ON THE PROBABILISTIC SEMANTICS OF
CONNECTIONIST NETWORKS

Hector Geffner July 1987
Judea Pearl CSD-870033






To Ropea in Pocusdings o TEEE -
Rppear in &Wwdé{b L) és%Sw‘rtm;ija,Q @W‘gfm/ﬁe

on Learald W 18T, SA Dlggp , Ch

TECHNICAL REPORT
RT 94

June 1987
ON THE PROBABILISTIC SEMANTICS OF CONNECTIONIST NETWORKS * t

Hector Geffner & Judea Pearl

Cognitive Systems Laboratory
UCLA Computer Science Department, L.A., CA. 90024-1600

ABSTRACT

The goodness/energy paradigm [Hopfield 82] has recently emerged as a useful framework for
the construction and analysis of connectionist models. Its lack of a clear semantics however,
makes the framework unsuitable as an specification language for the declarative content of those
models. This paper establishes a correspondence between connectionist networks and a well
known family of probabilistic networks, thus, endowing connectionist models with a well under-
stood probabilistic semantics. Additionally we show how a natural extension of the energy for-
mulation presented in [Hopfield 82] leads to models capable of expressing arbitrary probability
distributions.
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ABSTRACT: The goodness/energy paradigm [Hopfield 82] has recenty emerged as a useful framework for the
construction and analysis of connectionist models. Its lack of a clear semantics however, makes the framework un-
suitable as an specification language for the declarative content of those models. This paper establishes a
correspondence between connectionist networks and a well known family of probabilistic networks, thus, endow-
ing connectionist models with a well understood probabilistic semantics. Additionally we show how a natral ex-
tension of the energy formulation presented in [Hopfield 82] leads to models capable of expressing arbitrary pro-
bability distributions.

I.Introduction

Connectionist models appear to play an increasingly important role as mechanisms capable of displaying
intelligent behavior. However, while carefully designed systems have attained impressive performance [Sejrowski
86a], it is still not well understood what makes these models achieve or fail to meet the desired specifications
[Feldman 85). Part of the difficulty has been the lack of an appropriate language to talk about the behavior of these
models independently of implementation details.

The goodness/energy paradigm (Hopfield 82] has been advocated as providing a useful framework for
the analysis of connectionist networks [Feldman 85). The idea is essentially to attach to each state of the network a
goodness measure which corresponds to a sum of local compatibility measures. Units can then compute how the
global measure changes with local changes of state. Under certain conditions, if each unit changes state only if the
change produces an increase in the overall goodness measure, it can be easily shown that that the network will be
driven to a state of local maximum goodness. The thrust of this paradigm has been that it allows the decomposi-
tion of the specification of behavior in connectionist models into two different aspects : the specification of
desired states for each input configuration as states which maximum goodness, and the characterization of distri-
buted algorithms that given an input configuration will drive the network to a state of maximum goodness. These
two subtasks can usuaily be dealt separately: the first is concerned with the static, declarative content of the model;
the second is concerned with its dynamics.

This partition however, generates two subproblems which are far from being trivial. The
goodness/energy formulation does not seem to provide any ties between the local compatibility measures and em-
pirically observable relationships. In this paper we show how a well developed formalism, probability theory, can
be brought to bear on this task: the specification of the declarative content of connectionist models. We show that
a comrespondence can be established between connectionist networks and a well known family of probabilistic net-
works, allowing the former to inhesit the better understood semantics of the latter. We also show how a natural ex-
tension of the energy formulation as presented in [Hopfield 82] can endow connectionist networks with the ex-
pressive power necessary to express arbitrary probability distributions.

A probabilistic account of connectionist models can potentially offer a high level language t0 describe the



relationships embedded in a network. It might also help to determine whether a' given architecture can be made to
express (through leaming or some other means) a given set of objects and relations. Additionally , for those
models involving objects and relations "at a conceptual level”, the probabitistic framework might offer a high level
specification language from which the connectionist network parameters could be synthesized.

In order to arrive to a probabilistic interpretation of connectionist models, we shall appeal to the language
developed in the context of Bayesian Networks {Pearl 86a); a class of directed acyclic graphs devised to represent
the dependency structure that underlies a set of uncertain propositions. Bayesian networks and connectionist
models are very akin to each other. Research on the former approach started with a semantically clear
specification language (i.e., probability theory) defining the knowledge available, the queries to be asked and the
answers desired. It then proceeded to search for a suitable implementation architecture and has found that many of
the tasks could be accomplished in a parallel and distributed fashion characteristic of connectionist systems [Pearl
86a,b,c]. Connectionist models have evolved in the opposite way. First, the architecture was identified both as
desirable and biologically feasible. Later, that architecture was shown capable of exhibiting some interesting
behavior and, finally, a search is under way to find clear semantics for the system’s components (e.g., units, activi-
ty, weights, topology etc.) in order to facilitate the synthesis of such systems directly, from conceptually meaning-
ful packets of knowledge [Feldman 85].

The paper is structured as follows. Section II shows how connectionist networks can be constructed to
express arbitrary second order probability distributions. Section III describes how the addition of multiplicative
connections allows the networks to represent arbitrary distributions over binary variables. In section IV we illus-
trate how the previous result can be extended to distributions over multiple-valued variables. We conclude in sec-
tion V summarizing some of the features that connectionist networks share with other well known probabilistic
networks as well as discussing some of the features in which they differ.

IL. A Probabilistic Interpretation of the Energy Coefficients

) In [Hopfield 82] Hopfield has shown how some interesting computational abilities can emerge from net-
works of simple binary units adjusting their state as to minimize a global energy (negative goodness) measure. The
slightly modified energy functional proposed in [Hinton 83] is given by :

=—';' > wijsisj =X (i=0)s; (M
ij f

where 1); is the extemnal input to the { ~th unit, w;; is the strength of the connection from the j—thunitto the i—th
unit, 5; and §; are booleans truth values (1=active , O=inactive), and 8; is a fixed threshold. If connection
strengths are symmetric, i.e. w;; =wj;, we can derive from (1) the change in energy AE; due to the activation of
unit ko be :

AEt=-ZWuS.'-Tlx+9t . )]

Moreover it can be easily shown that if units get activated only if the change is negative, and transmission delays
are negligible, these systems will always settle into a local energy minimum. Furthermore, since the decision rule
can be computed using information availabie in the local neighborhood, the algorithm is truly distributed.

The questions we shall address next are : a) what is the probabilistic interpretation of the terms in (1) and (2), and
b) what kind of probability distributions can be captured by these models. These questions have partially been ad-
dressed by Hinton and Sejnowski in [Hinton 83). In the following section we extend and correct some of their
conclusions.



Formulation

Let S ={X,U,V.Y,...Z} be a set of binary variables. We will denote their states in small italic letters,
and use small bold letters to denote state variables. So while x and X stand for the active and inactive state of X, x
will serve as a generic symbol for the values, x and X, that X might attain. We will use the letters A,B, .. as typi-
cal variables from X,U,....Z.

It is well known that any probability distribution on a set § of variables X,U,V,...,Z can be decomposed
as a product of conditional probabilities of the form : 3
3

Pxa,v,...,0=PxIfx)Pulfy)P(vily) --- P(zlfg) ,

where f, is the value of a (possibly empty) subset F4 of variables in S. Moreover the right hand side of the equa-
tion determines a set of dependencies among the variables of S which can be captured by a directed acyclic graph,
where each vertex A has the variables in F4 as its parents. This graphic representation of probability distributions
has been called called Bayesian Networks [Peari 86a,b], and will be used throughout the paper to display the
decomposition of arbitrary probability distribution (Fig.1). We will also use the term ports of a variable A to refer
to the set of factors in the right hand side of (3) in which the variable A appears.

b 4

b8
P(x,u,v,y,2)=P(xluv)Puly,VP(vly,2)P(yl2)P(2)
Fig.1 A probability distribution and its Bayesian Network

Let us now define the energy measure associated with the state s=xuv - - Z under the probability distribution
PoverSast: '
Pixuyv,...,7)
Pxuv,...,2)

P(xify) P(ulfy) P(vity) P(zlfz)

PGIf) PGIfp) PGIfY PG|

Then, if we denote the set of children of X by Cy and abbreviate the set difference F4—X by FX, we can write
the change in energy AE(X) due to the activation of X in the current state § as :

P{xum,v,...,2)
P(xuyv,...,2)

E(xuv,...,z2)=-In

)

AE(X)=-In

(5

t It is well known that every Markov Field P over an undirected graph G has an energy made up of the sum of
local energies over the maximal cliques of G {Geman 84). However, in contrast to the conditional probabilities
appearing in (3), the terms that make up P do not have a clear, experiential content [Pearl 86a)], making it less
suitable as an specification language for connectionist models.



P(xifx) Pix %)
PGEIfY) aeG P@ITEX)

=— [LP(xIfy)-LPGIfx)] - 3 [LP(alxfX)-LP(al%.fY)] .
AeCy

where LP (*) is an abbreviation for In P (*) *. Thus, AE(X) appears as the sum of the energies contributed by the
ports associated with the parents and children of X. If we denote by PX the set of ports associated with X, and by
PX  its i—th port, we can rewrite (5) as :

AE) = T AEAX) . ©
i:Pfe Pt

where AE;(X) is given by :

~{LP(xifx)-LP X 1x)] if P¥ is associated with X’s parents Fy

AE;(X) = X . .
~[LP@lx,f5)-LP(aIZf5)] if P¥ associated with X's child A

(M

and stands for the contribution to AE (X)) coming from the i —th port of X.
Second Order Constraints

We will assume in this section that the probability distribution P is of second order, i.e. there exists a
decomposition in which for every variable A, F4 is either empty or is such that : (®)

P(aIfA)=kP(aIfA’1)P(aIfA,2) v P(alf&n) s
where k is a normalizing constant, and the F, ;s stand for the individual variables included in F,. A special case
of (B) is a tree, where each node has a single parent.
We can now rewrite (5) as :
P(x!fx,) P(alx)P(aif})

AEX)=-In ][] — @)
@ I:I P®EIfx;) e, PQIDPQIT)

=3 [LP(xIfgy) ~LPG\fx )] - I [LP(alx)-LP@I®)] .
i AeCy

Note that, due to the assumptions implicit in (8), and in contrast with (5), the terms in the last expression reflect
only pairwise interactions among variables .
We are interested in expressing AE(X) in the form :
AEX)==F wxisi+6x . (10
!

where wy; and Oy are real coefficients and §; isa Boolean value. Since we have found in (6) that AE(X) can
be expressed as a linear combination of the AE (X }, it would suffice to find the coefficients of the expansion of the

* Note that the probability of X =x can be recovered as : P (x18)=(1 +¢~2E®))1 This measure tums out to be
essential for stochastic relaxation algorithms (see for instance [Pearl 871).



latter, which under the current second order restriction would look like :
AE(X) =—-wiysy +0% .

where Y denotes the only variable within P{-‘ . Note that since each variable identifies a port and viceversa, we can
safely drop the port index from the weights w. The other coefficient of AE(X) can then be computed from :

Bx =X 6k
We have from (7} that, if ¥ is a parentof X :
AE(X)=~[LP (x1y)-LP (x1y)} ,
so after equating (11) and (12) for both possible values of ¥ we obtain :
and 0k =—[LP(x|))-LP X17)]
wyy = [LP (xly)—-LP X1y)) - [LP (xIy)-LP (x17)} .
Likewise, if we associate X with the k—th port of its parent Y, we have from (7) that :
AE(Y)=—[LP (xly)-LP (x1y}]
and hence, we obtain a threshold and a symmetric link weight given by :
8} =—[LP Z!y)~LPGI¥)]

(1)

(12)

and

Wyx =Wxy -
These equations are sufficient to derive the weights and thresholds of a connectionist network _that captures the
behavior of an arbitrary second order probability distribution over a finite set of binary variables . There is how-

ever a term missing. For those variables R having no parents, Fg is empty and there is a term contributing to AE
due to the priors of the form :

AE,(R)==[LP(r)-LP (M} ,

where p identifies R's empty parents port. This term appears as a sustained input which is captured by the the in-
put term 1y of (1), i.e.:

Mg =—[LP(r)-LP ()]

We have shown so far how to synthesize the coefficients of (1) in such a way as to capture any second
order probability distribution. The interpretation of connection strengths is the same as the one arrived by Hinton
and Sejnowski {Hinton 83]. The expressions for thresholds and input coeflicients is however slightly different, and
weaker independence assumptions are needed. We proceed next to show how higher order probability distribu-
tions can be captured in connectionist networks with symmetric weights.

II. Capturing Higher Order Constraints

We have shown above how, for any variable X, the coefficients of AE(X) can be computed from the
coefficients of the AE;(X)'s contributed by each of its ports. Taking advantage of this result, we will simplify the
forthcoming discussion by considering a single port net, as the one depicted in Fig.1, in which variables U and V

. are the parents of variable X, both with priors equal to 1/2 (i.e. the energy contribution due to the priors of U/ and
V is assumed 10 be 0). As we shall see the results will still hold for any number of X’s parents.

* We are not considering however the limitations imposed by bounded connection strengths in capturing
"extreme” probability relations (with 0's and 1’s). This limitations could in principle be overcome if null
probability entries are replaced by small €’s.



An arbitrary probability P (x| u,v) will not be in general expressible as the product of P(x1u) and P (x!v). In-
stead, it constitutes an irreducible third order constraint among the variables X,/ and V. To capture this con-
straint we shail extend the form of AE(A), for A e {U,V. X}, tobe:

AEA) == Wa;;5i5i = LWAkSk— W4 (13)
ij k

where we have introduced a new second order term and changed the notation used to denote the threshold from 8;

to —w;. Note that the local computation of AE according to (13} will now require an architecture admitting "mul-
liplicative connections”.

Since we will need to make the current network state explicit, we will use A.Ef to refer to the change in
global energy due to activating A when only the neighbor variables appearing in S are already on.

U V

X

Fig.2 Small Bayesian Network : X has two parents {/ and V.

For the small network depicted in Fig.2, we can obtain from (5), (7) and (13} the following equations characteriz-
ing the transitions due to a change in X :

—AE*=LP(x\u,v)-LPX1u,v)=wx
—AEX =LP (x|u,v)—-LP (X u,v) =wyy+wy
—AEX =LP(x1%,v)-LP (X1 %,v) =swyy+wy

—AEf” =LP(X‘H,V)—LP(§|M,V) =wypv+wyy+twyy+wy ,
and the following equations for transitions due to a change in U :
—-AE*=LP(xlu,v)—-LP(xlu.v)=wy

~AE¥ = LP (x\u,v)—-LP (x| u,v) =wyx +wy
~AEY =LP (X\u,v)—-LP(X\u,v) =wyyv+wy

-AES, =LP(I|H,V)—LP(X‘E.V) =wypxvtwpyx +twyyv+wy

A similar set of equations can be obtained for V. Notice that we can easily obtain the valucs of the coefficients
from the probability relations : each new equations introduces a single new unknown. Moreover this fact will not
depend on the degree of the relationship.

The second step is to show that the coefficients computed above are indeed symmetric. For that purpose
let ES stand for the energy of the net when only the variables in § are activated. Then from the probabilisuc
definitions of E and AE, it follows after simple manipulations that : :

E*“ = AE*+AE} = AE*+AE}
and therefore from the equations above, it follows that : wy y=wp x.



Similarly ;
E*Y = AE“+AE} = AE"+AE}
and therefore wyy =wy . In the same fashion we can show, corresponding to the intersection points of Fig.3,

that wyy=wyy and wyyy =wyxv=wyvxy.
Exuﬁf

aEl,

E=0
Fig.3 Energy transitions for the network relating U,V and X.

Example

Let us consider how the equations above can be used to construct a tiny net composed of three units uyv
and X, where the desired relationship is a noisy-OR gate. This type of relationship is common among systems per-
forming word sense disambiguation [Cotrel} 84}. For instance, the vartables X,U and V could take part in a larger
network standing for a given word and its two alternative word senses. The relationship between X,/ and V could
be then defined as :

P(xlu,v):{

09 ifu=uor v=v
0.1 otherwise

Plugging these values into the equations above we obtain the net parameters :
wy=wyp=wy=—k  wyy=wyy=2k  wypy=-2k

all symmetric, in which k=In9 (Fig.4). We might also go in the opposiie direction and ask how to modify the
specification of the noisy-OR gate above in order o leave the net with pairwise interactions only, i.e., making
wypv =0. Again by simple manipulations it turns out that if we only change the entry P(xlu,v) w0 0.9878, we
get wypy =0 with wyy =—k.

J \ By k N -\,\.J D
-2k, :
c)
Tk L
K % ) &

Fig.4 a)anoisy-OR b) the equivalent net  c) net with wygy =0

Note that the probability distribution unambiguously specifies the relationships among the variables that
we want the network to express. It is more reasonable to specify the entries of P (x|u,v) than directly specify the
parameters of the equivalent net. The reason being, as we said above, that the former has a clear experiential
meaning that is missing from the laaer.



IV.Discussion

We have so far focused on translating probability distributions defined over binary variables to networks
with of 2-state units standing in one-to-one correspondence (o these variables. We shall now briefly address the
case of non-binary variables, where a direct correspondence of variables io units and values to states no longer
holds.

The mapping of a set of non-binary variables to a set of binary units can be achieved by associating with
each variable a set of "private” units, so that a particylar variable instantiation corresponds to particular state(s) of
its set of units T. Let X,Y,....Z stand for the possibly non-binary variables in the set S and let X", Y*, ..., Z"
denote their corresponding set of units. Then the probability distribution P () over the set of variables S mduces a
probability P,{*) over the set of units § * which satisfies :

POy, ... 2= P(x,y,...,z) for X"fy".. ..,Z" encoding the values XYoooo2
=0 otherwise

In other words, the probabilities associated with the states of §* which encode instantiations of the variables in §
are kept in the same ratio, while all other configurations are neglected. In this sense we can say that the probabili-
ty distribution over S$“ "represents” the relationships defined by P{*) over §.

Since the resulting probability distribution P, () is defined over a set of binary variables (i.e. units), the
method described in the previous section is applicable. We can then determine the network weights necessary to
express P,(*) over a set of units §* which, as we argued above, captures the relationships embodied by P() over
the multi-valued variables in S.

Note that the ability to express probability distributions over a set of multi-valued variables can be ap-
plied back to the binary case 10 cluster several binary-valued variables into a single muiti-valued one. Clustering
and other encodings of multiple-valued variables over sets of binary units, determine a whole range of representa-
tions with equivalent expressive power (i.e. they capwre the same probability distribution among the variables),
but an interesting spectrum of distinct features. While we have not investigated these features throughly, we end
to believe that these representations will differ mainly in the resulting order of the constraints induced among the
units as in the shape of the resulting energy landscape. An interesting challenge will be to minimize the order of
the constraints induced (to minimize the complexity of the architecture), while preserving the smoothness of the
energy surface (to reduce the myopic effects of relaxation algorithms).

V. Conclusion

We have argued that probability theory provides a framework in which to analyze the semantics of con-
nectionist networks, We have also described how to construct networks which capture arbitrary probability dis-
tributions. The inverse process also holds; the theory of Markov fields permits one to uncover the probability dis-
tribution embedded in a network, once the local energy terms has been specified [Geman 84). Thus, connectionist
networks as proposed by Hopfield [Hopfield 82], with the addition of higher order terms, posses an expressive
power equivalent to that of Bayes and Markov Networks [Pearl 86a).

The challenge remains 10 exploit the features that make these networks different. While we have been as-
suming the feasibility of multiplicative connections among units, workers in connectionist networks have avoided
whenever possible its introduction (see [Sejnowski 86b] for a discussion of the issue). However, clustering as well
as different encoding of variables over units determine a whole spectrum of representations that may render pair-
wise interactions among units and a smooth energy landscape. Moreover the addition of hidden units has been

* This idea, in a slightly different flavor, has been advocated in the context of "distributed representations”
[Hinton 84].



shown to further increase the expressive power of second order nets t. While we have not considered hidden units
here, we hope that the framework laid out in this paper can be extended to formally characterize the spectrum of
representations that will emerge from the interaction of hidden units with the other two factors mentioned above.
We also expect that this characterization might shed some light on the functional properties emergent from distri-
buted representations [Hinton 84].
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