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Abstract

A scheme for triangularization of a matrix using redundant and on-line CORDIC
modules is proposed. Its implementation is simpler and faster than implementations using con-
ventional CORDIC modules. The proposed scheme has the following features: o the rotation
processors use angles in a decomposed form thus eliminating the angle recurrence and allowing
overlap between the angle processor and rotation processors; no ROMs are required; e the
(x,y)-recurrences are transformed so that only one variable shifter is required; e the carry-
propagate addition is replaced by a redundant addition (carry-save or signed-digit) thus reducing
the clock cycle; e the rotation recurrences are unfolded and implemented in on-line manner thus
replacing the variable shifter with simple delays; e the scale factor is computed in on-line
manner; o the scheme uses efficiently floating-point representations.

1. Introduction

The wiangularization of a matrix by Givens’ rotations is discussed in [GOL83). Tradi-
tionally, this transformation was proposed for execution in a sequential computer [SAME78].
Recently, interest has evolved in the computation using concurrent structures of processing ele-
ments, such as linear and triangular arrays, to improve the speed of execution [GENTS1,
CIMIg1, AHMES2a]. If the basic operations performed by the processing elements are additions,
multiplications, division, and square root, the boundary processors perform a more complex
computation than the others and, therefore, determine the step time. Several proposals have been
made to reduce this imbalance: no square roots [GENT73], on-line [CIMI81, ERCE87b],
CORDIC [AHMES2a]. In this paper we discuss methods to increase the speed of the CORDIC
scheme, by eliminating the need of carry-propagate adders. Moreover, we use an on-line tech-
nique to reduce the need of shifters, to eliminate the use of ROMs and to allow the overlapping
of the CORDIC rotation with the divisions required to compensate for the scaling factor. In ad-
dition, the proposed scheme uses efficiently floating-point representations.

Triangularization by Givens rotation
Givens’ rotations are used in the solution of linear equations of the form Ax=b

[AHMES2a, GOLUS83]. The algorithm triangularizes the mxm matrix A with a sequence of
plane rotations. The following is a sequential description of the algorithm:
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In [AHMER2a] a linear and a triangular array are proposed to perform the triangulariza-
tion. For instance, in the linear array, shown in Figure 1, the angle 0,; is computed in the left-
most processor and is transferred to the right, while data is transferred both to the left and to the
right. The leftmost processor computes the angle and all other processors compute the rotations.
The scheme we propose is applicable to both types of arrays.

Implementation using CORDIC.

In [AHMES2a] a method using CORDIC is proposed for both the computation of the an-
gle and of the rotation. The justification given there is that "the rotation is performed in no more
time than a bit-serial multiplication”. However, this is not completely accurate because the
CORDIC scheme needs a variable shift and a carry-propagate addition, while multiplication
does not require such a shift and can be done with redundant (cary-save or signed-digit) addition.
Consequently, the step time in multiplication can be made significantly smaller than for CORD-
IC. Moreover, additional steps are required to compensate for the scaling factor introduced by
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the CORDIC rotation ( the number of steps for scaling ranges from 2», if CORDIC divisions are
used, to n/4 if repeated steps are used for compensation {DELO83]). Consequently, the time of
the angle calculation is of n CORDIC steps followed by the rotation which, in the best case,
corresponds to 1.25z CORDIC steps. In both cases, the step time is determined by the shifting
and the carry-propagate addition.

More specifically, the suggested algorithm is done as follows:

i) The leftrmost processor computes the rotation angle and the new diagonal element by
means of a circular CORDIC. To obtain the new element it is also necessary compensate for the
scaling factor, which can be achieved by a division using a linear CORDIC or by the repetition
of some CORDIC steps [DELO83]. The total delay is, therefore, of between 1.251 and 2n
CORDIC steps. The angle is transmitted to the rotation processors.

i1) The other processors perform the rotation by a circular CORDIC. They use the
the angle produced by the angle processor. The compensation for the scaling factor is performed
in the same way as in i). The total delay of the rotation is, therefore, of between 1.25z and 3n
CORDIC steps.

Problems with the CORDIC Implementation

From the previous discussion, we can conclude that each iteration of the triangularization
algorithm is quite large, since it requires at least 2.25n CORDIC steps, and the delay of a step is
determined by the variable shift and the carry-propagate adder. Making a carry-save addition the
primitive operation that takes one clock cycle, we estimate that the CORDIC step takes around
six clock cycles, resulting in an overall delay of 13.5n clock cycles.

To reduce the delay we present an implementation using redundant addition (carry-save
or signed-digit [AVIZ61]) and on-line techniques [ERCE84, IRWI87].

2. Implementation Using Redundant and On-line CORDIC

The tme of execution of the CORDIC operations can be reduced significantly by per-
forming the CORDIC recurrence using a redundant addition (carry-save or signed-digit
[AVIZ61]). Moreover, when possible, the implementation with on-line adders replaces the area-
consuming shifters by delays, resulting in a more cost-effective implementation. We now
describe and evaluate this alternative. Finally, the implementation using on-line techniques per-
mits the overlapping of several operations [ERCE84, IRWIg7].

As in the scheme described in [AHMES82a], there are two types of processors: the angle

processors and the rotation processors. We now discuss our scheme for these processors and
their interface,
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The angle processor

The angle processor computes the angle 6,; and the new diagonal element a,, by n

CORDIC steps [WALT71] of the form
x[j+11=x[j]+06;27y[j]

yU+l=y[jl-0;27x[j]

z[j+1)=z[j] + o;tan"'27)
with

x[0] =a,,, y[0] =4,
and the results being

a,{(new)=x[n)K, 0,=z[n]

where

n-1 .
K =11 +c27%)2
j=0

In conventional CORDIC, the value of & J is obtained as

1 if y[j120
S =1-1 if y[j1<0

As mentioned before, this CORDIC operation is relatively slow because each of the »
steps requires a carry-propagate addition and a variable shift. Moreover, the use of a standard
complete CORDIC is area consuming because of the carry-propagate adders, the shifters, and
the storage of the constants tan"1(27/). We now develop a scheme that reduces these limitations

by:

i) Elimination of the angle recurrence. This is possible because the rotation pro-
cessors can use directly the o;’s. This reduces the area by eliminating one adder and the
storage for the constants tan™ (2"f }. Moreover, it also eliminates these components from
the rotation processors. In addition, with this modification the angle is transmitted in a
digit-serial fashion (G;) between processors and the angle calculation and the rotations

can be overlapped.
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i1) Elimination of one of the shifters by modifying the recurrences as follows.
Making

wlil=2y 1.
the recurrences are transformed to

x[j+1]=x[j]+0; 27 w[j]
wlj+l]=2w[jl1-0;x[j])

1 if w[j]120
G =1-1 if w[j]<0

This transformation leaves just one shifter for the x recurrence. Moreover, note
that this form shows that the value of x[j] does not change after j=n/2, that is,
xfnl=x[n/2]. )

iii) Replacing the carry-propagate addition by a redundant addition (carry-save or
signed-digit). This requires that the determination of O; uses an estimate of w ;] instead
of its fully assimilated value. To make this p0551ble, 1t is necessary to produce a redun-
dant representation of 8,; in terms of the f ’s. This is achieved by allowing g; to take
values from the set {—1,0,1} instead of from the set {—1,1}, which is the one used in con-
ventional CORDIC.

Selection functions for O; using this redundant set are developed in the Appendix for 2's
complement carry-save representation as well as for the signed-digit case. For the carry-save
case the resulting function is

1 if w20
0; =20 if w=-1/2
-1 w<-1

Similarly, for the signed-digit case we get,
1 if w2112

0"‘= 0 if w=0
-1 w<g-112
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Any of the two redundant adders can be used. Here we illustrate the carry-save case. The
implementation of the corresponding recurrence is shown in Figure 2a. The step time
corresponds to the shifter delay plus the 4-2 carry-save adder, since the selection function is
overlapped with the shifting. The angle is transmitted in a digit-serial fashion (0;) to the rotation
processor,

For the computation of the new diagonal element, it is necessary compensate x [z ] for the
scaling factor K. The value of this scaling factor is

n-1 R
K =TI(1+ lo;127%)\2
i=0

Since in this case the set of values of o; is {0,1,-1} (in contrast with conventional
CORDIC where it is {—1,1}), the value of K is not constant. Consequently, its value has to be
computed and the compensation has to be done by actual division, since the method proposed in
[DELO83] depends on the fact that the scaling factor is constant. We now describe an on-line
algorithm for the computation of X . The algorithm has two steps:

i) Compute
n-1 .
P =TI(1+0;27%)
j=0
by the recurrence
PU+11=P[j]+1o;1P[j12°¥
with
P[0]=1 and P =P[n]=P[n/2)

We use an on-line implementation, which unfolds the recurrence and uses shift registers
for the delay, as shown in Figure 2b. Note that only n/2 stages are needed.

ii) Compute X = P2 by an on-line square-root algorithm [ERCE78]. The on-line delay
of this module is four clock cycles. After that, an on-line division unit computes a, =x[n]K.
The on-line divider incorporates the on-the-fly conversion from a signed-digit representation to a
conventional 2’s complement representation [ERCE87a].

Consequently, the angle processor consists of the CORDIC recurrences, the on-line re-
currence for K 2, the on-line square-root unit, and the on-line divider unit, as shown in Figure 3a,
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The timing is shown in Figure 3b. Because of the shifter and the 4-to-2 carry-save adder,
the step time of the CORDIC recurrence is larger than that of the other recurrences (for P, on-
line square root, and on-line division). Therefore, we use a clock period corresponding to the
smaller steps and assign two clock cycles to the CORDIC recurrence step. The total delay is of
2n+9 clock cycles.

An alternative implementation of the CORDIC recurrences would be to use on-line addi-
tion instead of parallel carry-save addition. In such an implementation, the recurrence is unfold-
ed and on-line adders are used. The main advantage of this implementation is the replacement
of the area-consuming shifters by more efficient delays, as shown in Figure 4. However, we do
not favor this implementation because the selection function of O, requires that three bits of
w(/] be computed before &; can be determined. This increases to five the number of cycles
between the initiation of consecutive iterations, which makes this implementation significantly
slower than the parallel one. A faster implementation of this alternative is being developed.

On-line rotation processor

The rotation processor performs the rotation by means of a circular CORDIC operation.
It uses the angle produced by the angle processor. Since this angle is passed to the rotation pro-
cessor in its circular decomposed form (that is, the o; ’s are passed), it can be used directly in
this form so that the rotation processor does not require an angle recurrence. Moreover, the ¢s
are passed in series (most significant first) so that the rotation can be overlapped with the angle

calculation.

To keep-up with the fast angle recurrence step, the rotations have also to use redundant
addition, Since in this case there is no computation of ¢’s, a suitable implementation uses an
on-line version. In this implementation, the recurrence is unfolded and on-line adders are used,
as shown in Figure 5a. The main advantage of this scheme with respect to the parallel form is
that the area-consuming shifters are replaced by more efficient delays. To obtain an on-line de-
lay of 1 cycle, the additions should be radix 4. In this case, the interval between initiations of
consecutive iterations in the on-line circular CORDIC is of 2 cycles. Since, as mentioned before,
the CORDIC recurrence of the angle processor has a step time of two clock cycles, this time
between initiations matches the time at which the corresponding o, is obtained.

The division by the scaling factor K is done by two on-line division units (Figure 5a).
The timing is shown in Figure 5b. The total delay of rotation is 3n+3 clock cycles.

Overall timing
The overall timing is shown in Figure 6. The time of one iteration of the triangularization
process is 3n+3 cycles (determined by the rotation). As indicated before, the step time of the

CORDIC of the angle processor is of two clock cycles, while for the other recurrences it is of
one clock cycle.
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The time of the scheme presented here compares favorably with that of the scheme using
conventional CORDIC, as proposed in [AHME82a). In that scheme, the number of clock cycles
15 2.25dn, where d is the number of clock cycles per CORDIC step (carry-propagate addition
and shifting). For an estimated value of d =6 (to use the same clock period in both schemes),
we conclude that the scheme presented here would be approximately 4.5 times faster.

Since this speed improvement is due to two factors, namely, the overlap between the an-
gle calculation and the rotation and the use of redundant addition, we now separate the effect of
these factors. If the original scheme proposed in [AHME82a] is modified so that overlapping is
possible, the time would be reduced to 1.25dn, with a speed-up of 1.8. The use of the redundant
adder is responsible for the other 2.5 speed-up factor.

3. Floating-point representation

We now consider the modifications required for the described implementations when
floating-point representations are used. In [AHMES2b] a floating-point CORDIC is described.
However, it uses floating-point adders to implement the recurrences. This is not attractive be-
cause of the alignment requirements. We now develop a simpler alternative adapted to the tri-
angularization case.

Angle and new diagonal element

Assume that the initial values for the circular CORDIC are represented in normalized
floating point as

x[0]1=A,2% 12<1A,1<1

wi0l=y[0]=4,2% 1254, <1

To perform the CORDIC transformations we first align these initial value. However,
since y [0] is positive, the value of G, is 1 and we get

x[1]1=x{0] +w[0]
w[l1}=2(w[0] —x[O])

These can be written as

x[1)=A%2¢
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wll]=A72¢

with x[1] normalized.

This indicates that the CORDIC iterations can be done by performing first a floating-
point addition (normalized) and a floating-point subtraction (not normalized) to obtain A*, A™,
and a. After that, the iterations are performed using the fractions A* and A™. The resulting angle

is correct, since it depends only on x[0}/y[0]. Note that the angle is not in a floating-point
representation; its range is

n-1 .
emj:n = mn—l(z-(u—l)) - 2—(!1—1)’ emu = E tan“(z“)
i=0

Since the maximum is larger than m/2, this produces no problem. The minimum value
depends on n, but should be adequate for most applications.

To obtain the new diagonal element it is necessary to multiply by 29.
Rotation

The rotation can be done in a similar way to the computation of the angle. Let the initial
values be

x[01=B,2> 12<B, <1
and
y(01=B,2" 1258, <1

Again, since 6p=1, a floating-point addition and a subtraction produces

x[11=B*2% normalized

y[1] =B"2% non normalized

The scaled values B and B~ are used for the remaining iterations, producing x’[n] and
y’[n], so that the final results are

x[n]=x"[n])2?

ylnl=y'[n12°
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4. Summary

We have presented a scheme to perform the triangularization of a matrix using redundant
and on-line CORDIC modules. We estimate that this results in a speed-up of approximately 4.5
with respect to the implementation using conventional CORDIC. Moreover, reductions in area
result because of the elimination of the angle recurrence in the CORDIC modules, the replace-
ment of shifters by delays in the rotation processor, and the digit-serial transmission of the angle
between processors.
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Appendix

We now develop the selection function for ¢ ; using the digit-set {~1,0,1} and an estimate
of w{j]. For this, we first obtain the selection intervals [L;,U,] of w[j]=2/y[/] so that o; =k
can be selected. The intervals for k=t1 are the same as for the standard CORDIC [WALT71),
that is,

L,=U_ =0
and
Ur\il=-Lj1=2/A
where
an (4 = nil tan~1(27) + tan~1(2~(* 1))
xf] i=j+1

It is also shown in [WALT71] that the value

ly [j+111 =x[j127,
which results in the standard CORDIC when y {j] =0, is acceptable for convergence. Therefore,
we obtain

U\j+1]1=—-L_|[j+1]122x][j]

For the modified redundant CORDIC we need to determine U and L. From the previ-
ous expression, it is possible to select 6; = 0 whenever the resulting

Iwl{j+1]1 £2x[/]
Consequently, from the recurrence

wlj+1] = 2w (i1 - 0,x [/ )

we obtain
Uoglil=-Lolil=x1j]

Using these intervals we now determine a selection function that is suitable for using an
estimate w{j] of w[j]. To be able to do this, it is necessary to have an overlap between the inter-
vals for -1 and 0 and for 0 and 1. This can be achieved by normalizing x [/ ], that is making
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x[j12 172

From the description of the operation for floating-point representation, it can be seen that
it is possible to have x{1] normalized. Moreover, from the recurrence for x[j] we can deduce
that

x[j+1=x[j1+0;wlj127% 2 x[}]
Consequently,
x{j12zx[1]121/2 forjzl

We now obtain a suitable selection function. Since the actual relation between v and w
depends on whether carry-save or signed-digit redundant addition is used, we treat these two
cases separately.

i) Carry-save case

In this case the values are represented in 2’s complement, so that the relation between w
and w is

wljl-2"" <w[jl<sw[/]
where the estimate is computed by assimilating ¢ fractional bits of w.

If M (k) [m (k)] is the largest [smallest] value of w[;] for which a quotient value of k is
chosen, we have

mk)swsMk) - o; =k
m(k+1)=M(k)+2™ (since t fractional bits are used in selection)

mk)2L,; M(k)SU, -2+
These relations are illustrated in Figure Ala. Introducing

Ug=—-Ly=1/2 (to make the selection independent of x[j])

and
L1=U_1=0

results in the following inequalities:
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M@0 <1/2-274
M©Q)2 -2 (since m(1)=M©Q)+2* 20)
m(0)2-~1/2

m(0) £ =27 (since M(-1)=m(0) -2~ < -27*
This results in

max (-1/2,~27Y < M(0) € 1/2 - 27+l

-12<m(0) < -2~

These expressions are satisfied for z=1 and M (0) = m(0) = -1/2. The resulting selection
function is

1
Gi= 0 it w=-112
-1 w<-1

The following table gives the binary description of this selection function:

w | wWwWw_, | ©
32 011 1

1 010 1

172 001 1

0 000 1
-1/2 111 0
-1 110 -1
-3/2 101 -1

The corresponding switching expressions are:

G=1) =,
(G = 0) = wl\ff’ow_l

(G=-1)=w,;(wg' +¥W_)

it) Signed-digit case
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In this case, the relation between W and w is
wlji]-27 sw[j]swl[j]1+2*
where W is computed using ¢ fractional bits of w.

Using the same notation as in case i) we get,

mk)SW SM®k) —> o =k
mk+1)=M (k) +2~ (since t fractional bits are used in selection)

mE)2L, +27% MKk)sU, -2
These relations are illustrated in Figure Al.b. Again, as in case i) introducing

Ug=-Lo=1/2 (to make the selection independent of x[j])
and

Ll = U -1= 0
results in the following inequalities:

MOys12-2"

M) 2-2" (since m()=MO)+2~* 20)

m@)=-12+2"

m(0) S -2 (since M(-)=m(0) -2 s27**})

These expressions are satisfied for t=1 and M (0)=m(0)=0. The resulting selection
function is

1 if w2122
g; = 0 if w=0
-1 w<-112
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