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ABSTRACT

An inductive logic can be formulated in which the elements are not propositions or probability distributions, but in-
formation systems. The logic is complete for information systems with binary hypotheses, i.e., it applies to all such
systems, It is not complete for information systems with more than two hypotheses, but applies to a subset of such
systems. The logic is inductive in that conclusions are more informative than premises. Inferences using the for-
malism have a strong justification in terms of the expected value of the derived information system.

Information Systems

Information Systems (IS) are ubiquitous constructs in the knowledge sciences. Exam-
ples: surveillance systems, experiments, pattern recognition methods, coding schemes, expert
systems, signal systems, sampling techniques... Despite the wide variety of incarnations, IS
have a common underlying structure:

a. A set E of events of interest (hypotheses, states of nature, target events, etc.)
b. A set I of information events (observations, data, signals, messages, etc.)
c. A joint probability distribution P (EJ) on combinations of hypotheses and observations.

In applications, the probabilities of interest are the posterior distributions P (E | I) -- the
conditional probabilities of hypotheses given observations. The role of the observations is to
improve what is known about E .

* This work was supported in part by National Science Foundation Grant IST 84-05161



To assess the value of an IS (e.g., to say precisely what is meant by improve in the
preceeding sentence), it is necessary to have a figure of merit. In decision theory the figure of
merit is the expected payoff of implementing the IS. In communication theory the figure of
merit is information--an entropy measure. In pattern recognition, some form of error score is
common. All such measures can be neatly summarized by the theory of proper scores.

A probabilistic score is a function § (P, e) which assigns a rating (score, reward, payoff,
etc.) to a probability distribution P given that the event e occurs. Such a score is called proper
if it fulfills the condition:

SPe)SP.e)z3P(e)S(Q.e) 1)
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that is, a score is proper if its expectation is a maximum when the distribution that determines
the expectation is the same as the diswribution which determines the score. Eq. (1) is roughly
analogous to the requirement that an error score be a minimum when a response is correct.

The communication theory figure of merit stems from the logarithmic score,

S(P,e)=logP(e). The expected score, 3P (e)logP(e) is the negative of the entropy.
E
Decision-theoretic scores are obtained from a decision matrix, U(a, e), the payoff if an action a

is taken and the state of nature ¢ occurs. Let a* (P) be the optimal action if P is the distribution
onE.S(P,e)=U(a*(P), e) is a proper score. An analogue of least squared error is given by
the quadratic score, S(P,e)=2P - Y P(e )2.

Abbreviate YP(e)S(P,e) by G(P) and Y P(e)S(Q.e) by G(P, Q). Eqg. (1) can be written
E E

as
GP)2G(P,0) a

It is clear that G (P, Q) is linear in P, and it is relatively straightforward to show that
G (P) is convex in P. A basic result is (Proofs of theorems are in the Appendix):

Theorem 1:
IfR=aP +(1-a)0,0<a<1l-a,andGR)2G(Q) foralla,and G(P,R) is
continuous inR at @, thenG(P, Q)2 G(Q).
The import of Theorem 1 is extended by its corollary: If K is a convex set of probability

distributions, and Q = arg rrllénH(P), thenG(P,Q)2G{(Q)forall? in K.



As an example of the application of the corollary, if all that is known about a probability
distribution P is that it is in a convex set K, and there is a minimum at Q for the expected score
G(P) in K, then if Q is taken as an estimate of the unknown P, the actual expectation
GP,0)2G(Q). In short, the expected observed score of Q is guaranteed to be at least
G (Q). This feature of proper scores was used as the basis of a weaker theory of inductive logic
on probability distributions in an earlier effort. [Dalkey, 1985].

The initial probability of an observation i is P (i) =Y P (e.i). The expected value of an
E
IS is
HP)=3PUGP(E |i),e) @
I

That is, the value of an information system is the average over the potential observations of the
expected score of the posteriors. H (P ) for IS corresponds to G (P) for probability disaributions.
The analogue for IS of G (P,Q) is

HP,Q)=YPEGPE L i)QE 1)) 3)
1

the average over potential observations of the relative score of the posteriors of P and Q. It
measures the expected value if Q is the estimated IS and P is the actual IS.

It follows from the linearity of G (P,Q) in P and the convexity of G (P ), that the aver-
ages H(P,Q) and H(Q) have the same properties. It is also relatively straightforward to show
that Theorem 1 and its corollary hold for IS.

Dominance

A major advantage of IS over probability distributions for the representation of uncer-
tainty is the fact that IS allow dominance. Given any two different probability distributions P
and Q, there is a score rule § such that Gg (P) > Gg(Q) and another score rule §* such that
Gqi(P) < Gai(Q). However, there can be two different IS P and Q, such that H(P) 2 H(Q) for
all score rules. Define P 2 @ to mean H(P) = H(Q) for all proper scores.

It is clear that > is a partial order, that is, it fulfills:
a. Transitivity: P 2Q andQ 2R - P 2R.
b. Reflexivity: P 2P

c. Antisymmetry: P 2A andQ 2P - P ~Q



The notation P ~ @ (read "P is equivalent to Q") is used in (c) rather than identity,
since an IS can have a variety of equivalent forms. In a full treatment of dominance, the
equivalence relation must be formalized, but it is not required for this paper. The notation
P 1 Q will be used to denote that P is incomparable with Q, that is, H(P) > H(Q) for some
score, and H (P) for some other score.

Theorem 1 and its corollary carry over to dominance. For the corollary, if K is a convex
set of IS, and there isa Q in K such that P 2 @ for every P in K, then H(P, Q) 2 H(Q) for all
SCOTes.

The partial order = has a unique absolute upper bound, P* the IS such that for each
member of e, there is an i, P(E | i)=1. P* is often called perfect information in decision
theoretic analyses of information. = also has a unique absolute lower bound P, the IS
P%e.i)=P(e) P (i), or in other words, where the prior probability P (e) is taken to be the pos-
terior for every observation i. It is straightforward to show that P* > P > P? for every P. The
statement P 2 P? is equivalent to the well-known positive value of information principle--
providing it is free, information is never harmful. [LaValle, 1978].

The dominance relation thus imposes a fair amount of structure on information systems.
However, it is not quite enough to establish a logic.

Logic

A partial order is called a lattice if, for each pair of elements P, Q, there is a unique least
upper bound (L.u.b.) with respect to the ordering relation, i.e., there is an element R such that
R 2P and R 2 @, and for any R’ which also dominates both, R’ 2 R; and conversely, there is a
greatest lower bound (g.l.b. ) defined by replacing 2 with <.

Lattices have received a great deal of attention as foundations for logics [Birkhoff,
1948]. Traditional two-valued logic can be represented by the Boolean lattice of sets. Other,
more exotic logics have been formulated using different elements and different ordering rela-
tions.

The relation 2 is not, in general a lattice. Examples exist of pairs of IS for which there is
no unique Lu.b. [Dalkey, 1980]. There is always a unique g...b. for every pair of IS.

For one significant class of IS, however, dominance is a lattice, namely the set of IS with
binary hypotheses, those where the events of interest are yes-no type: Will the patient die? Is
the enemy intending an attact? Will a Democrat be elected president in 19887

Theorem 2:
For any pair of IS P, Q with binary hypotheses, there is an IS, P + @, which is
the Lu.b. of P and Q with respect to 2.



P + Q can be thought of as the minimal composition of P and Q; i.e., it is the least in-
formative of all IS which incorporate the information in both P and Q.

Designate the g.l.b. of P and Q by P - Q. P - Q represents the IS which contains just
the information which is common to both P and Q.

The lattice 2 on IS with binary hypotheses is not isomorphic to the Boolean lattice of
two-valued logic. In particular, it does not have a negation (complement) nor is it distributive,
ie, P-(Q+R)Y#P -Q+P -R. Thus, it affords a somewhat less powerful calculus than
Boolean logic. However, a number of analogies exist. Thus we have:

P* + P = px* PO+pP=P
P*P =P pP°.p=p0

Other familiar properties: Both + and - are idempotent, thatis, P +P =P, P - P =P.
Both + and - are commutative, i.e., P+Q =Q +P, P -0 =Q - P. The consistency law
holds, ie, P2Q,P+Q =P, and P-Q =Q are equivalent. The absorption rule
P+ -Q)=P -(P+Q)=P isvalid. In addition, the semi-distributive law (which holds for
all lattices) applies, ie., P+(Q RYSP+Q)-(P+R), and
P-(Q+RY2(P -Q)+(P -R).

Thus, anyone familiar with Boolean logic will find that many of the transformations car-
ry over to IS logic.

Inference

In classical logic, the basic characteristic of an inference can be stated as: If the prem-
ises are true, then the conclusion must be true. This stark precept cannot be maintained for IS
logic. The basic inference schema in IS logic is just: if P and Q are known, then assert
P + Q. But there is no justification for believing that P + Q is the actual composition of P and
Q. Instead, there is a strong a-fortiori argument for selecting P + Q in the absence of knowing
the actual composition.

If P and Q are known, but the true composition R is not known, then there is a set K of
compositions compatible with both P and @, and R could be any member of K. P + Q must
be a member of K (see Appendix) and since P + Q is the Lu.b. of P and @, for any other
member R of K,R 2P +Q. On the other hand for the same reason, P +Q 2P and
P +Q 2 (. From the extension of the corollary to Theorem 1 to IS and 2, we can assert that
HR,P+Q)2HP +Q)2H(P) for all score rules, and similarly,
HQR,P+Q)=2HP + Q)2 H(Q) for all score rules. In short, the expected value of P + @ is
at least as great as what it ‘‘promises”’, and is at least as great as the better of P or Q. In most
cases, of course, the cautious ‘‘greater than or equal’’ will turn out to be a more optimistic
‘‘greater’’.



In a more colloquial vein, if a doctor is concerned about a specific disease for a particular
patient, and he knows two different tests for the disease, but does not know the correlation
between the tests, then, whether he is-interested primarily in money, fame, or the welfare of the
patient, he is better off to use the minimal composition than to use either test alone,

A simple example may clarify the point. Suppose the disease in question is AIDS, and
two tests have been developed, each by a different organization. Each developer has relatively
good statistics expressing the diagnosticity of his own test, but statistics are poor for the tests
used jointly. Let A mean ‘‘the patient has AIDS” and + mean ‘‘the test result is positive.”’
Suppose the likelihoods of test results are:*

T, T,

A + S 9
- S 1

A + N S5
- 9 S

The diagnosticity of T, if the patient has AIDS, is low, but it is high if the patient
doesn’t have AIDS. These characteristics are reversed for T,. For the minimal composition
T, + T, of the two tests, there are four possible outcomes, both positive, both negative, or the
two mixed cases.

Tl T2 P( ITITZ)

+ + S
A + - 0
- + 4
- - 1
- + + 1
A + - 0
- + 4
- - 5

The O’s at +- are a mathematical artifact. In practice, they would be determined by a
separate computation.

* Any similarity between the numbers in the table and the performance of actual iests is a miracle.



The table gives the likelihoods of test results given the disease state. To determine the
posterior probabilities of the disease states given test results, it is necessary to know the prior
probability of the disease states for a relevant population. The table below lists the posterior
probabilities for the cases that the prior probability of AIDS is .5, and .2.

Posterior Probability
P(A) 5 2
+ + 83 56
+ - 9 ?
- + 5 2
- - 17 .05

Note that the double negative is a good deal more reassuring if the prior probability is
low.

To recap to this point: For IS with binary hypotheses, a complete logic exists which is
analogous to, but not identical with, the traditional two-valued logic. Inferences carry with them
the strong guarantee that the actual expected value of conclusions is at least as great as the com-
puted expected value for all score rules (i.e., for all payoff functions.) It is this feature which
justifies the use of the term logic.

Non-binary Hypotheses

Although IS with binary hypotheses are significant in practical affairs, the majority of I§
of direct interest to Al have a multiplicity of hypotheses. As noted earlier, it is not difficult to
find examples of pairs of IS with multiple hypotheses that have a Lu.b. with respect to 2. For
such pairs, deriving P + Q when P and Q are known carries all the positive features attending a
similar inference with IS with binary hypotheses.

It clearly would be desirable to have operational criteria to distinguish pairs of multiple
hypothesis IS that have a Lu.b. with respect to 2. In particular, this would allow identifying
cases of incomplete information in which no ad-hoc assumptions such as independence are
necessary to fill in the missing information. At present, only weak necessary and non-
operational sufficient conditions are known (see Appendix).

Even with operational criteria for Lu.b.’s, it seems likely that many cases of IS of in-
terest to Al will not fit the criteria. For such cases, the question arises whether IS logic is
relevant. One clear application is: For any pair of IS P and @, a set D can be defined which
consist of the IS that dominate both P and Q but which do not dominate any R in the set X of
IS that dominate P and Q. D can play the same role for IS logic that the Pareto-optimal set
plays in economics and decision theory -- i.e., to rule out clearly inappropriate conclusions,



A fallback tactic is available which is not entirely dismal. If a specific score rule is
adopted (for scientific investigations the logarithmic score -- i.e., the maximum entropy criterion
-- has received strong support in many circles) then there is a complete order on all /S. For any
pair of IS a Lu.b. exists except for epsilontics where the relative score is not always continuous
in its second argument. (One plus for the logarithmic score is that H (P, Q) is always continu-
ous in Q providing it is in the interior of the space of /S.) For the given score, the inference
from P and Q to P + O carries its own guarantee - H(R,P + Q)2 H(P + Q) for all R com-
patible with both P and Q. For example, interpreting the expected logarithmic score as a meas-
ure of the amount of information in an IS, the amount of information in P + Q is always greater
than the information in either P or Q. Thus P + (, even if based on a single score rule, is
more ‘‘solid’’ than, say, tactical assumptions of independence.

In sum, for IS with binary hypotheses a complete inductive logic exists. Only pieces of
a logic exist for IS with non-binary hypothesis, but they can be valuable to Al research, Finally,
clearly a number of live research topics remain.

APPENDIX

Theoreml. IfR=aP +(1-a)Q,0<a<],GR)2G(Q)foralla,and G(P,R)1is
continuous inR at @, then G(P, Q)= G(Q).

Proof: GR)=Y (aP(e)+(1-a)@(e))SR,e)=aGP,R)+(1-a)G(Q,R).
E

Since G(@)2G(Q,R)and GRY2G(Q),G(P,R)2G(Q). If G(P,R) is continuous in R
at@,GP,R)=2G(Q).

If G(P, R) is not continuous at Q, the only troublesome case is that in which G(R, Q)
has negative slope (with increasing a). This can only occur if G (P) has an absolute minimum
at Q. If mixed strategies are introduced, the score rule S can be replaced by S’, where
G'(R,Q)=G(Q), all R (cf. Fig.1.) Call an S’ so modified regular. Theorem 1 is true for all
regular score rules, without the continuity restriction. It will be assumed that only regular score
rules are being addressed in the following.

Corollary 1. 1f K is a convex set of probability distributions, and Q = arg rrgn G(P),
then G(P,Q)2G(Q)foralliP inK.
Proof: Since K is convex, R =aP +(1—a)Q is in X, and by the assumption of

minimality of Q,G(R)=2G(Q). Thus the hypotheses of Theorem 1 are fulfilled and
GP,02)2G(Q).



To prepare for Theorem 2, let ¢(i) be the vector (P(ile), P (i le)), and arrange these
vectors in decreasing order of P(ile)/ P (i le). For simplicity, relabel the observations in I
with the given order -- i.e., (1) is the -z (i } with the highest slope.

LetT() =3 1(j).

jsi

If these vectors are plotted in the unit square, they determine a concave, piece-wise linear
curve that lies above or on the diagonal. 7 (0)=(0, 0). Let m be the number of observations;

T(m)=(1, 1),since 3 P(i le)=1. Let C(P) be the convex closure of the points in this curve.
I
I call C (P ) the canonical representation of P. C(P) contains the diagonal, which is C (P °), the

canonical representation of the prior information system.
Theorem 2. 1If P and Q are binary-hypothesis /S, the Lu.b., P + Q, exists.
The proof proceeds via a number of lemmas.
Lemmal. P20 —=C(Q)cC(P).

Proof: Suppose there is a point T in C(Q) that is not in C(P). Since C(P) is convex,
there is a line L that separates T from C(P). Define a score rule § by the conditions:
H; (R)=0 for all R such that C(R) is in the half-plane determined by L that contains C (P).
H; (R) = the distance between L and the line parallel to L tangent to C(R) for R such that
C (R) intersects the half plane not containing C (P ) (cf. Fig.2). H;(Q) >0, H; (P) =0, contrary
to assumption.

Define C(P + Q) as < C(P), C(Q) >, the convex closure of C(P) and C(Q).
Lemma2. P +Q isanls.

Proof: The upper boundai‘y of C(P +Q) is a piece-wise linear concave curve.
Number the corners successively from (0, 0). Each linear segment represents the likelihoods of
a joint observation in P + Q. Denote the abscissa of corner i by x(i) and the ordinate by y (i).

tE)=@@) -y ~1),x()—x(@ —1)). Since ¥ t(i) =1 (vector addition}, the derived likeli-

hoods constitute an IS,
Lemma3: P+Q2P,P+Qz0.

Proof: Let B denote the upper boundary of P + Q. The likelihoods ¢(i) of P can be
represented by sums of segments of B. Proceeding by induction, suppose P has only two
members of /. If B intersects #(1), £(1) is the vector sum of the segments of B below (1), £(2)
is then the vector sum of the remainder of B. If B lies above (1) (cf. Fig. 3), extend the vector
t(1) so it intersects B at b. Let ¢ denote the vector difference between & and £(1). There is a
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segment B (t) of B whose vector sum equals . The vector sum of the remainder of B below b
then equals ¢(1) and B (r) plus the remainder of B above b equals 7(2). Assume the construc-
tion holds for m members of /. If /. has m + 1 members, extend the line from O through 7(2)
until it intersects B at b (cf. Fig. 4). By assumption, the reduced IS witth 7(2) as its initial £ (i)
can be represented by segments of B. The construction can then be extended to ¢(1) by iteration
of the procedure for two I'’s. Since P is a sum of segments of B, P + Q > P by convexity. By
the same argument, P + 0 2 Q.

To address the main theorem, from Lemma 2, P + Q is an IS which, from Lemma 3 is
an upper bound of P and Q. If there were another upper bound R such that
P+Q >R, CR)cC(P+Q)byLemma l,butalsocC(P)cC(R)and C(Q) < C(R). Since
the C’s are convex, no such R exists.

The canonical representation is a simple, constructive method of computing P + Q for
any pair of IS with binary hypotheses. For IS with moderate numbers of I's, the construction is
easy to do by hand. For more complex IS, the construction is easily programmable for a com-
puter.

Canonical representations can be defined for IS with more than two hypotheses. A
sufficient condition for P + @ to exist for such IS is that the convex closure < C(P), C(Q) > be
itself an 1S. However, at present, that condition cannot be expressed in algorithmic form.
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