =0 prevents any negative arc

pointing to y from being falsified.
Case2.2: x ¢ A, x e PP UA,.

The assignment of case 1.2 would still confirm S unless any of the I-assigned descen-

dants of x, say x’, is also in P, (see Figure 3). If this happens,

> 1
K x'=1
/
!
/
/
s
ry=0
/
/
Figure 3

assign 1 only to x” and its positive descendants, assign O to all other nodes including x and y.,
Case2.3: PfUA LA, =0

Let x’ be the youngest P node. Assignltox * and all its positive descendants, assign 0

to all other nodes, including y. Q.E.D.

3. CONSISTENCY IN GENERAL NETWORKS

Definition: A positive cycle of T is a set of nodes such that there exists a sequence of positive
arcs connecting them in a cycle. A cycle-cluster is a maximal set of positive cycles such that
any two cycles share at least one node. For example, the cycle-clusters in the network of Figure
4arefa,b,c}and{d,e,f,h,g}; the twocycles {d,e.f} and {f, h, g} are clustered together

because they share node f .

/"'—"\\
. ~
s \\
/ &~
C,’ € \\ h // \\\
/W-" ,?-\,’ \
! {
a - N 7
b\\ f ”’j \\ /,
\\“.—_—.‘y \\—#
(a)

(b)

Figure 4

Definition: The cycle kernel of I is a subgraph Ty = {Vg, Eg U Ex} having the cycle clusters
of I as vertices and a subset of E as arcs. An arc (X,Y)is in E§ if [contains a positive arc
between some node in cluster X and anode incluster Y,and X #Y. Anarc (X,Y) is in Eg if
there is a negative arc between some node in X and a node in Y, including self loops (in case
X =Y). In other words, ['x retains the original arcs of I” with the exception of the positive arcs

that make up the cycle clusters.

In the sequel we will use the terms clusters and kernel to denote cycle cluster and cycle

kernel, respectively. Figure 4(b) illustrates the kernel of the network in Figure 4(a). Clearly, if

the positive subgraph of I is acyclic, then the kernel Iy is T itself. Also, the subgraph induced
by the positive arcs of any kernel is acyclic. The reason is that any positive cycle found in the
kernel would render some of its clusters non-maximal -- all the clusters connected by the cycle

found should have been grouped together to form a single cluster.

Theorem 2: A network I is consistent iff its cycle kernel is locally consistent, i.e., no cycle

cluster sprouts a negative self loop or a pair of conflicting arcs pointing to a singleton node.

Proof: The “if”” part is proven by repeating the inductive proof of Theorem 1 in any node ord-
ering consistent with the orientation of the positive cross-cluster arcs of ['yx. For each non-
empty set of arcs § ¢ E, we will assign identical values to all nodes in the same cycle cluster of
['s. Since the kemel of Iy, K, is acyclic, the notion of *“‘youngest’’ Q-node is well defined
(translated to ‘“‘youngest” Q -cluster) and the proof follows through as before with only one
modification; whereas I'{ in Theorem 1 was assumed to contain no conflicting pairs, K; may
contain such pairs under the conditions of Theorem 2, as shown in Figure 4(b). It remains,
therefore, to follow the proof of Theorem 1, identify the steps depending on the no-conflicting-

pairs assumption, and devise new assignments ¢, if necessary.

Figure 5

The first use of the no-conflicting-pairs assumption was made in case 1.1 (see Figure 1)
where the existence of x’ was established. With the assumption removed, a situation like the
one described in Figure 5 may prevail, where Z is a cluster receiving both a negative and a posi-
tive arc from cluster X. Assigning 1 to Z and all its (positive) descendant, and 0 everywhere
else, would confirm §. Note that the existence of x” in the proof of Theorem 1 was essential in
case Z was a leaf node of I'§, because the arc (x”, z) is the only one verified by r. Now, since Z
is a cluster of at least two arcs, the assignment Z = 1 verifies the internal arcs of Z and x’ is no

longer needed.

The next use of the no-conflicting-pairs assumption was in case 1.2 (see Figure 2). Here
we presumed that there is no negative arc pointing from x to y. However, this assumption still
hold under Theorem 2 because, even when X is a multi-node cluster, it cannot sprout both a

negative and a positive arc toward a singleton y. Moreover, y cannot sprout any positive arc to-

wards any 0-assigned cluster. If it sprouts any positive arcs they must be toward X because the
inductive proof is assumed to progress in an order consistent with the orientation of T so, no

positive descendant of y can possibly be in Iy unless the two belong to the same cycle cluster.

The no-conflicting-pairs assumption was not used in case 2 because here all positive des-
cendants of x were presumed not to sprout any negative arcs except toward y. This completes

the “‘if”” part of the proof.

The “only if”’ part is proven by showing that, if the local consistency conditions are
violated, there exists a non-empty subset of arcs S that cannot be confirmed by any assignment
t. First, assume that 'y contains a negative self loop. In this case, [contains a negative arc
(x,y)” between two nodes belonging to the same cycle-cluster; i.e., there is a sequence of posi-
tive arcs @ = (x,x) (X1, x9) - (X,,¥) (¥, X, 41) " - (x5, x) that begins and ends at x and goes
through y. Let S be the set of arcs (x,y)"w{Q)}. To verify one arc in S, some vertex in
should be assigned 1 and, to prevent the falsification of any arc in Q, all vertices should be as-

signed 1. This falsifies (x, y)~ and, hence, § cannot be confirmed by any assignment ¢,

A similar argument holds in case 'y contains a pair of conflicting arcs, except that we
now deal with two arcs; (x*,y)e E* and (x",y)e £~ and both x* and x~ are in Q. Let
S=Q U™, y)U(x,y) be the subset of arcs requiring confirmation by ¢. ¢ must assign a
value 1 to at least one node in (0, hence all nodes in Q must receive 1 and no assignment for y

would keep either (x*, y) or (x~, y) from being falsified. Q.E.D.

10

4. CONCLUSIONS

The importance of deciding consistency lies not only in detecting contradictions in the
database, but also in providing a criterion for deciding which sentences are implied by the data-

base, given that it is consistent.

Definition: Given a pair of arbitrary literals x and y and a network T", the sentence x — y is
said to be a necessary conclusion of T if adding the negative arc x ——y to I” would render it in-
consistent. For example, sinceI'={a - b,b - a,a - c,b — —¢] is inconsistent, the nega-

tion of any one of these four sentences is a necessary conclusion of the other three.

A necessary conclusion is a rather strong requirement. Very few of the conclusions com-
monly derived by existing default logics are truly necessary conclusions of the default rules. For
example *‘T flies’’ is not a necessary conclusion of T is a bird’’ and *‘birds fly’’ (because T
may have a broken wing as an excusable exception). A weaker notion of consistency, involving
frame axioms, is required to qualify ““T flies’’ as a conclusion. Interestingly, however, most
necessary conclusions of defaults are NOT derivable by existing default logics. For example,
“‘most birds are not penguins’’ is a necessary conclusion of: birds fly, penguins are birds and
penguins do not fly; yet, none of the existing formalisms would generate the first as a conclusion

of the latter three.

11

S. REFERENCES

Adams, E., “‘Probability and the Logic of Conditionals,” in Aspects of Inductive Logic, I. Hin-
tikka and P. Suppes (Eds.), North Holland Amsterdam, 1966.

Pearl, J., ““Probabilistic Semantics for Inheritance Hierarchies with Exceptions,’’ TR-93, UCLA
Cognitive Systems Laboratory, July 1987.

12

