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Dr. Cheeseman has made a very valuable contribution by compiling and articulating so
forcefully the merits of probabilistic reasoning vis a vis deductive logic. The exposition is, in
fact, so complete that I suddenly find myself in a strange desire to defend logic, a task I have not

been trained to do, being myself an ardent student of probabilities.

There are several issues, though, which may help clarify the relationship between proba-
bilistic and logical reasoning and which, 1 feel, may have not received full treatment in
Cheeseman’s paper. I will start with Peter’s astute observation that one of the basic differences
between the two modes of reasoning is ‘‘the explicit inclusion of conditioning in probability
assertions’” (p. 5) contrasted with the apparent inability of standard logic to express context-
dependent information, often referred to as ‘‘monotonicity.”” However, despite the obvious
perils of monotonic logic one should not lose sight of its unique computational merits, lest one

is tempted to irradicate the former without preserving the latter.
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The computational merits of monotonic logic can be demonstrated by examining the
operational difference between the logical statement A — B and its probabilistic counterpart
P(B1A)=p. Forgetting for the moment their denotational semantics, the logical statement
A -> B happened to constitute a very attractive, modular unit of computation while the proba-
bilistic statement P(B |A)=p is computationally sterile. The former grants a permanent
license to initiate an action (i.e., asserting B} whenever and wherever the premise A is found
true in a knowledge base X, regardless of other information that K might contain and regardless
of other actions pending execution. The probabilistic statement, on the other hand, is procedur-
ally speaking totally impotent; even if we find the truth of A firmly established, we still cannot
initiate any meaningful action (e.g., asserting that B deserves a probability p) unless we first .
verify either that K contains only A or that K contains no other fact relevant to B. The first
eventuality is rare and uninteresting while the second must await verification of relevancies over

the entire database.

Thus, unlike Cheeseman, I do not believe that logician’s preoccupation with truth func-
tionals is motivated by blind adherence to the notion of absolute truth as opposed to subjective
or context-dependent truth. Rather, I submit that it is these computational merits that has en-
ticed logicians, from Aristotle to Boole and Turing, knowingly or unknowingly, to propose logic
as a mechanism capturing human thought. It is the hopes of realizing these same merits, while
equipping logic with context-sensitive features, that keep the logicist school of Al reluctant to

accept probabilities.



Admittedly, probability theory does offer a powerful language for expressing context
dependent beliefs. For example, it can easily express the fact that the belief in ‘‘“Tweety can
fly’’ should go way down upon hearing that, beside being a bird, Tweety is also broiled. We
simply make sure that P (fly | bird, broiled) ends up much lower than P (fly | bird). But this
enhanced expressiveness has a price tag to it: it behooves us to first search the database for all
facts known about Tweety before we can begin to guess whether Tweety can fly. More serious-
ly, it essentially behooves us to examine every fact in the database, regardless of its relation to
Tweety’s flying, for example, ‘‘Tweety is white’’ and *‘the year is 1987," etc. For, how can we
tell in advance that the year count is irrelevant to Tweetie’s flying before actually computing
P (fly | bird, 1987) and finding it equal to P (fly | bird)? And once we verify the irrelevancy of
the date 1987, can we remain sure that it stays irrelevant even after observing Tweety’s color?
Relevancies are often created and destroyed by new facts. True, probability theory does allow
us to express all these conditions, but it does not exempt us from having to test them again and
again, each time new data arrives, because the theory does not teach us how to compute
P(AIB,C) from P(A |B) and P (A |1C); the three quantities can have arbitrary values. Thus,
unless we learn to efficiently encode knowledge about context, relevancies and dependencies,
merely replacing logic with probabilities would only tax us with the burden of having to
enumerate all conceivable contexts. This brings me to the central issue of my comment, the en-
coding of information about context, since, the current dispute among logicists centers around

this same issue.

The need to encode relevance information has been recognized even by pure logicians.

Even though knowledge in logic is expressed as a set of unordered, unconnected sentences,



researchers have found it advantages to group related facts into structures, such as frames and
networks. These structures lead to efficient inference algorithms, because all the information re-
quired to perform an inference task generally lies in the vicinity of the proposition involved in
the task, and is readily reachable from a common place. However, as long as we deal with
monotonic logic, these organizational structures can be viewed as merely efficient indexing

schemes for retrieval of logical formulas, with no semantic significance of their own.

Things change as soon as non monotomic features are introduced. Here, it becomes an
essential part of the semantic to delineate or circumscribe the scope of relevance of facts and
predicates, because different scopes yield different conclusions. While some logicians insist
that these circumscriptions, too, should be expressed symbolically as logical sentences, others '
resign to indexing schemes which are embedded in procedural codes. Typical examples are
truth-maintenance systems; they work synergetically with logic-based reasoners but are outside
the logic itself. McDermott’s critique of pure logic expresses disappointment with the former
approach and advocates, instead, the latter. It is far from dooming AI to procedural ad hocery.
On the contrary, the formalist and proceduralist schools of logic will eventually converge. The
formalists will explicate the semantics behind powerful procedures developed by the procedural-
ists (e.g., see [1]) and the latter, in turn, will learn to embed promising logical formalisms (e.g.,

default, circumscription) in efficient structures and programs.

Where does this leave the probabilists? While the logicist camp is running frenzy with
fancy procedures and clumsy semantics, the probabilists are advertizing powerful semantics
void of procedures. Moreover, many probabilists seem preoccupied with fine semantic elabora-

tions, while ignoring procedural fitness. To be more specific, submit that the potentials latent in



probability theory will not be realized by quibling over issues such as: maximum-entropy,
confidence intervals, probabilities of probabilities, fuzziness vs. uncertainty, etc. These are
worthwhile refinements but they aim at further increasing the expressive power of probabilistic
statements at the time when such statements zalready are too expressive, considering the pro-
cedural tools available. For example, we don’t even have efficient schemes for indexing and
manipulating the rich spectrum of contexts that can be circumscribed by straight Bayesian con-

ditioning, let alone non-Bayesian elaborations.

I believe Cheeseman is mistaken in assuming that McDermott’s critique would move
logicists to embrace probability theory. I would certainly urge logicists to examine whether pro-
babilistic semantics could resolve some of the predicaments created by nonmonotonicity, name-
ly, examine if the reasons such predicaments do not appear in probability theory can be translat-
ed into useful refinements of existing logical formalisms. However, I would be surprised if they
take my suggestion seriously before probabilists learn to backup the expressive power of their

language with useful procedural facilities.

Positive steps in this directions involve the studies of Bayesian networks {2], qualitative
Markov trees [3], Markov fields [4] and their axiomatic characterization, the theory of Gra-
phoids {5] [6]. The basic assumption is that, not only can one assign probabilistic semantics to
context dependencies such as those found in plausible reasoning , but it is also possible to or-
ganize this intricate fabric of contexts in graphical forms, thus facilitating efficient indexing and

inferencing.



After all, the manipulation of context information is not entirely foreign to probability
theory -- the Queen-Mother of context-dependent languages. In fact, the very essence of the

multiplication axiom

P(Q,Rle)=P(Qle)P(R10Q,e)
is to assert that beliefs established under the context {e} and those adopted under an enriched
context {Q, e} are not arbitrary but must obey reasonable rules of coherence. These rules
translate into axioms defining what it means to say: ‘‘context Z tells me all I need to know
about x’" and how Z can expand and contract in light of new facts. These axioms also define
when the set of relevant contexts can be indexed in graphical forms so that, when we need to
ascertain beliefs about x, we should examine only the graph neighborhood Z of x. The net
result is that probabilistic statements such as P (x !Z) = p suddenly acquire operational meaning
as well; if Z is the graph neighborhood of x, then truth values found in Z (and, to a certain de-
gree, also probability measures on Z) do provide the license needed to make definite assertions

about the belief in x.

Unlike parallel developments in the logicist camp, implementations of these graphical in-
dexing schemes have so far not reached a level of complexity to seriously challenge the en-
durance of their semantic coherence. Bayesian networks, although they represent the most ef-
fective tool of handling diagnosis problems [6], have only been used in tasks where the nodes
represent preestablished propositional variables and the arcs represent either causal or frame-

slots relationships.



At the same time, the theory of Graphoids has been sprouting results reaching beyond
probabilistic reasoning, toward the logical approach. It turns out that logical notions of depen-
dence and relevance can also be given graphical representations that faithfully preserve their se-
mantics [7]. It will be ironic if this work -- originally inspired by probabilistic notions -- helps

mend the schism within the logicist camp before facilitating the proceduralization of probabili-

ties.
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