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1. Introduction

Two difterent approaches to dealing with probabilistic
kKnowledge are examined—-models and inductive inference,.
Examples of the first are: influence diagrams (i), Baresian
networks [21, log-tinear models (3,41, Examples of the
second are: games—against nature [5,41, varieties of maximum-
entropy methods {7,8,7]1, and the author’s min-score induction
[iol.

In the modeling approach, the basic issue is manage-
ability, with respect to data elicitation and computation.
Thus, it is assumed that the pertinent set of users in some
sense Knows the relevant probabilities, and the problem is to
format that Knowledge in a way that is convenient to input
and store and that allows computation of the answers to
current guestions in an expeditious fashion.

The basic issue for the inductive approach appears at
first sight to be very different. In this approach it is
presumed that the relevant probabilities are only partially
Known, and the problem is to extend that incomplete infor-
mation in a reasonable way to answer current questions,
Clearly, this approach requires that some form of induction
be invoked. Of course, manageability is an important addi-
tional coencern,

Despite their seeming differences, the two approaches
have a fair amount in common, especially with respect to the
structural framework they emplior. Roughly speakinag, this
framework involves identif¥ing clusters of variables which
strongly interact, establishing marginal probability distri-
butions on the clusters, and extending the subdistributions
to a2 more complete distribution, usually via a product
formalism. The product extension is justified on the
modeling approach in terms of assumed conditional
independence; in the inductive approach the product form
arises from an inductive rule.
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2. Structures on Event Spaces.

An event space is a set X = X,,...,Xn of descriptors
which is presumed to cover the subject matter of interest.
For example, in a medical context, the X, ’'s could be disease
states, symptoms, test results, cutcomes of treatment, and
the like. Each descriptor X involves a set of states x;,
which is a partition (exclusive and exhaustive division) of
the "universe" of potential cases. The vector x=(x, ,...4%s?
is a joint state for a specific case. It is presumed that
there is a joint probability distribution P(X) on the set of
joint states, so that

P{x) = 1

Pixi3) = 1

A B P |

We define two types of components. An absolute compo-—
nent Y is a subset of descriptors. A conditional component
(2iW}» is an ordered pair of abscolute components. @A proba-
bility P{Y} on an absolute component is a joint distribution
on the states ¥y for descriptors in Y3 PCY?» is a subdistri-
bution f{or marginal) of P(X), Let =Y denote the complement
of ¥ (all descriptors in X not in Y)». Thus

PCYY = 3 POXD (1)
-Y

A probability P(Z2ilWY is a conditional probability dis-
tribution on the states z given the states w. Thus

3 POXO
P(ZIW) = =Z.W 1)
> POXO
~l
(The period in -Z.W denotes the logical product "and".)

A set of components C =Y, ,...,4Y¢ I8 called a structure,
The corresponding probability distributions on members of C
PC = PCY, ),4.4.4P(Ye? is called a probability srstem (or
system for short.) In this notation, ¥ may be either abso-
lute or conditional.

A system PC is called consistent if there is a proba-
Bility distribution P(X)> that fulfills (1) or (17) for all
components Y in PC. 1In general, if PC is consistent, there
will be a set K(PC) of distributions compatible with PC.

In the model approach, it is assumed that a system PC
represents the clustering of descriptors with respect to
dependence; i.e., within a component Y, the descriptors have



“strong” probabilistic interactions, whereas if X and X; do
not occur together in any component, then they are condition—
ally independent. Specificaily,

POX, X5 =X X)) = POX oI =X, X OPOXG 1 =X, X0 (2)

In the inductive approach, the system PC represents
what is known concerning P(X)., If X; and X, do not occur
in a common component, then nothing is Known about their
praobabilistic relationship.

A structure C by itself exhibits many of the general
properties of the available Knowledge. Thus, it is possible
to determine that one structure is uniformly more informative
than another, or to specity which structures have a product
extension, without reference to the probabilities PC. [111
As the developers of influence diagrams and Bayesian networiks
have noted, this feature allows a significant amount of
preliminary analysis to be carried out before numbers are
introduced,

3. Webs

Structures have an internal organizationj e.g., compo-
nents may overlap. There are a number of different ways to
represent this organization. A common representatation is
as a graph, where the components are the nodes and one
component is connected by an arc to another it they over-
tap. A more convenient representation for the purposes
of this paper is what I call a web. Let [C)] designate the
set of all descriptors which belong to some member of C,

An absolute component ¥ is terminal if ¥ consists of two
subcomponents Z2 and W, Z2.{C - {Y}) =0, WC [C~- €{¥)1. Thus,
W "connects" 2 to the remainder of C. (W may be vacuous,

in which case € is unconnected to the remainder of C.)

& conditional component Y = (21W) is terminal if the preceed-
ing conditions hold for 2 and W. (W cannot be vacuous for

a conditional component.)

& web is a structure which ful+ills the recursion:
1. Any absoclute component is a web.

2. 1Y is a terminal component, and € - {¥} is a web,
then C 1s a web.

From the definition, a web contains at least one abso-
tute component. A web can be "unpacked" to generate a linear
order on the components by starting with any terminal
component Y, labeling it 1, choosing any terminal component
in T — {y2, labeling it 2, and so on. A web is called
conditional if all absolute components are distinct, i.e., do



not overtap.

A web is somewhat more general than influence diagrams
or Baryesian networks. These can be characterized as condi-
tional webs where for any conditional component ¥ = (2I1W), 2
consists of a single descriptor.

Condi tional webs are signicant for modeling probabilis-
tic Knowledge as a result of two basic properties:

a. The product P*(X) = [IPCY) is a joint probability
C
distribution on X,

b, P"(X) is an extencion of PC; i.e., it fulfills (1)
or (173 for all ¥ in C.

Proofs for these asserticns are readily constructed by
induction on the number of components in a web.

What these two properties entail, in effect, is that if
you can represent your Knowledge concerning a distribution
P{X> by the sub-distributions PC for a web C plus assuming
conditional independence for descriptors not in common
components, them the product P*(X) "automatically" expresses
that Knowledge.

From the mcdelling point of view, thern, a web is a rela-
tively manageable representation of probabilistic Knowledge.
All that need be input are the subdistributions PC. The
product is gquite convenient for computations; e.g., the mani-
pulations feasible for influence diagrams are girectly ex-
tendable to webs.

4, Induction and maximum—-entropy

Turning to the inductive approach, in an earlier publi-
cation I demonstrated that for a subspecies of web, namely a
forest, the product extension is the maximum entropy exten-

sion of PC. {t1]l & forest is a web in which all terminal
components Y = (2:W) ful$ill the additional restriction that
W is contained in some component Y’ in C - (Y. (In a

general web, W need only be contained in the set of all
descriptors "covered” by C - {Y}.? In the graphical
representation mentioned earlier where arcs are defined by
overlap of components, a forest is a graph with no loops.
A forest corresponds to Goodman‘s decomposable model. [31]

Maximum entropy is an instance of min-~score inference
which has the dual properties: (a)> guaranteed expectation--in
the case of maximum entropy, the conclusion is alwars at
least as infaormative as it cltaims to be—--and (b) positive
value of information—--a conclusion based on additional



Knowledge will be at lteast as informative as a conclusion
without that Knowledge. [101 Thus, if all you Know is a set
of subdistributions PC, and FPC is a forest, then the product
extension is a supportable estimate of the total distribution,

Cne of the motivations for studying webs was the expec-
tation that the product extension would also turn out to be
the maximum entropy extension for a general web. The expec-
tation was based on a purported result of P. M., Lewis fre-
quentiy cited in the literature to the effect that for a
structure with a product extension, the product is the
maximum entropy extension. [12] Unfortunately, the Lewis
"result" happens to be incorrect.

An elementary counter—-example is furnished by the sim-
plest of all possible webs that is not a forest, namely the
structure C = (X, ,X,,0(Xz1X, . X)), Set P(X,) = P(Xy,> = .5 and
define P(Xs4IX,.X,> by Table I, where "1" means occurrance
and "0" means nan—-occurrance in the list of cases.

Table I
X, Xq P(Xg X, .X3)
1 1 1
i 0O ]
0 1 D
¢ 2 Q

The product distribution P*(X) is displayed in Table II,
along with arnother distribution P°(X). P°X) is an extenszion
of PC~-which can easily be verified by summation——and is also
cleariy a higher entropy distribution,

Table I1
X, Xg, X P®(X) P2
1 1 { .23 1/46
1 ) T 0 0
1 o i 123 176
i 4 40 . 125 176
0 1 i 123 1/6
a 1 0 125 176
g o ! a 0
a o 0 .25 1/6
The entropy of P(X) = = 3 P (x)logP {(x) = 11,7329,
X

whereas the entropy of P%(X) = 1.7918. The numerical differ-



ence in entropy is small, but the difference between .25 and
1/6 f¥or P(1,1,12, .., may not seem trivial.

The elementary structure C of the example is actually a
substructure of any web that is not a forest. Hence a
simifar counter—example can be constructed for any such web.
The example is also a counter to the Lewis "result”’.

The upshot of this ingquiry, then, is that a forest is

the most general structure for which the product extension is
alwars the maximum entropy extension.

S. Discussion

At first glance, the fact that the product extension of
a web is not in general maximum entropy may appear benign.
From the standpoint of the model approach, the basic
properties of a web—-—the product is a prabability and an
extension of PC--make webs a highly convenient representation
of probabitistic Knowledge. All that is lost is a
desirable, but by no means essential, faltlback. In the case
of a forest, for example, if the assumption of conditional
independence for separated descriptors is zhakKy, then it can
still be contended that the product is a reasonable estimate
of the joint distribution, given PC. It would be a valuable
satety fteature i+ the same could be claimed for a web,.

From the standpoint of the inductive approach, it is
perhaps unfortunate that the product extension of a web is
not maximum entropy. Howewver, the maximum entropy extension
can be sought by other means. [13] What is lost is the
convenience of the product form. For the complex systems of
many descriptors common in expert systems, maximum entropy
formalisms are likKely to be cumberscome.

Un a somewhat deeper level, however, the result is
thought-provoking. Independence is a common “simplifying"
assumption in expert srystems. [14] The maximum entropy
property, where germaine, is a good justification of the
"assumption" even when there is no evidence either for or
against independence. However, as the example shows, maximum
entropy does not imply independence, not even conditional
independence, it the structure is not a forest. In the
example, P%(x,Ix;) = P°(lex3) = 2/33 but P°%(x,.x,Ix5) = 1/3,
rather than 49 as required by conditional independence.

One route that can be taken is to "prune" the structure
te a forest. Lemmer {13] has adopted this suggestion, fol-
lowing a program proposed by Lewis [12], Chow and Liu (161,
and octhers. The advantages of this approach are clear: sub-
stantive inputs can be restricted to the subdistributions in
PC for the forest, the product extension is automatically
consistent with the inputs, and, as [ mentioned above, the



tfact that the product extension is maximum entropy carries
strong guarantees.

A basic element missing from this program is a measure
of the information that is lost by the pruning process.
Concommitantiy, there is no systematic procedure for deter-
mining the most informative forest contained in the knowledge
availtable to the anmalyst., Given a general probability system
PC, if PC is consistent, the amount of information in PC can
be detined as max Entropr(P>. At present, there is no

PEK(PC)
way to determine this quantity directly from PC--or, for that
matter, determining whether PC is consistent. These isgsues
appear to be one area of potentially fruitful research,
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