CAUSAL NETWORKS: SEMANTICS AND EXPRESSIVENESS

Thomas Verma July 1987
CSD-870032

TECHNICAL REPORT
R-65-1
June 1987
Causal Networks: Semantics and Expressiveness

by

Thomas Verma

Cognitive Systems Laboratory
Computer Science Department
University of California
Los Angeles, CA 90024
verma(@cs.ucla.edu

ABSTRACT

Dependency knowledge of the form *‘x is independent of y once z is known’’ can often be stored
efficiently in graphical structures. Both undirected graphs, and DAGs (directed acyclic graphs) have been
studied for this purpose. It is shown that DAGs constructed from stratified protocols do in fact perfectly
represent the underlying dependency model whenever possible. Further, if the underlying model is a
semi-graphoid then the DAG generated by any protocol is an I-map of the model (i.e. produces sound
assertions of independence) and the set of all DAGs generated is a perfect map. Finally the possibility of
using hybrid graphs with both directed and undirected links is introduced and shown to be more expres-
sive than the union of the previous two representations.

Science track
Major topic: Knowledge Representation
Subtopics: Data Dependencies, Logic of Relevance, Network Representations

* This work was supported in part by the National Science Foundation Grants #DCR 85-01234 and #IRI 86-10155

Introduction

Dependency knowledge is useful in several areas of research, for example in database design itis
useful to reason about embedded-multivalued-dependence (EMVD) of attributes {Fagin, 1977] and in ex-
pert systems it is useful to reason about probabilistic independence of variables [Pearl, 1986a]. These ex-
amples represent two formalizations of the intuitive relation "knowing Z renders X and Y independent”
which shall be denoted as /(X, Z, ¥). This relation would naturally have different properties in different
applications, but it is interesting to note that most sensible definitions of this relation share four common
properties listed below:

symmetry IX,Z,)eIX, Z2,X) (1.2)
decomposition I(X,Z, YW)=>I(X,Z,Y) (1.b)
weak union IX,Z, YW) = I(X, ZY, W) (1.c)
contraction IXZYW&IX,Z,)=>I1X, Z, YW) (1d)

where X, Y and Z represent three disjoint subsets of objects (e.g. variables, attributes). It is known that
every EMVD relation obeys the four properties listed above, as well as many other properties. {The nota-
tion (X, Z, Y) is equivalent to the standard EMVD notation Z —»X 1 Y). Probabilistic dependencies
also obey these four properties, and it has been conjectured that they are, in fact, complete [Pearl and Paz,
1986], namely, that any other property of probabilistic independence is a logical consequence of the four.
Three place relations which obey these four properties are called semi-graphoids [Dawid, 1979].

It is worth noting that for probability distributions containing strictly positive probabilities, the
independence relation has a fifth independent property:

intersection (X, ZY,W)&IX,ZW,Y)=I1X, 2, YW) (2)

This property along with the four of semi-graphoids define the class of graphoids (also conjectured to be
complete for non-extreme probabilities [Pearl and Paz, 1986]).

A naive approach for representing a dependency model, i.e. particular instance of a dependency
relation, would be to enumerate all triplets (X, Z, Y) for which 7 (X, Z, ¥) holds. This could result in ex-
ponential space since the relation / ranges over subsets of objects. The use of graphs as a representation
of dependency models is appealing in two ways; first the graph has an intuitive conceptual meaning, and
second, it is an efficient representation in terms of time and space [Pearl and Verma, 1987].

Undirected Graphs

The meaning of a particular undirected graph is straight forward, each node in the graph
represents a variable, and a link in the graph means that the two variables are directly dependent. Under
this mearning, a set of nodes Z would separate two other sets X and ¥, if and only if every path between a
node in X and a node in Y passes through Z. This representation can fully represent only a small set of
dependency models defined by the following properties [Pearl and Paz, 1986}:

symmetry IX,Z,Y)=IY, 2, X) (3.a)

2-

decompositon [I(X,Z, YW)=I1(X, Z,Y) (3.b)

strong union IX,Z,Y)=1I(X,2ZW,Y) (3.0
intersection IX,ZY, W) & I(X, ZW, Y) = I(X, Z, YW) (3.d)
transitivity IXZN=2IX,Z,Yor IY,Z,)Vye XUYVZ (e

It is not always necessary to have an exact graphical representation of a dependency model, in
fact an efficient approximation called an /-map is often preferred to an inefficient perfect map. A
representation R of a dependency model M is an I-map if every independence represented in R implies a
valid independence in M. Thus, R may not contain all independencies of M, but the ones it does contain
are correct. There is an algorithm which finds the most representative /-map for any graphoid [Pearl and
Paz, 1986). Since probabilistic independence over positive probabilities constitutes a graphoid, there is
always a unique edge-minimal undirected graph which is an /-map of any probabilistic distribution P.
This is not the case for EMVD relations; there is no unique edge-minimal I-map for a given database.

Directed-acyclic Graphs (DAGs)

The dependency model represented by a particular DAG has a simple causal interpretation; each
node represents a variable and there is a directed arc from one node to another if the first is a direct cause
of the second. Under this interpretation, graph-separation is not as straight forward as before since two
unrelated causes of a symptom may become related once the symptom is observed [Pearl, 1986b). Thus a
set of nodes Z is defined to d-separate two other sets X and Y if and only if every adjacency path from a
node in X to a node in Y is rendered inactive by Z. An adjacency path is one which follows arcs ignoring
their directionality; one is rendered inactive by a set of nodes Z if and only if either there is a head-to-
head node along the path which is not in Z and none of its descendents are in Z or some node along the
path is not head-to-head but is in Z. A node along the path is head-to-head if the node before it and after
it along the path both point to it in the graph. One node is a descendent of another if there is a directed
path from the latter to the former.

A complete set of axioms which define the class of dependency models representable by a DAG
has not yet been determined [Geiger, 1987], nor has an algorithm been found which finds an optimal /-
map. But there is an algorithm which produces a perfect map of a dependency model if such exists. Ac-
tually the algorithm takes a stratified protocol of a dependency model and produces a perfect map of its
semi-graphoid closure. A stratified protocol of a dependency model contains two things: an ordering of
the variables, and a function that assigns a rail boundary to each variable x. A tail boundary of a variable
x is any set of lesser variables (with respect to the ordering) rendering x independent of all other lesser
variables. A unique DAG can be generated from each stratified protocol by associating the set of direct
parents of any node x in the DAG with the ¢ail boundary of the variable x in the protocol. An equivalent
specification of a stratified protocol is an ordered list of triplets of the form I (n, B, R), one triplet for each
variable in the model, where the set B is the tail boundary of the variable n and R is a set containing all
other lesser variables. For a particular dependency model over n variables there are n ! orderings, and for

n
cach ordering there can be up to [2~ =2"¢"12 different sets of tail boundaries since, in the worst

k=1
case, every subset of lesser variables could be a boundary. Thus, there can be as many as 7 1nr-)i2

stratified protocols. But if the dependency model posses a perfect map in DAGs, then one of the proto-

cols is guaranteed to generate it.

Theorem 1: If M is a dependency model which can be perfectly represented by some DAG D, then there
is a stratified protocol L g which generates D.

Proof: Let D be a DAG which perfectly represents M. Since D is a directed acyclic graph it imposes a
partial order ¢ on the variables of M. Let 0 be any total ordering consistent with ¢ (i.e. a <y b=a<yb).
For any node n in D, the set of its parents P (r) constitutes a tail boundary with respect to the ordering O,
thus the pair Lg = (8, P (n)) is a stratified protocol of M, and this is the very protocol which will generate
D. QED.

The next theorem shows that stratified protocols can be used to generate /-maps of any semi-graphoid, not
necessarily those possessing perfect maps in DAGs.

Theorem 2: If M is a semi-graphoid, and Lg is any stratified protocol of M, then the DAG generated by
Lg is an I-map of M.

Proof: Induct on the number of variables in the semi-graphoid. For semi-graphoids of one variable it is
obvious that the DAG generated is an I-map. Suppose for semi-graphoids with fewer than k variables that
the DAG is also an I-map. Let M have & variables, n be the last variable in the ordering 6, M —n be the
semi-graphoid formed by removing # and all triplets involving n from M and G - n be the DAG formed
by removing n and all its incident links from G. Since n is the last variable in the ordering, it cannot ap-
pear in any of boundaries of L, and thus Lg —n can be defined to contain only the first n—1 variables and
boundaries of Lg and still be a stratified protocol of M —n. In fact the DAG generated from Lg—n is
G —n. Since M —n has k—1 variables, G—n is an I-map of it. Let Mg be the dependency model
corresponding to the DAG G, and Mg_, correspond to G —n, (i.e. Mg contains all d-separated triplets of
G).

G is an I-map of M if and only if Mz < M. Each triplet T of M falls into one of four categories; either
the variable n does not appear in T or it appears in the first, second or third entry of T. These will be treat-
ed separately as cases 1, 2, 3 and 4, respectively.

case-1: If » does not appear in T then T must equal (X, Z, Y) with X, Y and Z three disjoint subsets of vari-
ables, none of which contain n. Since T is in Mg it must also be in Mg _, for if it were not then there
would be an active path in G ~n between a node in X and a node in ¥ when Z is instantiated. But if this
path is active in G —n then it must also be active in G since the addition of nodes and links can not deac-
tivate a path, Since G —n is an I-map of M —n, T must also be an element of it, but M —n is a subset of
M,soTisinM

case-2: If n appears in the first entry of the triplet, then T = (Xn, Z, Y) with the same constraints on X, Y
and Z as in case-1. Let (1, B, R) be the last triple in Lg, By, By, Bz and Bo be a partitioning of B and Ry,
Ry, Rz and R be a partitioning of R such that X = By U Ry, Y =By\URyand Z =Bz URz asin figure 1.

A A
59

Figure 1

By the method of construction, there is an arrow from every node in B to n, but since (Xn, Z, ¥) is in Mg
every path from a node in ¥ to n must be deactivated by Z so By must be empty or else there would be a
direct link from Y to n (see figure 2a). The last triplet in Lg can now be written as
(n, ByBoBz, RyRzYRy). Since X =By URy, ¥ =Ry and M is a semi-graphoid it follows (from (1.b) and
(1.c)) that (n, XBoZ, Y)e M.

Figure 2a Figure 2b

Since there is an arrow from every node in B to 7 and » is separated from Y given Z in G, B must also
be d-separated from ¥ given Z in G for if it were connected there would be a path from anodeinYto a
node in B which was active given Z. But there is an arrow from every node in By to n, thus, such a path
would also connect the node in Y to », and ¥ would no longer be separated from n given Z (see figure 2b).
Since Y is separated from both B and X given Z in the DAG G it is separated from their union, so
(XBo,Z, Y)e Mg. Since n is not in this triplet, the argument of case-1 above implies that
(XBo,Z, Y)e M. Since (n, XBoZ, Y)e MandMisa semi-graphoid it follows (using (1.b) and (1.d)) that
T=(Xn,Z, Y)eM

case-3: If n appears in the second entry then T = (X, Zn, ¥) with the same constraints on X, Y and Z as in
case-1. Also let B, R, etc. be defined as in case-2, thus (n, BxByBzB, RxRyRzR)€ M since it is the
last triplet in Lg.

In this case, either B, is empty and B is separated from Y given Z in G, or By is empty and By is separat-
ed from X given Z in G since if neither were the case, then there would be a path from a node in Y which
would be active given Z and would end pointing at n, and there would be a similar path from a node in X
to n. But this means that there would be a path from a node in X to a node in ¥ which would be active
given Z and since the path is head-to-head at n (see figure 3a and 3b). But there can be no such path

since by assumption (X, Zn, Y)e Mg. Without loss of generality, assume that By =& and

N /)
d') CAND

v \/

Figure 3a Figure 3b

X and Y must be separated in G given only Z for if they were not then there would be a path between them
which would be active given Z. Since they are separated given Z and a, this path would have to be deac-
tivated by a, but since there are only arrows pointing at » it can only activate paths by being instantiated
(see figure 3b). Thus, there can be no such path and X and ¥ must be separated given Z in G. Since Y is
separated from both X and By given Z in G it follows that (XBg, Z, Y)e Mg and by the argument of
case-1 above (XBg, Z, Y) e M. Since By is empty it follows, as in case-2, that (n, XBoZ, Y)e M. Furth-
er, M is a semi-graphoid so, applying (1.d) to (XBo,Z,Y)eM and (n, XBoZ, Y)e M yields
(nXBy,Z, Y)e M and using (1.b) and (1.c) it follows that T=(X, Zn, Y) e M.

case-4: If n appears in the third entry, then by symmetry the triplet T is equivalent to one with n in the
first entry, and the argument of case-2 above shows that T € M. QED.

Corollary: If L is any stratified protocol of some dependency model M, the DAG generated from Lg is a
perfect map of the semi-graphoid closure of Lg. In other words, a triplet is d-separated in the DAG if and
only if it can be derived from the triplets of Lg using the four axioms in (1).

Proof: By the previous theorem, the DAG is an I-map of the closure, and it remains to show that the clo-
sure is an I-map of the DAG. Since every DAG dependency model is a semi-graphoid, the DAG closure
of Lo contzins the semi-graphoid closure of it, thus, it suffices to show that the DAG dependency model
Mg contains Lg. If (n, B, R) is a triplet in Lg then n is separated from R given B in the DAG, for if not
then there would be a path from a node in R to n which is active given B. But since every link into n is
from B the path must lead out of n into some node which was placed after n. Since every node in R was
placed before n, this path cannot be directed and must contain a head-to-head node at some node which
was placed after n. But this path is deactivated by B since it contains no nodes placed after », and thus, B
would separate n from R in the graph. QED.

Theorem 3: If M is any semi-graphoid then the set of DAGs generated from all stratified protocols of M
is a perfect map of M if the criterion for separation is that d-separation must exist in one of the DAGs.

Proof: If there is a separation in one of the DAGs then the corresponding independence must hold in M
since theorem 2 states_that each of the DAGs is an /-map of M, thus the set is also an /-map. It remains to
showthatMls an I-map of the set of DAGs. Let T =(X, Z, Y) be any triplet in M and X = {x;,...,X,}.
The triplets T = ((x; xy ** * %1 Z, ¥) | 1<i<n} must also be in M since they are implied by T using
the weak union axiom of semi-graphoids. Furthermore T is in the semi-graphoid closure of T" since the
triplets imply T by use of the contraction axiom. Thus any protocol containing the triplets T" would gen-
erate a DAG containing T. Such a protocol need only have an ordering 6 such that the variables of ¥ and
Z are less than those of X which are less than any other variables and that the variables of X are ordered
such that x; <g x; if and only if i < j. The DAG generated by this protocol is in the set of DAGs and
therefore the separation holds in the set. QED.

This set is not the smallest set of DAGs which is a perfect map, in fact it may contain many redundant
DAGs. A tail boundary B of a variable n is minimal if there is no other tail boundary B" which is a prop-
er subset of it. A stratified protocol is minimal if it contains only minimal boundaries. The following
corollary states that only the DAGs built from minimal protocols need be consulted for a perfect map.

Corollary: If M is any semi-graphoid then the set of DAGs generated from all minimal stratified proto-
cols of M is a perfect map of M.

Proof: Theorem 3 states that the set of DAGs generated from all protocols is a perfect map, it is enough
to show that any DAG built from a non-minimal protocol is subsumed by a DAG built from a minimal
protocol. Suppose Lg is a non-minimal protocol. Let L’g be any minimal protocol with the ordering 6
such that every boundary in L’g is a subset of the corresponding boundary in Lg. L’g must exist and the
DAG it generates (G”) is a subset of the DAG generated from L g (G) since the parent sets of G’ are sub-
sets of the corresponding parent sets of G. Thus the DAG G’ which is built from a minimal protocol L'y
does subsume the DAG G, built from Lg. QED.

Even though this reduces the number of DAGs necessary for a perfect map, it is not an effective perfect
map since there is at least one minimal protocol for each ordering, thus there will be at least #! minimal
protocols.

Since there is an effective algorithm for generating an /-map DAG for any semi-graphoid, DAGs would
be a useful means of representing EMVD relations as well as probabilistic independence relations. Furth-
ermore if the particular dependency model is stated as a swratified protocol then it can be perfectly
represented by a DAG.

Power and Limitations

It is obvious that both undirected graphs and DAGs have limitations, otherwise there would be no
need to settle for I-maps. Undirected graphs can only perfectly represent dependency models which are
strongly transitive and have the a strong union property (see (3)), whereas DAGs can only represent
weakly transitive and chordal dependency models [Pearl, 1986b]. Furthermore, both can only represent

dependency models which have the intersection and set composition properties. But any graphical
representation would suffer from these last two restrictions unless the semantics were drasticly altered. It
is interesting to note that the set of dependency models representable by undirected graphs overlaps that
of dependency models representable by DAGs, each having models not representable by the other. The
two intersect in the class of chordal graphs [Pearl and Verma, 1987].

These limitations also affect the expressive power of /-maps; the more limited the representation
is, the fewer independencies a particular /-map can display. In fact if a relation is extremely incompatible
with the particular representation even the best I-maps say nothing. Take for example the situation where
a bell (controlled by an oracle) will ring every time two coins are tossed and land the same, i.e. both
heads or both tails. The variables in this situation are the outcome of each coin, and the outcome of the
bell. Any two of the variables are pairwise independent, (e.g. knowing the outcome of the first coin tells
nothing about the outcome of the second), but once any one is known the other two become dependent.
The only undirected graph /-map for this situation is a complete graph which says nothing. The three
DAGs representing this situation have the structure *—+<—s, each asserting one independence triplet.

Hybrid Graphs

Consider a graph which contains both directed and undirected links, the directed links would
denote a direct causal relationship, and undirected links would represent symmetric correlations. The cri-
terion for separation in these hybrid acyclic graphs is almost identical to that for DAGs -- two sets are h-
separated given a third if and only if every adjacency path between them is rendered inactive by the third.
An adjacency path, which may also contain undirected links, is rendered inactive by a set Z if and only if
a node along the path is in Z and it is not head-to-head, or if there is a head-to-head node on the path and
neither it nor any of its h-descendents are in the set. Here, however, a node is an k-descendent of another
if there is an adjacency path between the ancestor to the descendent in which any directed arcs point in
the direction of the descendent. The reasoning behind this is that observing the outcome of an event
which is correlated with the common effect of two unrelated causes should serve to correlate them just as
the outcome of the effect itself would.

This definition is a extension of both the undirected and the directed acyclic graph definitions.
Trivialy it is as powerful as their union because any dependency model which is representable by either a
undirected graph or a DAG is also representable by a hybrid graph. Furthermore, there are dependency
models representable by hybrid acyclic graphs which are not representable by either undirected graphs or
DAGs individually. In fact the dependency model can be both non-chordal and non-transitive (see figure
4), two properties that no DAG nor any undirected graph can display individually.

Figure 4

Conclusion

Since hybrid graphs are a good generalization of undirected and directed acyclic graphs, exceed-
ing the expressive power of both combined, it would be useful to investigate them further and find
efficient or even theoretical algorithms to generate them. Their additional power is useful in two ways,
first it allows a larger class of dependency models to be perfectly representable by graphs and, second, it
allows the construction of /-maps that display more facts about the partially represented model.

REFERENCES
A.P. Dawid, ‘‘Conditional Independence in Statistical Theory,”” J.R. Statist.B., 41 (1):1-33, 1979,

R. Fagin, ‘‘Multivalued Dependencies and a New Form for Relational Databases,’” ACM Transactions on
Database Systems, 2, 3,; September 1977, pp. 262-278.

D. Geiger, ‘*The Non-axiomatizability of Dependencies in Directed Acyclic Graphs,’ Technical Report
R-83, Cognitive Systems Laboratory, UCLA. 1987.

J. Pearl, “‘Fusion, Propagation and Structuring Belief Networks,’* Artificial Intelligence, Vol. 29, No 3,
September 1986, pp. 241-288

1. Pearl, **Bayes and Markov Networks: a Comparison of Two Graphical Representations of Probabilistic
Knowledge,”” UCLA Computer Science Department Technical Report 860024 (R-
46), October 1986.

J. Pearl & A. Paz, “GRAPHOIDS: a Graph-based Logic for Reasoning about Relevance Relations,"’
Proceedings, ECAI-86, Brighton, U.K., June 1986; also, UCLA Computer Science
Department Technical Report 850038 (R-53).

J. Pearl & TS Verma, ‘“The Logic of Representing Dependencies by Directed Graphs,” Proceedings,
AAAI-87, Seattle, WA, July 1987

-10-

