ON-LINE SCHEMES FOR COMPUTING ROTATION
ANGLES FOR SVDS

Milos D. Ercegovac August 1987
Tomas Lang CSD-870043

On-Line Schemes for Computing Rotation Angles for SVDs
Milo$ D. Ercegovac and Tomas Lang

UCLA Computer Science Department
University of California
Los Angeles, CA90024

Abstract

Two floating-point radix-2 schemes using on-line arithmetic for implementing the direct
two-angle method for SVDs are presented. The first scheme is an on-line variant of the
cosine/sine approach and is the fastest of the schemes considered: it performs the 2x2 SVD step
in about 2n clock cycles. However, it requires a relatively large number of modules; this number
is reduced when some modules are reused, resulting in a time of 3n clock cycles. The number of
modules of this on-line version is still larger than that of the conventional one, but this is com-
pensated by the smaller number of bit-slices per module and by the digit-serial communication
among modules. The corresponding speed-up ratios are of 5 and 3 with respect to a convention-
al arithmetic implementation. The second scheme uses an on-line CORDIC approach and per-
forms the 2x2 SVD in about 7n clock cycles and is advantageous because it is more time-area
efficient. It results in a speed-up of about 2.5 with respect to the conventional CORDIC imple-
mentation.

1. Introduction

The single value decomposition (SVD) is important in many matrix computations. For
the definition of this transformation, the basic algorithms for its computation, and its applications
the reader is directed to [GOLUS83] and [LUK86]. Because of the computation-intensive nature
of the algorithms, great interest exists in using parallel arrays of processing elements, as dis-
cussed in [BRENS85a], [BREN85b], [LUK86], and [CAVAR87]. The primitive operation required
for the parallel computation is the diagonalization of a 2x2 matrix by the rotations R (6;) and
R (8,) (using the notation in [CAVAS87]), such that

e 0
0 f
where €, and ©, are the left and right rotation angles, respectively. The corresponding rotation
matrix is

ab
RO [c d] R(®,)=

cosB sin@
EE

—sinB coso

Several methods can be used to compute the angles for these rotations, in particular the
two-step method and the direct two-angle method [BRENSS). Here we will use the latter since it
results in a more effective implementation when using on-line schemes. Briefly, this direct two-
angle method consists in first finding the angles 8, (sum) and 6, (difference) as

0, = tan—l(z—iﬁ-) 8, = tan"1(

c—d
d+a

)

Then the angles 8; and 8, are obtained as

0. -6 6. +0
91= s2d 6r= szd

For the realization of this method the following two approaches are possible:

a) The values of cosO and sin@ are computed by a sequence of primitive operations in-
volving squaring, addition, multiplication, division, and square root. The rotation is then done by
several multiplications and additions. The main advantage of this approach is that efficient im-
plementations for the primitive operations are known and that redundancy can be used to im-
prove their speed. However, it requires various different modules and consists of several depen-
dent computations. Examples of this approach are presented in [BRENS5].

b) The CORDIC procedure [VOLDS9, WALT71] is used for direct computation of the
angles and of the rotations. The advantage of this approach is that a small number of operations
is required and that the same module can be used for both the angle calculations and the rotation.
However, the conventional implementation of the CORDIC module has two disadvantages: it is
slow, because it involves recurrences that include carry-propagate addition, and area-consuming
because of the need for variable shifters. An implementation of the direct two-angle method us-
ing the CORDIC procedure is presented in {CAVAS7].

In this paper, we explore the two before-mentioned approaches with the objective of us-
ing on-line techniques [ERCE84] to improve the speed and reduce the area. Section 2 considers
the sin/cos-based implementation and Section 3 presents the CORDIC-based implementation.
Section 4 makes comparisons between these methods.

To make the speed comparisons meaningful a suitable measure has to be used. In some
studies the comparisons are done in terms of the number of addition-like steps, which appear as
basic components in the iterations for operations such as multiplication, division, and CORDIC.
However, this is not an adequate measure since the time for addition depends on the type of ad-
dition performed. More specifically, the time of carry-propagate addition is several times larger

than that of redundant (carry-save or signed-digit) addition. It might be claimed that this does
not change the validity of measuring in terms of additions, since for a particular implementation
the corresponding type of addition would be used. However, this is not correct since not all algo-
rithms can be directly transformed from one using carry-propagate addition into one using
redundant additions. Furthermore, when fast redundant additions are used, other terms which
were neglected when carry-propagate additions are considered become important. As a conse-
quence, to make more meaningful comparisons, we define a basic clock cycle and estimate the
time of the various operations in terms of this clock cycle.

The implementations we describe are for floating-point representations since this format
provides better numerical characteristics and results in a system which is easier to use in a
variety of environments than the fixed-point alternative. We use the characteristics of the algo-
rithm to reduce the additional overhead introduced by the floating-point representation.

2. On-line implementation of the sin/cos-based approach

We now present an on-line implementation using the sin/cos-based method. As
described in [BRENSS] the algorithm is as follows:

p1=d-a gqy=c+b

8, .9
{ Compute ¢, = cos(—-) and s, = sin(—-) }

if Ip,1 <elg,| then

begin

¢ =1

5, =0

end

else

begin

o, = 2L,
1=

ty= 1 ;
1~]

1py | + (1 +pHi©2
1
c.!'

T A+’

Sg = Ssign(py)tq:cg

end

p=a+d gy=c-b

0y 6,
{ Compute ¢; = cos(T) and s, = sin(—z'))

if Ip,1 <elg,) then

begin

Cqg = 1;

54 = 0

end
else

begin

0y 22,
2 ql,

1
L= H
Ipy| + (1 +pH?

1
Cg = ——>;
T+

Sq = sign(pa)iycy
end
{ Compute ¢; = cos8;, s; =sinb;, ¢, =cosO, and s, =sinb, }

Cr =CCy +SsSd C,r =CeCq — S84
5] =8,04 —C. 8y S, =504 +Cssd

We now present an implementation of this scheme using on-line algorithms for the prim-
itive operations. Briefly, the on-line approach has the following characteristics [ERCE84]:

i) The operands are received in a digit-serial fashion, from most significant to least
significant.

ii) The result is obtained in the same digit-serial way, with the most-significant digit be-
ing produced after 8 digits of the operands have been entered. 8 is called the on-line delay of the
operation, and it ranges from one for addition to four for square root.

ili) Because of this on-line operation, a sequence of dependent operations can be per-
formed in an overlapped fashion, reducing significantly the overall delay.

iv) The digit-serial application of the operands reduces the communication bandwidth
between operations.

v) For a precision of n bits, only about n /2 bit slices are needed to implement the on-line
algorithms.

Properties iii) and iv) make this approach attractive for a complex sequence of dependent
operations, such as that appearing in the two-step SVD algorithm. Previously we have applied
this technique to the triangularization of a matrix using Givens’ rotation [ERCE87a], where de-
tails of the floating-point on-line algorithms are given.

Figure 1 shows a block diagram of the implementation. Since the primitive operations re-
quired are similar to those in the triangularization case, we do not repeat here the detailed on-
line algorithms and implementations. Moreover, the exponent calculations and the alignments
are performed in a manner similar to [ERCE87a] so we do not show their details here.

From the triangularization implementation, we obtain the on-line delays, as shown in
Figure 1. Since the computations for (c;, 5,) and (¢, 5;) are exactly the same, except for the ini-
tial sums/differences, two alternative implementations exists:

Alternative A: Use two copies of the hardware in Section C (Figure 1) and compute both
(¢g,S¢) and (cy, 54) in parallel.

Alternative B: Use only one copy of Section C and compute (¢4, 54) after {c,, 5;). Note
that the second use can begin as soon as the data for the first computation has completely entered
the unit.

The first alternative leads to a faster implementation but uses more hardware. The total
delay and the number of units used for both cases are shown in the following table (for n-bit
mantissas). We also include the values for a conventional implementation, as discussed in
{CAVAST].

Alternat. A Alternat. B Conventional
Time Yadd + 1 _+ 25 | gy + 2n* +25 10n
=2n =3n

Dividers 6 3 1
Multipliers 6 5 1
Square 4 2 1
Square-root 4 2 1
Adders - - 4

* We assume a single-precision format with 24 bits in the mantissa.

The total delay of the on-line implementation compares favorably with that of the con-
ventional approach. The corresponding speed-up ratios are

conv

=5 (Alternative A)
Ton—tine

cony

= 3.3 (Alternative B)

Ton—tine

This assumes that the clock cycle is the same for both implementations. This is approxi-
mately right, if both implementations use redundant addition, which is a necessity in the on-line
case and a possibility in the conventional case.

The number of modules required in the on-line case is larger than that for the convention-
al implementation. However, this is compensated by the fact that the number of bit-slices per
module in the on-line case is roughly one half of that for the conventional implementation and
by the digit-serial communication among modules.

In addition to the calculation of the rotation matrices, performed by the diagonal proces-
sors, it is necessary to do the two-sided rotations using the off-diagonal processors. In this
cos/sin-based approach these rotations are performed by on-line multiplications and additions in
an overlapped manner with the operations in the diagonal processors.

3. On-line CORDIC implementation

The CORDIC implementation of the direct two-angle method is described in [CAVAR87].
Here we adapt this scheme to an on-line approach, with significant improvement in speed.

The algorithm described in Figure 2 [CAVAR87], first computes, by means of two con-
current CORDIC circular operations, the angles

c+b
d—a

= tan—1 = tan-1 c—b
0, =tan™() ©,;=tan (—d+a)

Then, the two angles 6; and 8, are obtained as

0, -0 0, +6
9,=(d) 0 (8 +6,)

2 g 2
Finally, the two-sided rotation is performed by the sequence of two CORDIC operations.

In [CAVAR8T7] this scheme is implemented quite directly (except for the correction factor,
which is incorporated in the rotations). This results in a time of 3.25T, each T, corresponding
approximately to n carry-propagate additions, and in an area essentially equal to two CORDIC
modules.

Here we present a modification of this implementation. The most significant differences
introduced are the following:

i) The addition/subtraction (and division by 2) of the angles in step 3 are done using the
decomposed representation produced by the CORDIC 1 and CORDIC 2 steps. This has the fol-
lowing three important advantages:

- First, it reduces the area required by all CORDIC modules, because none of them will
require the angle recurrence. That is, we implement only the x, y recurrences. Consequently, the
implementation is simpler and no ROM modules are needed.

- Second, it produces the angles 8; and @, in an on-line fashion, which permits the over-
lapping of CORDIC 1 and 2 with CORDIC 3 and results in a significant reduction in the overall
delay.

- Third, the communication between the angle processor and the rotation processors is di-
git serial, with the corresponding reduction in bandwidth.

However, as we will discuss in the next section, this decision of using the decomposed
angles eliminates the possibility of using an on-line versica for CORDIC 1 and 2.

ii) The CORDIC 3 and CORDIC 4 operations are implemented on-line. This allows for
the overlapping of these operations, reduces the step time to the on-line delay of addition (in-
stead of a carry-propagate adder delay), and eliminates the need for area-consuming shifters.

iii) The scale-factor correction is done by on-line division. This permits the overlap of
this step with the CORDIC steps. The on-line division module also incorporates the on-the-fly
conversion from redundant into conventional representation [ERCE87c].

We now present the implementation of each of the modules and then discuss the overall
scheme.

Computation of Rotation Angles

As indicated in Figure 2, the rotation angles are computed by first determining the angles
8, and 0. To do this, first perform in parallel four addition/subtractions and then two concurrent
circular CORDIC operations.

The circular CORDIC operations have the form
x[i+1]1=x[i1+ 06,27 y[i]

yli+1l1=ylil- 0,27 x[i]

with the selection of 6; given by

1 if y[il20
%i =1-1 if y[i]<0

To compute both angles, two concurrent CORDIC operations are performed, with sub-
scripts s and 4. The initial conditions are

x[0l=c+b y,[0l=d-a

xd[0]=c -b yd[0]=d+a

The resulting angles are

8 = i"is tan”'(27) @, = io.-"-tan‘l(z*")

i=1 i=1

In a complete CORDIC module the summation of the angle is computed by another re-
currence of the form

z[i+1]=z[i] +tan"1(27%)

where the angles tan~}(2™%) are obtained from a ROM. In contrast to this, we do not compute the
angles but perform the operations of Step 3 on each of the ©; components. That is, we obtain the
o; components of 0; and 8, from the following relations:

This results in the following table:

Table 1
of of | ol of
1 1 0 1
1 -1 1 0
-1 1 -1 0
-1 -1 o -1

These resulting 6;’s are transmitted on-line to the rotation modules.

As described before, the recurrences x and y require the use of one shifter each. Since a
shifter consumes a significant area, we transform the recurrences to reduce the number of
shifters to one. We replace y [i] by w[i] such that

wlil=2'y[i]
This results in

x[i+1]=x[il+o;w[i]2¥
wli+1]=2wli]-o;x[i])

1 if wfi]20
% =Y-1 if wlil<0

This version of the recurrences requires only one shifter (for x). In addition, to reduce
the hardware required, we pipeline the recurrence step and use ocne module for the computation
of both angles 6, and ©,. This pipelined structure is also used to perform the initial
addition/subtractions. The corresponding implementation and timing is shown in Figure 3. The
time of one iteration of the recurrence depends essentially on the time for carry-propagate addi-
tion plus the time for shifting. Since this is relatively slow (compared to the times for operations
in the rotation, as we will see in the next section), we assume that one iteration takes d clock cy-
cles and is partitioned into two stages of d/2 clock cycles each.

Note that to obtain a fast recurrence step it would be convenient to implement the
CORDIC operation using a redundant addition - to eliminate the carry-propagate adder. More-
over, an on-line approach eliminates the slow and area-consuming shifters. An implementation
of this type is described in [ERCE87Db] for the use of matrix triangularization. Unfortunately, this
approach cannot be used for the CORDIC 1 and CORDIC 2 operations considered here because
the redundant implementation produces an angle decomposition with digit set {-1,0,1}
[ERCES87b], which would not allow us to perform Step 3 directly using the decomposed angles.
The reason for this can be seen from the case in which the corresponding components of 6, and
6, are 1 and O, respectively; in such a case the component of 8, is 1/2 which cannot be used in
the rotation step. Consequently, since we see many advantages to performing the calculation us-
ing the decomposed angles, we decided to use a non-redundant addition for the recurrence.

On-line left-angle rotation

The left-angle rotation is done by an on-line circular CORDIC operation. It has the fol-
lowing characteristics:

i} Since the angle 8, for the rotation is known in decomposed form, it is only necessary to
perform the x and y recurrences. This reduces the amount of hardware (i.e., no angle recurrence
modules, no ROMs).

ii) The rotation can be overlapped with the calculation of the angle, because the angle is
produced in decomposed form in an on-line fashion. This reduces the overall time.

iii) The CORDIC does not involve a sign detection (since the angle is known in decom-
posed form). Consequently, an implementation using a redundant addition is straightforward. In
particular, it is simple to use an on-line implementation with the following advantages
[ERCE87b]:

- the area-consuming shifters are replaced by area-efficient delays,

- the results are obtained on-line, which makes it possible to overlap the left-angle rota-
tion with the right-angle rotation and with the scale correction, reducing significantly the overall
delay.

Note that in this case we do not obtain the basic advantage of using the redundant-
addition approach, namely of reducing the iteration time. This is because the initiation of each
iteration has to wait for the corresponding component of the angle. In other words, the iteration
time is determined by the CORDIC 1 and 2 steps, which do not use a redundant addition.

We now describe the on-line scheme [ERCE87b]. The rotation corresponds to the re-
currence

10

x[i+1]1=x[i]1+0627y[i]

yli+1l=y[i] - /27 x[i]

Note that in this case the digit-set of ¢; is {-1,0,1} (as produced by the angle module), in
contrast with conventional CORDIC in which the values are {-1,1}. This does not pose any
problem in the implementation.

To replace the area-consuming shifters by more efficient delays, we implement the re-
currences with on-line additions. To do this, the n iterations are unfolded and overlapped as
shown in Figure 4a. As a result, the multiplication by 2, which in conventional CORDIC is im-
plemented by a shifter, corresponds here to a delay.

The results are obtained on-line. The on-line delay corresponds to nt, where T is the in-
terval between the initiation of two consecutive iterations. Since the direction of rotation (6}) is
obtained in an overlapped manner with the rotation, in a simplistic implementation T is the max-
imum of the delay to produce one digit 6/ and the on-line delay of addition. Because of the need
to use a carry-propagate adder to produce G,-l, the corresponding delay dominates. However, we
can reduce T by observing that the operand requiring the knowledge of 0‘,-' is multiplied by 27,
that is, its { most significant digits are 0. Consequently, it is not necessary to know the value of
o/ until the i -th digit. Therefore,

ti+i=iXd

where ¢; is the initiation time of the i —th iteration and d is the delay of one step of computation
of o'f (all measured in number of clock cycles). This results in

t;, =i{d-1)
That is, the timme between initiations is
T=d-1 clock cycles

Therefore, the on-line delay of the left-angle rotation is (d—1)n clock cycles.

After the last iteration is initiated, one digit of the result is obtained each clock cycle. To
achieve this, it is necessary to input one digit of the operands per clock cycle; since consecutive
initiations are separated by d—1 clocks, this requires buffers of length d—1 between the on-line
adders (Figure 4a). The timing of the angle CORDIC and the left-angle rotation is shown in Fig-
ure 4b.

11

On-line right-angle rotation

The right-angle rotation is also performed by a on-line circular CORDIC. However, in
this case the angle is known beforehand (in decomposed form). This makes it possible to use the
potential of the redundant addition implementation of having an iteration cycle of one clock. To
achieve this, it is necessary to minimize the on-line delay of the additions; therefore, radix-4 ad-
ditions are performed. The timing diagram of the angle CORDIC and both rotations is shown in
Figure 5.

Since, as shown in the diagram, the right-angle rotation begins when all the digits of the
inputs have already entered the left-angle rotation unit, it is possible to use the same unit for both
rotations, feeding back the results of th first rotation as inputs for the second. Note that, since in
the right-angle rotation initiations occur every cycle, it is necessary to bypass the buffers of
length (d—1) between the on-line adders.

Scale-factor correction

The CORDIC rotations produce a modification of the magnitudes [WALT71] by the fac-
tor

Kl = H(l + (0‘_1)22—25)112
and

K, =TT+ (c)H22"%)1"2

It is necessary to correct for these factors. Instead of performing an individual correction,
it is possible to perform just one correction using the factor

K =K, K,

In conventional CORDIC the factors are constant (independent of the actual values of the
o;’s) because the possible values of ; is the set {-1,1}. In contrast, in this case the digit sets of
0, and O, are {-1,0,1}, so that the correction factors for each of these rotations are not constant
and have to be computed for each value of the angle. Moreover, the compensation has to be done
by actual division, since other methods, such as the one proposed in [DELOS83], depend on the
fact that the scaling factor is constant. The diagonal processors compute the values of X; and K,
in an on-line fashion and send them to the rotation processors, where an on-line multiplication
unit produces the correction factor K.

12

The computation of the left correction factor (the right one is done in an identical
manner) is done by the following on-line scheme. The algorithm has two steps:

i) Compute

n-1 .
P =TI+ oj127%)
j=0

ii) Compute K; = P,l’ 2, The computation of P; is done by the recurrence
P[j+1]1=P{j]1+ 15; 1274 P]
with P[0l =1 and P, =P[n]=P[n/2] to the implementation precision.

We use an on-line implementation, which unfolds the recurrence and uses shift registers
for the delay, in a similar fashion as for the on-line rotation. Note that only /2 stages are need-
ed.

The computation of K, = P;*? is done by an on-line square-root algorithm [ERCE78].

The scaling (division by the correction factor) is done by two concurrent on-line division
units. Since the divisor is a constant (off-line), this division is very similar to a SRT radix-2 im-
plementation. The on-line division unit also performs the on-the-fly conversion from signed-digit
representation to 2’s complement representation [ERCE87c¢].

Overall SVD system

We now summarize the complete system. As shown in Figure 6a, the diagonal proces-
sors contain the following components:

- a partial CORDIC module to evaluate the angles 8; and 6, (by means of the angles 6,
and 8,). This CORDIC module does not contain an angle recurrence since the angle is used by
the rest of the system in decomposed form. The main components are a carry-propagate adder
and a shifter. The module is pipelined with two stages, to compute both angles. The step time is
relatively slow since it is determined by the carry-propagate adder and by the shifter. To inter-
face with other faster modules, we make this step time equal to d clock cycles {(typically from 4
to 6 cycles).

- the modules to compute K, K, , and K.

13

- two partial on-line CORDIC module to perform the rotations of the 2x2 matrix. Again,
this module does not require an angle recurrence, since the angle is produced in suitable decom-
posed form by the first CORDIC module. The main components of each module are # on-line
adders and shift registers for buffering and delaying.

- an on-line multiplication unit and two on-line division units to correct for the scaling
factor. These dividers also convert to conventional representation.

The off-diagonal processor, shown in Figure 6b, contains two CORDIC on-line rotation
module, one multiplier, and four division units.

Figure 6c shows the timing of the complete system. We estimate that the operation takes

T=n(d+1)+5 clock cycles

In comparison, the implementation proposed in [CAVA87] takes 3.25nd cycles. For
d=4, the implementation proposed here is about 2.6 times faster. With respect to area, we cannot
make a significant comparison without actual realization. However, we can point to the follow-
ing differences:

i) we eliminate the need for the angle recurrence in the CORDIC modules.

ii) we use digit-serial communication between modules.

iii) we pipeline the first CORDIC module to be used for the computation of both angles

iv) we add a partial on-line CORDIC module to the diagonal processor (to perform the
rotation). We also replace the standard CORDIC module by a partial on-line CORDIC for the
off-diagonal processor.

v) we add the units to compute the scaling factors and division units for the scaling.
Floating-point representation

We now consider the modifications required for the described implementation when
floating-point representations are used. In [AHMES82b] floating-point CORDIC is described.
However, it uses floating-point adders to implement the recurrences. This is not attractive here
because of the alignment requirements. We now develop a simpler alternative adapted to the

SVD case.

i) Computation of Angles

14

Assume that the initial values in the 2x2 matrix are represented in normalized floating
point. Then, as shown in Figure 1, the floating-point additions/subtractions produce

x[0]=A4,2% 12514, 1<1

wi0]=y[0]=4,2% 11254, <1
The first step of the circular CORDIC results in

x[1]1=x]0] + ogw[0]

w1} =2(w[0] — opx [0])
These can be written as
x[1}=A%2% w[l]=A"22

with one of them normalized.

This indicates that the CORDIC iterations can be done by performing the first step using
floating-point addition/subtraction to obtain A*, A™, and a. After that, the iterations are per-
formed using the fractions A and A~, The resulting angle is correct, since it depends only on
x [0]/y [O]. Note that the angle is not in a floating-point representation; its range is

18| = tan™ 12771 = 27(>-D),

n-1 .
ey] = 3 tan1(27)
i=0

Since the maximum is larger than m/2, this produces no problem. The minimum value
depends on n, but should be adequate for most applications. The angles 68; and 8, are computed
as before.

ii) Rotation

The modifications to the rotation step are similar to those for the calculation of the angle.
Let the initial values be

b

x[0]=B,2" 12<B, <1

15

y[0)=B,2% 12<B, <1
Again, a floating-point addition and a subtraction produces
x[11=B*2> y[l]=B"2¢

The scaled values B* and B~ are used for the remaining iterations, producing x’[#] and
y’[n], so that the final results are

x[n]=x[n12% ylnl=y’[n)2?

4. Comparisons and Conclusions

We have presented two schemes for the use of on-line techniques in the implementation
of the direct two-angle method for SVD; the first is a modification of the cos/sin-based approach,
while the second uses the CORDIC approach. Table 2 gives execution-time comparisons
between the conventional and our on-line implementations. As discussed before, the time-
measure used is number of clock cycles, since this is a suitable standard for accurate comparis-
ons.

Table 2: Time comparisons
(clock cycles)

Conv. cos/sin | On-line cos/sin | Conv. CORDIC | On-line CORDIC
Angles 10n 2n 3n nd nd
Two-sided rotation 2n overlapped 2.25nd n+35 (overlapped)
TOTAL 12n 2n 3n 3.25nd (d+n +5
d=4 - - 13n 5n
d=6 - - 19n Tn

From the table we draw the following conclusions:

e The use of on-line techniques produces a speed improvement in both approaches.

e The fastest approach is the on-line cos/sin-based, but this is also the one requiring the
largest number of modules. However, this is compensated by the fewer bit slices per module

and by the digit-serial communication.

e The conventional CORDIC-based approach is the slowest, because of the need of
carry-propagate adders. However, it requires the smallest number of modules.

16

e The on-line CORDIC-based approach seems a good scheme to implement because it
probably has the best time-area characteristics.

As mentioned in Section 3, the on-line CORDIC scheme can still be made faster by the
use of redundant addition in the recurrences. This approach has the potential of achieving an ex-
ecution time approximately of 2n clock cycles, with an amount of hardware not significantly
larger than that of the non-redundant case. We are developing the details of such an implementa-
tion.

Acknowledgements This research has been supported in part by the ONR Contract NO0014-85-
K-0159 On-Line Arithmetic Algorithms and Structures for VLSI.

17

References
(AHMES82] H.M. Ahmed, "Signal Processing Algorithms and Architectures," Ph.D. Dissertation, Dept. of
Electrical Engineering, Stanford University, June 1982.
[BRENS85a] R.P. Brent, F.T. Luk, and C.F. Van Loan, "Computation of the Singular Value Decomposi-
tion Using Mesh-Connected Processors,” Journal of VLSI and Computer Systems, vol. 1, no. 3, pp.242-
270, 1985.

[BREN85b] R.P. Brent and F.T. Luk, "The solution of singular-value and symmetric eigenvalue problems
on multiprocessor arrays,” SIAM J. Sci. Statist. Comput., vol. 6, pp. 69-84, 1985.

[CAVAB7] I.R. Cavallaro and F.T. Luk, "CORDIC Arithmetic for an SVD Processor,” Proc. 8th Sympo-
sium on Computer Arithmetic, pp. 113-120, 1987,

[DELO83] J.M. Delosme, "VLSI Implementation of Rotations in Pseudo-Euclidean Spaces", IEEE Int.
Conf. Acoustics, Speech and Signal Processing, 2, pp. 927-930, April 1983.

[ERCE78] M.D. Ercegovac, "An On-Line Square Root Algorithm", Proc. of the 4th IEEE Symposium on
Computer Arithmetic, pp. 183-189, 1978.

[ERCEB4] M.D. Ercegovac, "On-Line Arithmetic: An Overview,” Proc. SPIE Real-Time Signal Process-
ing, 495 (VII), pp. 86-93, August 1984.

(ERCE87a] M.D. Ercegovac and T. Lang, "On-Line Scheme for computing Rotation Factors," Proc. 8th
Symposium on Computer Arithmetic, pp. 196-203, 1987.

(ERCE87b] M.D. Ercegovac and T. Lang, "Redundant On-Line CORDIC Algorithms", in preparation.

[ERCE87c] M.D. Ercegovac and T. Lang, "On-the Fly Conversion of Redundant into Conventional
Representations,” IEEE Transactions on Computers, vol. C-36, pp. 895-897, July 1987.

[GOLU83] G.H. Golub and C.F. Van Loan, "Matrix Computations," The John Hopkins University Press,
Baltimore, 1983.

(LUK86] F.T. Luk, "Architectures for Computing Eigenvalues and SVDs," Proc. SPIE Highly Parallel
Signal Processing Architectures, vol. 614, 1986.

[VOLDS59] J. Volder, "The CORDIC Trigonometric Computing Technique," IRE Trans. Electronic Com-
puters, EC-§, no. 3, pp. 330-334, Sept. 1959.

[WALT71] J.S. Walther, "A Unified Algorithm for Elememtary Functions,” AFIPS Spring Joint Comput-
er Conf., pp. 379-385, 1971.

18

(used twice)

ab c d
Yy v
Conventional

FLPT
Adder

s Pl]9..
Section C

| Conv. DIVIDER |}

p
y

On-Line
Section A

v

On-Line ADDER

| On-Line RECIP |

<@4—— Pass 1/ Pass 2

(Sum and Difference)

(See Fig. 1b)

\ 2
On-Line
Section A

| On-Line RECIP |

| On-Line MULT |

On-Line
Section B

RRN

€, C; S, S,

<l

(See Fig. 1b)

On-line Delays

U epa

tFPA + 25

Figure 1a: On-Line Scheme for Computing SVD
Rotation Factors

Sd

S register

y 4

+ On-Line Delays

SQUARE | 1
y
L_Align 1,p2 | 1
[ADD 1
v

[SQRT | 4

l 7

On-Line Section A

s

C register

Iy

.]

i

CWr] [Cwor] [Cwoo] WO

l

| ALIGN [ALIGN
aD 1 [SUB] 1 [[sus] B ADD
oo T
C c

On-Line Section B

Figure 1b: On-Line Sections A and B

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

[Cp=eb | [G=cb | [s=dva] [teda]
CORDIC 1 CORDIC 2
p,t q,s
produce produce
esum edii‘

N\

L

8- (Osum -

O = 9sum M Gdif)/2

Oyt 12

l

CORDIC 3

ROTATION
8,

l

CORDIC 4

ROTATION

®,

l

SCALE FACTOR
CORRECTION

'

Figure 2: CORDIC Scheme

s

d

SHIFTER

MY
L
[e
.
Yy A4
CPA CPA
d clock 2 3 4
i cycles . , ,
[T] i
¢ .' 1 2
stage . g ? 1 ?
]] I 1 { 1
1 2 3 4
t ; } t
1 2 3 4 5
t t] t t
, R S S S
I I]]]
Figure 3: Implementation and Timing

Shift Register
Shift Register

vy vV
A A OA - On-line adder
v | v
GO
x[i] &-, -2yl
E E (d-1) cells
X i-cell delay - .
. [TTT] I
4 l l
QA <—f-—> QA
G.
v !
x[i+11 y[i+1]

Figure 4a : On-Line Scheme for x,y Recurrence
(for Rotation)

d clock cycles 1 clock cycle

l | | |
¢ T | [| |
1 2 3 4 5 8
d-1 clock
t. cycles] r l l
T] i | |
! 2 3 4 5 6 ¢ digits out
initiation of
i-th iteration

Figure 4b: Timing for Left-Angle Rotation

left

right

|

[

1 2 3 4 5 6

1234586

H—t——t- digits in 123456
digits out Hr+++

123456
digits in H—+—+——
123456
digits out =t—t——t—

Figure 5: Timing of Two-Sided Rotation

Evaluate > Evaluate > K,
o o Scaling —» K,
e r IS Factors K
| r c
row ° ° f g
< - > 13
Q
y A4 l) 4
—® ON-LINE ——# ON-LINE
CORDIC CORDIC
ROTATION ROTATION
l v vy v
DIVISION/ DIVISION/
CONVERSION CONVERSION
e f
Figure 6a: Diagonal Processor Organization

column

input
elements
—

ON-LINE
CORDIC
ROTATION

ON-LINE
MULT

—
input
elemaents
—l

ON-LINE
CORDIC
ROTATION

l+v¥

DIV/C Div/iC

oo

vy v

Civ/C Div/C

vy

rotated slements

Figure 6b: Off - Diagonal Processor Organization

left-angle rotation t+++++Hd

scaling factor H—

right-angle rotation

scaling/conversion

Figure 6¢: Overall Timing

