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ABSTRACT

This paper considers the problem of invoking auxiliary, unobservable variables to facilitate the structuring
of causal tree models for a given set of continuous variables. Paraileling the treatment of bi-valued variables in
[Pearl 1986), we show that if a collection of coupled variables are governed by a joint normal distribution and a
tree-structured representation exists, then both the topology and all internal relationships of the tree can be un-
covered by observing pairwise dependencies among the observed variables (i.e., the leaves of the tree). Further-
more, the conditions for normally distributed variables are less restrictive than those governing bi-valued variables.
The result extends the applications of causal tree models which were found useful in evidential reasoning tasks.

I. INTRODUCTION

Belief networks are directed acyclic graphs in which nodes represent propositional vari-
ables, the arcs signify direct dependencies between the linked propositions, and the strengths of
these dependencies are quantified by conditional probabilities. Belief networks can be used to
represent the generic knowledge of a domain expert, as well as inferece engines that manipulate
this knowledge in evidential reasoning applications [Pearl 1986]. In particular, it was shown
that in a singly-connected (e.g. tree-structured) network, beliefs can be updated coherently by lo-
cal propagation through a network of parallel and autonomous processors, and that equilibrium
is guaranteed to be reached in time proportion to the network diameter.

Since the efficacy of the scheme is based on a singly-connected (especially tree-
structured) network, Pearl has proposed a preprocessing approach which introduces auxiliary
variables and permanently turns multiply-connected belief networks into a tree. Naturally, the
question arises as to whether it is possible to reconfigure every belief network as a tree. In
[Pearl, 1986) it is shown that if all variables are bi-valued and if there exists a decomposition
into a tree-structured network with auxiliary variables, then the topology of the tree can be un-
covered uniquely from the observed correlations between pairs of variables. However, if the
variables are not bi-valued, the problem is more complicated and remains an open question.

In this paper, the problems of structuring causal trees with continuous variables are con-
sidered. We show that if all the variables are normally distributed and if the activities of the
visible variables are governed by a tree-decomposable joint normal distribution, then the tree
can be structured from the observed correlations between pairs of variables. Moreover, the con-
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ditions for normally distributed variables to be tree-decomposable are less restrictive than the
corresponding conditions for bi-valued variables.

II. THEORETICAL BACKGROUND
A. Nomenclature and Problem Statement

Let xy, X3, ..., X, be random variables from a n -dimensional joint normal distribution:
1

& X9 00x,) = (2n)_7(detzn)‘icxp (-2 (x,, —u,) t E;l (Xp = i) | 6!

Where x,, = (X{, X2, ..., X;) *, m, = EX,, is the mean vector and ¥, = E(X,— t,) (X,—p,) "’ is
the covariance matrix of x,,.

Analogous with Section 3.2 in [Pearl, 1986], we can ask if f(x,x,,...,x,) can be
represented as a marginal of an n +1 dimensional normal distribution of variables

Xp41 = (W, X;,) ! such that the x;’s are conditionally independent given w, i.e.

400
&1, X0, s X,) = jf,(xl,x2, s Xy W) dw @
n
Fs(xy, X2, "-’xn’w)=‘_1:[lfs(xi lw) f(w) (3)

Where f,(x; lw),i =1, ..., n relate each x; to the central hidden variable w (see Figure 1).

Xy

fixg1 w)

fixalw) fixzlw)

X2 X3
Figure 1
If the decomposition in (2) is possible, we name f, a srar-distribution and call f star-

decomposable.

Instead of one hidden variable, w, we can use m hidden variables (m <n —2) to form a
tree-like structure (see Figure 2), in which each triplet of leaves forms a star, but the central
variable may differ from triplet to triplet.



Figure 2

A normal distribution f (xy, x5, ..., X,) is said to be tree-decomposable if it is a marginal
of an n + m dimensional normal distribution:

f,(xl,xz, o Xy Wi, Wo, ., Wm) ms<n—2 (4}

that maps into a tree; i.e., wy, wy, ..., w, correspond to the internal nodes of a tree and
X 15 X3y-..y X, tO its leaves.

In this paper we assume that a) each w has at least three neighbors and b)
fxly)y#f(x)foreachx,y efxy,xq, ..., X;, Wy, Wy, ..., W, }, i.e., there are genuine dependen-
cies between the linked variables (otherwise the tree can be decomposed into a forest).

The problem is whether f,(x1, X3, ..., X,, W1, W3, ..., Wy, can be recovered given a tree-
decomposable normal distribution f (x,, x5, ..., X,,).

B. A Theorem on Normal Distributions

It is well known (e.g., [Gigi 1977]) that the covariance matrix ¥ of a normal random

VECtor X = (X1, Xp, ..., Xp) Pisa pxp diagonal matrix, iff the components of x are independent
normal random variables. Moreover,

Theorem 1: Letx = (x{y, x5y F. xfy = () -+ x) xgy= (g1 = %)
Let n = Ex be similarly partitioned as p = (i35, 12)) ! and let Y be partitioned as

n 212
25150 In &

where ¥, is the gxg upper left-hand corner submatrix of 3. If x is normally distributed with
mean u and covariance matrix ¥, then

a. The vectors x(;yand X3 — Yoy Y11 xqy are independently normally distributed with
means My B2y — So21 Sit Wl and covariance matrices



Ti Yo = T22— 2ot T Lo respectively.

b. The marginal distribution of x(;) is g-variate normal with mean p,y and covariance ma-
trix 3.
c. The conditional distribution of xp) given Xy is normal with mean

By + X212t (Xq) = By) and covariance matrix 35 ;.

The proof of the theorem is given in [Gigi, 1977, pp. 51-53] and it will be used in the
next section.

III. STAR-DECOMPOSABLE TRIPLETS OF GAUSSIAN VARIABLES

Let f (x, x5, x3) be a 3-dimensional joint normal distribution as in (1), for n =3 with
mean p = (14 Ky |.L3)t and covariance matrix
O 12 O13
L=1| Oy Oy On and ©;; =0, ,j=12,3 (6)
O3; O3 O3z

If f (x4, x9, X3 ) is star-decomposable, then it is a marginal of a 4-dimensional joint nor-
mal distribution f(w, X1, X5, X3) with mean p; = (u,,, u’)* and covariance matrix
Cww O1w Cow O3
.= | o,
Cwa z
Cw3

and
Owi = Opw i=1,2,3

Fw,xy,x9,x3) =f (x1, X9, x3lW) f (W) M

Fxy,xp, x3,lw)=F(xlw)f (xalw)f (x3iw) (8)

Theorem 1 states that f (xq, Xy, X3lw), f (w) and f (x; lw)’s are also normal distribu-
tions, and the mean vector and covariance matrix of f (x,, x5, x4 |w) are given by

- 4

-1 t
1230w = 2~ Ouw {o'wl Ow, Gw;] [Gwl Ow, Gw3] (10



Additionally, the conditional independence stated in (8) implies that ¥,.,.3,,, must be a diago-
nal matrix, thus

Oij ~ CuiOjw /Oy =0, i#jandi,j=123 an
and
o; —02 /06, >0, i=1,2,73. (12)

Using the correlation coefficients defined as

- v
pij =0;; / (0;;5;5)

(13)

(11) and (12) can be written as

Pij =PiwPjw, foralli,j (14)
pZ <1 forall i (15)

Solving (14) for p;, , we obtain
Prw = (P1oP13/ P2 Pow = (P12P23/ P13 P3w = (P13P23/ P12 (16)

The requirement that the p;, ’s must be real numbers with magnitude not exceeding 1,
yields the following two conditions for f (x;, x5, x3) to be star-decomposable:

a. P12, P13» P23 are all positive, or two are negative and one is positive. In other words, the
triplet (xy, x5, X3y is positively correlated.

b. pﬂc 2pjipfk for alli,_],k € {1,2,3} and i #j 2k

Summarizing the analysis above, we obtain Theorem 2.

Theorem 2:

1. A necessary and sufficient condition for three random variables with a joint normal dis-
tribution to be star-decomposable is that the correlation coefficients satisfy the inequali-
ties:

Pit 2PjPi  Pij Pji P 20 amn
foralli,j.ke {1,23)},andi #j=#k.

2. fFO;Iw)~NQ; ., Giw) i =123 are specified by the parameters
Ci1w =05 (1= p&) =051 —pjiPu / Pje)

o..
Wiw =W = Cui (W — ) / Oy = Ky = Poyi _G,U (w -u,)and
ww

f w) ~ N, ,0,,), where 6,,,, >0 and 1, may be chosen arbitarily.



Part 2 of Theorem 2 can be proved from (9), (10) and (11) combined with (13) and (16).

In a manner similar to [Pear], 1986] we may pose the following problem. Suppose

f (x4, %4, x3) is an arbitrary distribution (not necessarily normal), can it be approximated by a
star-decomposable normal distribution f(x, x;, x3) which will have the same covariance ma-
trix as f. The answer is implied by Theorem 2, and stated in Theorem 3.

Theorem 3: A necessary and sufficient condition for the second order dependencies

among the triplets x, x,, X3 to support a star-decomposable normal joint distribution is that all
the correlation coefficients obey the triangle inequality:

p12p13p2320 and p;k 2 pjtpik for all i,j,k € {1,2,3},1 73_]. 2k

Discussion:

1.

Comparing Theorem 1 and 2 of [Pear], 1986], we see that the conditions for a normally
distributed triplet x,, x4, x5 to be star-decomposable are less restrictive than those for di-
chotomous variables; there is no restriction corresponding to the 3rd order constraint im-
posed on Py in [Pearl, 1986).

2. Part 2 of Theorem 2 illustrates that if the conditions (17) are satisfied, the densities
fw), f(x; Iw)’s can be determined, depending on the selection of W, ,6,,. In the case
of star-decomposable triplets, one may simply specify 62=1and y, =0 ie., let the
inner node have a standard normal distribution. For tree-decomposable structures with
more than three variables, the selection of W, , G,, for the intermediate variables should
be made in a consistent manner, as shown in the next section.

3. To ensure that n( >3) variables of a joint normal distribution be star-decomposable, (14)
and (15) must lead to a consistent solution for all the p;,, ’s.

4, A simple (degenerate) example of triplets which always satisfy (17) is given by 1st-order
Markov variables x{, x4, X3, governed by the covariance matrix

o1 PVO10;  PVGY1O33
L= pVNOu0p 022 PG2,033 1>p>0
POy 1033 PVO2033 G313
Since p1y =P, P13 =p> and p3=p,
we have P12 > P13 P32

P23 » P12 P13
P13=P12P23

In this case the central variable w coincides with x,.



IV. STRUCTURING CAUSAL TREES

Consider the 4 possible topologies of 4-tuple of leaves in a tree, as given in Figure 3.

2,/ 3 \>—<4 4>—<3 4><3
Figure 3

The topologies differ in the identity of the triplets which share a common center, e.g., in
the topology of Figure 3 (a), [(1, 2, 3), (1, 2, 4)] share a common center; so does the pair [(1, 3,
4), (2, 3, 4)]. It follows that the star-decomposition of either triplet (1, 2, 3) or (1, 2, 4) should
yield the same values of G,,, JL,,. This means that the correlation coefficients of the 4 variables
with a topology of Figure 3 (a) should satisfy (16),

Pl =PuP13/ Py for (1,2,3)
Phy =P1oPra/Pas for (1,2,4)

Thus,
P12P13 / P23 = P12P14/ P24

or

P13P24 = P14P32 (18)

(Enforcing the equality of p2, for (1, 2, 3) and (1, 2, 4), would yield the same equation). Simi-
larly, from the pair [ (1, 3, 4), (2, 3, 4) ], we also obtain (18) (note p;; = p;;). Thus, the equality
in (18) may be taken as the essential condition identifying the topology of Figure 3(a).

The equalities characterizing the 4 possible topologies of Figure 3 are given in table 1.



Table 1. The Characteristic Equalities of the 4 Toplogies in Figure 3

Fig. 3(a) Fig. 3(b) Fig. 3(c) Fig. 3(d)

two equalities
P13P24 = P14P23 P12P34 = P14P23 P12P34 = P13P24 holding simultaneously

Table 1 may be taken as a tool for both testing if a 4-tuple is tree-decomposable and, if
so, deciding its topology. Since the basic test to decide the toplogy of any 4-tuple is the same as
that of binary variables, the topology of the entire tree of n leaves can be decided by the pro-
cedure described in [Pearl, 1986].

The next stage is to determine all the f (x; lw) and f (w; iw;) functions. The functions
f (x; Iw;) assigned to the peripheral branches of the tree are determined directly from the star-
decomposition of triplets involving adjacent leaves, and these can be used to determine the func-
tions f(w;lw,) connecting the hidden variables. In Figure 4, for example, the star-
decomposition of f (xy, x4, X3) yields f (x;Iw)), f (xo1w;), while f (x;!w,) can be obtained
from the star-decomposition of (x, x3, x¢). These are sufficient for determining f (w, w,), via

Flylw) = [f@lwy) fwylwdw, (19)

wy

Figure 4

Let the mean and variance of f(x;lwy), f(x;lwy) and f(wlw,) be denoted by
2 .
My, 1wy cfllw 2 My twys 0'31,,,,1 and fb, iy, Oy, |w, TESPECtively, and let the mean vector and co-

variance matrix of (xy, wy, wp) be [l By, by, | and

2
le GILWL lewz

2

0""’l"h c‘-‘*"1 0‘“’1‘”2

G“’le oWlwz 0’3

2



We will show that O, |y, Hy, 1w, (thus f(w;lwy)) may be determined from
fx,lwy) and f(x;lw;). From Theorem 1, the mean vector and covariance matrix of
Fiw)) fwplwy) =f(xq, wylwy) and f (x4,w, | wy) are given by

r b r b
2
le GI1W1 1 cwle
2wy lwy = 2 [~ 1 * {Owyx, Owaw) (20)
1Wilwsa GWIJH o'wl 0_32 o'wlwl * Wy
- o L o
r ) r 3
o2 o o
Xy Wk, 1 WXy
Exwlw'—"* 2 - 4 "{o-wx Cw w
1w2 1 lewz o-wz 031 GWLWz 11 1 2}
“ o L9 -
u'xx 1 owle
o owylw, = - (WZ_I'LW) (21)
1™ 2 u,wl 0w2 oW, 2
uxl 1 lexl
My w,lw, = - w1 — W)
i I‘LWz Gw, GWzWL !
Therefore,
2 I 2 2
Oz, lw, = Oz, — Owyx, / Ow, (22)
— 2 2 2
Ow, 1wy = Ow, ~ Ow,w, / Ow,
— 2 2 2
lelwl le - owlxl / o-wl
Ow
2
Haiiw, =Ha — (wa—Hy,) (23)
w2
GW;W;
IJ'WIIW2=HW1_ (WZ_}J'W,_)
w2
G’”l"l
}‘LIlin:lJ'xl_ (wl_l'lwl)

Wy



It is to be noted that f (x;w,lw;) =f (x;1wy) f (xa1wy), hence, 3 .1y, 1s 2 diagonal
matrix which leads to

2
GW Owlxl O-WZWI / Gwl (24)

2xl=

As mentioned in Theorem 2, the mean and variance of the first inner variable may be as-
signed arbitrarily. We set 031 =1 and ,,, =0, then join (22) and (24) and keep in mind that
0,,2”“,‘, 031, 03;“‘,2 and Ly |y, Hy s Hy, 1w, are known from f (xylwy), f (rplwy) and @,
and 62 |,,,, O% , O, . Oy, may be solved. In turn, W, Ky, 1, may be solved by (23). Con-
sequently, f (w;lwy) is determined by G, 1y, b 1wy S (W2) is determined by 032, t,. Inthe
same manner, f (w3 w,), and f (w,|w;) may also be determined.

V. CONCLUSIONS

The paper extends the auxiliary-variable method of constructing causal tree representa-
tions to continuous variables. It shows that if the visible variables are governed by a tree-
decomposable joint normal distribution, then the tree can be structured from the observed corre-
lations between pairs of variables. Furthermore, the conditions for tree-decomposable normal
distribution are less restrictive than those of bi-valued variables. The results should extend the
applicability of causal tree models to evidential reasoning tasks involving continuous signals and
can also be used to discover the underlying causal structure behind ill understood phonomena.
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