AN OBJECT-ORIENTED METHODOLOGY FOR THE
SPECIFICATION OF MARKOV MODELS

Steven Berson July 1987
Edmundo Silva CcSD-870030
Richard Muntz

AN OBJECT ORIENTED METHODOLOGY FOR
THE SPECIFICATION OF MARKOV MODELS

S. Berson t
E. de Souza e Silva 1t
R.R. Muntz t

 UCLA Computer Science Department

Los Angeles, CA 90024

1 PUC/RJ Electrical Engineering Department

Rio de Janeiro, Brazil

April 1987

AN OBJECT ORIENTED METHODOLOGY FOR
THE SPECIFICATION OF MARKOV MODELS

ABSTRACT

Modelers wish to specify their models in a symbolic, high level language while analytic
techniques require a low level, numerical representation. The translation between these descrip-
tion levels is a major problem. We describe a simple, but surprisingly powerful approach to
specifying system level models based on an object oriented paradigm. This basic approach will
be shown to have significant advantages in that it provides the basis for modular, extensible
modeling tools. With this methodology, modeling tools can be quickly and easily tailored to
particular application domains. An implementation in Prolog, of a system based on this metho-

dology is described and some example applications are given,

1. Introduction.

The complexity of the new generation of highly concurrent systems that are now being
developed has made the use of sophisticated modeling tools for specification and analysis a high
priority enterprise. The variety of architectures and different problems to be analyzed demon-
strate the need for general tools, i.e., tools that allow specification of general classes of models.
There are many examples of such tools in the literature [Saue81, Saue84, Berr82, Goya86,
Triv84, Maka82, Cost81, Carr86]. The usefulness of such tools can be measured in terms of two
factors: the sophistication of the underlying analytic and/or simulation techniques used and the
simplicity and power of the user interface. Development of analytic techniques and their imple-
mentation in analysis packages is not enough; to be truly useful the analysis must be made easily
accessible to the modeler. Unfortunately, existing systems are limited in usefulness due to the

user interfaces that are provided. This paper addresses exactly this problem.

The problem is one of mapping between two representations of a model: the modelers
representation and the analytic representation. The analytic representation is the detailed, low
level representation required as input to the analysis modules. The modelers representation is
the model specification that the user supplies. The modelers representation is typically in sym-
bolic form and should be in terms of constructs that are natural to the application. Clearly the
form of the model specification language determines the ease of defining models thereby
influencing the overall cost of the modeling effort. A high level language tailored to a particular
application domain provides the ability to define models that are easy to understand, less time

consuming for the modeler and less error prone.

Analytic techniques are often general purpose and applicable to a wide range of problem
domains. It is desirable to make the analysis tools easily accessible for these varied applications.
A fundamental problem is that the most suitable model specification language will vary from

one application to another. A "one language suits all" approach is therefore not appropriate.

This is however the approach taken by current tools. The result is one of two extremes: ()a
language that is specific to a narrow application area or (2) a language that achieves generality
by providing only primitive constructs (e.g. stochastic Petri nets). Both tend to hinder access to
the analytic tools available. The first provides a convenient user interface for models that fit into
the anticipated mold but for no others. The second places too much of the burden on the
modeler. The paucity of modeling constructs often forces the modeler to build descriptions that
are contrived, complex and unrelated to any "natural” representation. What is required is a
methodology that permits the tailoring of the model specification language to the application

domain. This paper presents such a methodology.

In this paper we concentrate on modeling applications for which the analytic representa-
tion is a Markov process state transition rate matrix. This covers a broad class of applications as
Markov processes are the most general representation typically provided for representing and
solving performance and reliability models. Due to the decrease in the cost of memory, the in-
crease in computation power, and recent advances in solution techniques, Markov processes with
tens of thousands of states can now be solved; somewhat easing the large model problem, which

is a major limitation.

The conceptual basis of our approach is an object oriented paradigm for model descrip-
tion. In this approach all system models are defined in terms of instances of objects and interac-
tions between objects. The characteristics of specific applications are reflected in the object
types that are used in the model specification. By providing libraries of object definitions the
system can be easily extended to particular application domains. System models that combine
object types drawn from a library with user defined object types are accommodated, which per-
mits specialized extensions. As will be demonstrated by the examples that appear later, this has
proven to be a powerful modeling paradigm that has easily accommodated a wide variety of ap-

plications including reliability models and queueing theoretic models. With this approach we

have been able to produce tailored interfaces in a matter of hours for reliability modeling and
queueing networks while other methods require weeks of effort. Experiences with defining ad
hoc models indicate similar efficiencies. Being able to easily construct and analyze specialized
models is of significant benefit in a research environment. The effort required with existing sys-

tems has previously discouraged exploratory studies of specialized models.

This research has been influenced and has drawn from a variety of sources and several of
the most related efforts are noted here. The METFAC system [Carr86)] uses production rules to
describe system behavior. This system does not utilize an object oriented approach and the pro-
duction rules operate on the global system state. The object oriented approach has the advantage
of modularity and leads to natural support for higher level interfaces in which a particular model

is specified in terms of previously defined objects.

Lenders [Lend85] developed a method of describing distributed computattons using Pro-
log. He showed how to model distributed computations with communicating finite state automa-
ta in Prolog and how to generate the reachable set of states. His purpose was to analyze algo-
rithms for liveness and safety properties. We use the same general approach to generate the set
of states reachable from an initial state, but extend the general method to account for a number

of special features desirable for performance and reliability modeling.

In section 2 we describe the system modeling paradigm independent of any particular im-
plementation. In section 3 we describe the organization of the system that has been constructed
to implement the approach. Section 4 contains several example applications and section 5

presents our conclusions.

2. The Object Oriented Modeling Paradigm,

The system description paradigm that we have adopted is object oriented. In this view a
system is composed of a set of interacting components called objects. Each object is an entity
that has an internal state and can evolve over time. In addition, objects can generate actions
called events at some rate. The state of an object will determine the types of events it can gen-
erate and the rates at which they occur. The generation of an event can also be conditioned on
the state of other objects. This is expressed as a boolean function (predicate) on the global sys-
tem state. An event may simply cause the object generating it to change state with no effect on
other objects but in general, an event will cause other objects to react in some manner. This is
modeled by allowing objects to generate messages to be broadcast to other objects notifying
them of an event. The specification of an object includes a definition of how it reacts (i.e.

changes state and sends messages) to received messages.
This object oriented paradigm has the following advantages:
a. it is natural to think of a system as a set of interacting components.

b. the paradigm introduces modularity into the system description since object behavior is
conceptually divided into internal behavior of the object and the interaction with other

objects (via messages) and via the preconditions on events.

Example

As an example, a system for reliability modeling could be described in terms of two
types of objects: system component and a repair service. The "internal” state of a component
may be "operational” or "down". An "operational” component can generate a "fail” event with
some specified rate. This event may affect other objects, e.g. other components may be caused

to fail, and the repair service object may change state to record the newly failed components

queued for repair. The effects of a component failure on these other objects is represented by a

message sent to these objects and their reactions to the message.

The object oriented paradigm is intended to provide a generic model specification "sche-
ma.” The idea then is to provide a tool that can translate any model instance expressed in the
schema framework to an analytic representation. A particular implementation of the basic idea is

distinguished by the language used to specify objects, events, etc.

Simultaneous Events

The semantics of a model expressed in the above paradigm are fairly obvious except for
the occurrence of messages that "propagate”. Notice that in the definition of the reaction of an
object to a message the object may in turn generate further messages. The intended meaning is
that messages are delivered (and reacted to) instantaneously. In essence this can result in a cas-
cading effect in which multiple changes in state occur at the same instant. The usefulness of this
notion is illustrated in the example given above in which a component that fails can cause other
components to fail. This is the weakest point in the paradigm with respect to conceptual clarity.
Similar problems arise in other modeling schemes that allow "zero time" actions, e.g. General-
ized Stochastic Petri Nets [Mars84]. In the discussion following the description of our imple-

mentation we will return briefly to this issue.
Object Types

An obvious extension to the basic paradigm is to add the notion of object types. This is
more in the nature of an implementation issue and simply allows for economy in specifying a

model. This will be incorporated into the implementation described in later sections.

We have clearly borrowed notions from object oriented programming but it must be em-

phasized that we are describing a conceptual framework for describing system behavior and not

an implementation language. A system description in the framework described above is declara-
tive in nature and not a program to be executed. The description must be interprered to generate
the corresponding Markov process state transition representation. Interpretation of the descrip-

tion is essentially a search of the reachable system states starting from a specified initial state.

Our experience indicates that the object oriented framework for description of a system is
very general and can be applied to any modeling application for which it is desired to generate
the Markov state description. In fact, other target representations are possible and are under in-

vestigation.
3. Implementation Organization.

In the following sections we describe an implementation of the concepts in the previous
section. Prolog was chosen as the implementation language for both object definitions and the
“interpreter” of these definitions. Prolog was chosen for several reasons. The ability to use the
same language for both purposes leads to a simpler and more concise implementation. Prolog al-
lows simple, declarative descriptions of objects and permits the specification of complex rules of
behavior in a simple, easy to understand manner. For the reader unfamiliar with Prolog, a sum-

mary of relevant features is given in Appendix A.

In order to facilitate use of the tool and aid in tailoring it to particular applications we

have distinguished four different "layers" in its organization, as shown in figure 1.

a. The core of the tool deals with any object oriented description and generates the Markov

state description. This part is independent of the particular application.

b. The next layer is the definition of object types. Object types will in general be applica-
tion dependent and to formulate the descriptions will require some knowledge of Prolog.

It is expected that object definitions will be parameterized so that instances of the objects

can be declared and parameters specified for each instance. Libraries of object type
definitions would be created so that a user could define an instance of an object type by

simply referring to the library definition.

c. The object definitions provided in layer "b" allow an "end user” to define a model by de-
claring instances of the objects and supplying the required parameters. These declara-
tions are in the form of simple Prolog clauses that are referred to in the procedures
defining the object type. At this level one defines an instance of a model by declaring the

object instances and for each the object, the parameters.

d. Finally, if one wishes to provide a sophisticated user interface (e.g. more English-like or
graphical), this can be built on top of layer "¢" by providing the translation from the end
user interface to the Prolog clauses. We have not concentrated on this layer thus far,

although we have written a translator for the SAVE [Goya86] user interface to Prolog.

3.1 Core Interface.

The core of the system provides a generic interface which takes descriptions of objects,
events and an initial state and generates the Markov state description. The "interface” to the core

is the basis on which everything else is built, The core assumes the following "schema" or for-

mat.
(1) each object has a name which is arbitrary but distinct.

(2) each object has a set of possible states. The core makes no interpretation of the states of

an object.

3 the "global state" of the system is a list containing one entry for each object. The entry
for an object is a 2-tuple containing:

a) the name of the object,

b) its current state.

(4) for each object, a definition of the events that the object can generate for each local state

of the object and the rate at which that event occurs.

(5) for each object, a definition of the possible effects of an event generated by some other

object and for each possible effect, the probability that that effect occurs.
(6) initial state: a statement of the initial global state of the system.

The core operates on this description by searching for the states reachable from the given
initial state. A standard recursive search procedure is used that, for each reachable state S, deter-
mines the states reachable from S by some event given that the system is in state S. Any search

procedure (e.g. breadth first or depth first) is sufficient.

We now describe in more detail the interface to the core as it has been implemented. In-
terfacing with the system at this level of detail is only required of a "library designer." For gen-
eral classes of models it is intended that this would be done once and "end users" would simply
refer to the library definitions. After deciding the types of objects in a system, the library
designer has to list the events which can be generated by each object. Furthermore, the condi-
tions under which these events can occur must be specified. Typically, this is a function of the
object’s local state, but may depend on the current system state as well. Next, the "reaction" of
an object for each type of event has to be defined, including the specification of messages that
may be sent to other objects. Finally, the "reaction™ of objects to receiving a message are
specified and, if different reactions are possible, the probability of each occurrence. In summary,

the core expects the following predicates to be specified for each object:

a. event(Object, Event),

b. valid_event(Object, Event, Local_state, Global_state).

c. react(Object, Event, Local_state, Global_state, Next_Global_state, Msgs, Rate).

d. message(Message, Old_state, State, New_state, Probability, Msgs).

Predicate "event” indicates the possible events which can be generated by an object.
Predicate "valid_event” succeeds if the object can generate Event in the current state of the
model. The "react” predicate describes the reaction of the object to an event that it generates. A
reaction consists of changing from one global state to the next and sending out messages, if any.
The "message” predicate describes how an object reacts to messages that come from other ab-

jects and with what probability.
3.2 Example of Object Type Definition.

In this section we illustrate the definition of a set of object types for a simple repair
model in which components can fail independently and are repaired in a "first-come-first-serve”
(FCFS) order. In availability models, components of the same type are generally clustered to-
gether. If there are some number of CPUs with identical failure/repair behavior, it is easier (and
generates fewer states) if they are treated as a CPU cluster with the state being the number that
are operational. We choose to represent the system with two types of objects: a components type
object which models components clusters and a repair facility type object. There are two types
of events: failure events which are generated by objects of type component, and repair events
which are generated by a repair facility object. The state of an object of type component is the
number of operational (Up) units. The state of the repair facility object is a FCFS queue. The
Prolog clauses for specifying the object types are given below.

event(Object_name, failure) :-

component(Object_name, _).
event(repair_facility, repair).

valid_event(Component, failure, Local_state, Global_state) :-
Local_state > 0.

valid_event(Repair_facility, repair, [In_Repairl In_Queue], Global_state).
react(Component, failure, Local_state, Global_state, Next_global_state, Rate, Msgs) :-
Msgs = [[repair_facility, failure, Component]},

New_local is Local_state - 1,

update_state(Component, New_local, Global_state, Next_global_state),
failure _rate(Component, Base_rate),
Rate = Local_state*Base_rate.

react(Repair_facility, repair, [ServediIn_Queue), State, Next_state, Rate, Msgs) :-
Msgs = [[Served, repaired]],
update_state(Repair_facility, In_Queue, State, Next_state),
repair_rate(Served, Rate).
message([repair_facility, failure, Component}, Old_state, State, New_state, 1, []) :-
member{[repair_facility, Queue], Old_state),
append(Queue, [Component], New_gueue),
update_state(repair_facility, New_queue, State, New_state).
message([Component, repaired], Old_state, State, New_state, 1, []) :-
member({Component, Up], Old_state),
New_upisUp + 1,
update_state(Component, New_up, State, New_state).

The first event clause indicates that an event of type failure is generated by any com-
ponent, ie. any component can fail. The second evenr clause indicates that the object

repair_facility can generate an event of type repair.

The next two clauses validate the events. The first valid_event clause indicates that a
component type may generate a failure event if the number of operational components of that
type is greater than zero (Local_state > 0). The second clause states that a repair can occur if the

repair facility is non-empty, i.e., there are components to be repaired.

The two react clauses describe how each object reacts to events it generates (i.e. changes
state). The first reacr clause describes the reaction of an object of type component to a failure.
First, the message, [repair_facility,failure,Component], is created to be sent to the repair facility
requesting that it repair the failed component. Second the number of operational components is

decremented. This will be the new local state of "Component." Then the global state is updated

10

to reflect the failure. The failure_rate clause is a parameter routine provided by the user to
specify the failure rate of each component. Finally, the rate is calculated by multiplying the
number of operational components by the base failure rate for that component. The second react
clause describes the reaction of the repair facility when a repair event occurs. First, the com-
ponent which is at the head of the repair queue (component being repaired) is extracted from the
local state. Then a message to the repaired object is generated. The new local state will be the
remainder of the queue. Finally, the new local state replaces the old local state in the global
state and the rate of occurrence of this event is calcuiated. The repair_rate predicate is similar

1o failure_rate and provides the generic clause the rate of repair for each component.

Message reactions also have to be described. The first message clause describes the reac-
tion of the repair facility upon receiving a message that some particular "Component"” has failed.
No messages are generated in response to this message. Then the queue of the repair facility is
extracted from the old global state (member is a system defined lookup predicate). Next the
new local state is formed by adding the component which failed to the tail of the queue. Finally
the old local state is replaced by the new local state in the global state. The second message
clause describes the reaction of an object of type "Component" upon receiving a message indi-
cating that one of these type of components was repaired. The meaning should be clear from the

clause.
3.3 Using Predefined Object Types.

The previous section presented a complete description of object types for a simple relia-
bility modeling system. To specify a particular model instance, the user needs to indicate the
components of the system, the failure and repair rates, and finally the inital state. Note that the
effort involved in defining the object definition library is done once. To define a specific model
instance is quite simple. For example, assume that we want to specify the model for a system

with one CPUs and two memories. The user would load the library of object definitions

11

described above and add the following few statements.

component(cpu,l).

component(memory,2).
failure_rate(cpu,cpuFrate).
failure_rate(memory,memoryFrate).
repair_rate(cpu,cpuRrate).
repair_rate(memory,memoryRrate).
initial({[cpu,1],[memory,2],[repair_facility,[]]]).

The output from this example is included below. First the states and state numbers are

listed, then the state transition rates.

O ~INh WO

0->1
0-52
2->3
2->4
2->0
1->§
1-50
5->6
5-»2
4->7
4->2
3->8
3->1
8->5
7->3
6->4

[[cpu,1],fmemory,2],[repair_facility,{]]]
[[cpu,0],[memory,2],[repair_facility,{cpu]]]
[{cpu,1],[memory,1],[repair_facility,[memory]]]
[{cpu,0],[memory,1],[repair_facility,[memory,cpu]]]
[{cpu,1],[memory,0},[repair_facility,[memory,memory])}
[{cpu,0],[memory, 1},[repair_facility,[cpu,memory]]]

[[cpu,0] ;[memory,0},(repair_facility,[cpu,memory,memory]]]
[{cpu.0],[memory,0],[repair_facility,[memory,memory,cpu]]}
[[cpu,O],[rnernory,O},[repair_facility,[memory,cpu,memory]]]

Rate:cpuFrate
Rate:2*memoryFrate
Rate:cpuFrate
Rate:memoryFrate
Rate:memoryRrate
Rate:2*memoryFrate
Rate:cpuRrate
Rate:memoryFrate
Rate:cpuRrate
Rate:cpuFrate
Rate:memoryRrate
Rate:memoryFrate
Rate:memoryRrate
Rate:memoryRrate
Rate:memoryRrate
Rate:cpuRrate

Figure 2 illustrates the state transition diagram.

12

3.4 Discussion.

This section contains a discussion of several topics that were omitted from the general

description.
3.4.1 Trap States

There are cases for which it is desirable to define trap states for the model. A trap state is
a state with no transitions out of it. For example, in availability models one would want to
define the conditions under which the system is considered to have failed. It is also convenient
to be able to truncate the state space by not allowing more than some number of failures. These
cases are handled by allowing the definition of trap states. The trap predicate allows the user to
define what system states correspond to trap conditions. If we want to trap on states with two

failures in the example in Section 2.3 we would add:
trap(State, trap_state_na. 1¢) :- member({repair_facility, [_, _]], State).

While searching the state space, a transition to a state S for which trap(S) is true, is automatically
changed to a transition to a state trap_state_name. A more complex example is given in the sec-

tion 4.
3.4.2 Querying the Analysis Results

The numerical analysis routines return the equilibrium state probabilities for all states.
The system provides a way for intelligently querying these results. Predicates are supplied that
associate a reward with each state. If no reward is supplied, then zero is assumed. The product
of the rewards and the associated state probabilities are summed and the resuit returned. In the
example below the unbalanced predicate associates a reward of one with all states that have a
customer waiting in one queue while the other other server is idle.

unbalanced(State,Reward) :-

13

member([cpul,Number],State),
member([cpu2,0],State),
Number > 1,
Reward = 1.
unbalanced(State,Reward) :-
member([cpul,0],State),
member({cpu2,Number},State),
Number > 1,
Reward = 1.
The actual query would be:

query(unbalanced,Result).
Similar to objects, libraries of queries can be built that a user could invoke.

3.4.3 Modularity of Object Definitions

One would like to have interactions among objects be completely described in terms of
the messages that are sent between objects. We have found it more convenient to allow objects
to examine the global state of the model in the procedures that define their behavior. To clarify
the problem, suppose that we are defining objects for a reliability model. Suppose also, that an
object is "dormant” if some other set of objects have failed. In the dormant state the failure rate
of an object can be different than when it is operational. The failure rate of this object depends
on the state of these other objects. There are two ways that this could be accounted for in the ob-

Ject definitions:

1. When an object fails or is repaired, then a message is sent to all other objects. Each ob-

ject can interpret these messages and keep track of whether it is dormant or not.

2. Each object does not explicitly keep track of whether it is dormant or not. This can be
determined "dynamically” in the procedures defining its behavior by examining the state
of the other objects. This is done by sending a message to another object to request state

information.

14

There are obviously tradeoffs between the two approaches. The first is "cleaner” conceptually

but seerns more clumsy to implement. We have favored the second approach in our system.

3.4.4 Simultaneous Actions

The manner in which objects and messages are modeled permits simultaneous actions by
objects. For example a message may be sent "simultaneously” to several objects. In the imple-
mentation these messages are "delivered” in an uns’peciﬁed order. The implementor must be
aware of this and be sure that the order of delivery is not relevant, i.e. does not effect the state

transitions.

As an example of the type of problem that can arise, consider the case of availability
modeling. When a component fails it can send a message to another component that may be
affected (as well as the repair service object). One action of the effected component may be to
fail, and in this case it should send a message to the repair service object as notification. To
describe the rules applied to the "delivery” of propagated messages we can consider a rooted tree
representing the generation of messages. The nodes of the tree represent objects and the arcs
Tepresent messages sent. At the root is the object that generated the original event. In terms of

this tree, messages are delivered level by level.

In most cases, the ordering of message delivery has no effect on the state transitions,
Only when two simultaneous messages go to the same component is there a potential ambiguity.
Even then, there is no problem with many disciplines. Objects with processor sharing queueing
disciplines are not affected by simultaneous arrivals. Neither are objects with priority nor

infinite server disciplines.

There is one other issue. When a message is received, does it have access to the global
state of the system prior to the event that started the transition or does it have access to the

changes that have been made to the global state by messages that have already been delivered?

15

In our system, when a message is delivered, a message comes with both the previous global state

and the current global state. This allows the object to examine either global state.

4. Examples.

In this section we present several examples which further illustrate use of the system.
First we show an example of a non-trivial trap rule. Second, we consider defining object types

appropriate for a queueing network interface.

4.1 Data Availability Modeling Example.

A simple example should serve to illustrate the ease of representing a useful, non-trivial
system model feature in Prolog. Suppose we have a distributed architecture model as illustrated
in figure 3. The "connectivity" between components can be represented by a set of Prolog

"facts".

connected(State, cpul, bus) :- up(State, cpul), up(State, bus).

connected(State, cpu2, bus) :- up(State, cpu2), up(State, bus).

connected(State, bus, controllerl) :- up(State, bus), up(State, controller1).
connected(State, bus, controller2) :- up(State, bus), up(State, controller2).
connected(State, controllerl, disk1) :- up(State, controllerl), up(State, disk1).
connected(State, controller2, disk1) :- up(State, controller2), up(State, disk1).
connected(State, controller2, disk2) :- up(State, controtler2), up(State, disk2).

These rules state that a direct data path exists between the named components if both com-

ponents are operational ("up") in the current state,

A rule which defines the existence of a data path between two components can be given by the

following rules.
path(State,X,Y) :- connected(State,X,Y).

path(State,X,Y) :- connected(State,X,Z),path(State,Z,Y).

The first rule states that there is a path from "X" to "Y" if "X" and "Y" are directly connected.

16

The second rule states that there is a path from "X" to "Y" if "X" is directly connected to somne

component "Z" and there is a path from "Z" t0 "Y".

Now suppose that critical data is replicated as described by the following facts:

copy(dl, diskl). % copy of data item d1 on disk1
copy(dl, disk2). % copy of data item d1 on disk2
copy(d2, disk2). % copy of data item d2 on disk2

A rule can be used to define the availability of a data path to at least one copy of each data item:

data_available(State) :- data_available(State,d1), data_available(State,d2).

data_available(State,d1) :- copy(d1,Disk),cpu(CPU),path(State, CPU,Disk).
data_available(State,d2) :- copy(d2,Disk),cpu(CPU),path(State,CPU,Disk).

trap(State, trap_state) :- not(data_available(State)).

The first rule states that all data is accessible if both data items "d1" and "d2" are accessible.
The next two rules state that the conditions for availability of each data item. For example, "d1"
is available if there is a disk containing a copy of "d1" and a processor with a path from the pro-
cessor to the disk. The last rule says that the system is no longer operational if there is some

data that is not available.

The above description is one example of how relationships and rules of behavior can be

represented relatively simply in Prolog.
4.2 Queueing Network Example

In this example we show the ease of adding new object types in conjunction with object
types from a library. We emphasize the ease with which new objects can be created and merged

in with predefined objects. This system is a simple load balancing systemn as shown in figure 4.

17

There is a set of terminals, a scheduler, and two CPUs. The terminals use the infinite server dis-
cipline, and the CPUs use the processor sharing discipline. Both these disciplines are part of the
queueing systems standard library of types. The shortest queue scheduler, however, is not part

of the basic library and must be specified.

initial{[% Initial global state
[terminals,[3]],
[scheduler,[0,01],
[cpul,[0]],
[cpu2,[0]]
D.
type(terminals, inf). % object instance declarations

type(cpul, ps).
type(cpu2, ps).

route(terminals, scheduler, 1). % object instance declarations
route(cpul, terminals, 1),
route(cpu2, terminals, 1).

departure_rate(terminals, tr). % object instance declarations
departure_rate(cpul, cr).

departure_rate(cpu?2, cr).

%

% Start of new object type definition

%

event(scheduler, update).

update_rate(cpu, ur).
valid_event(scheduler, update, _,).

react(scheduler, update, Local_State, State, New_State, Rate, []) :-
update_rate(scheduler, Rate),
member([cpul,[Numl]], State),
member([cpu2,[Num2]], State),
subst(scheduler, [Num1,Num?2], State, New_State).

message([scheduler,arrival], _, State, State, 1/2, [[cpul,arrival]]) :-
member([scheduler,[X,X]], State).

message([scheduler,arrival], _, State, State, 1/2, [[cpu2,arrival]]) :-
member([scheduler,[X,X]], State).

message([scheduler,armrival], _, State, State, 1, [[cpul,arrival]]) :-

member([scheduler,[X,Y]], State),
X<Y.

18

message([scheduler,amrival], _, State, State, 1, {[cpu2,arrival]]) :-
member([scheduler,[X,Y]], State),
Y <X.

The initial state of the system has three customers at the terminals, and no other custo-
mers in the system. The state of the scheduler has what the scheduler thinks are the queue
lengths of the CPUs. Cpu queue length updates are sent to the scheduler at the rate specified in
the update_rate predicate. The terminals are defined as an infinite server queue (inf). Both
CPUs are defined as processor sharing queues (ps). The routing from these nodes is specified.
The CPU and terminal departure rates are specified. This completes the standard part of the

model. The scheduler must now be defined.

The update_rate predicate sets the rate of CPU queue length updates. An update event is
always valid. The react predicate gets the update rate. The member predicates lookup the
number of customers in each of the CPUs. These queue lengths are then put in as the new state

as seen by the scheduler.

There are four cases when the scheduler receives an arrival. In the first two cases, when
the scheduler thinks that the queue lengths are equal, an arrival message is sent with probability
1/2 to either cpul or cpu2. In the third message predicate, the scheduler thinks the length of the
cpul queue is less than the cpu2 queue, so an arrival message is sent to cpul. The fourth clause

is similar to the third. This is the entire specification for the system.

5. Conclusion,

The approach to defining system models and generating the Markov process description
that has been described is very simple and yet powerful. It took only a few hours to define the
"objects" for availability modeling of the same order of sophistication as the SAVE system. The

same level of effort was required to define a set of objects for queueing network models. In ad-

19

dition we have had occasion to use the system to define various ad hoc models (e.g. a priority
queuing system in which the low priority customers received service after waiting for some
number of high priority customers). The ease with which these models were developed and

solved surpasses any other system we know of.

The extensibility of the system is easily seen. As in the example, a model can easily be
defined that incorporates object definitions from a library of predefined objects with new objects

that the modeler wishes to define.

The emphasis in this system is on flexibility and power in defining models. A price paid
is in execution efficiency. We have not yet carried out detailed performance studies but have
found the performance to be acceptable. For example, to generate a one thousand state model
on a VAX 780 took twenty minutes of cpu time. Improvements in performance are under study.
However, we believe that the advantages will make the approach attractive for at least two pur-
poses largely independent of the efficiency issue:

a, as a methodology for prototyping a new modeling interface, and

b. in defining ad hoc models for studies in which the main objective would be to quickly
build the model rather than optimize the performance of the tool.

20

APPENDIX A

Prolog

Prolog is based on goals (or predicates) which evaluate to either true or false. Each goal

is either a fact or is defined in terms of other goals. The format of a clause is
clause_head(arguments) :- goall(argsl), goal2(args2), ...goalN(argsN).

The ’:-” is the Prolog symbol for ’if’. The above claL;se can be read "Clause_head(arguments) is
true if all the goals, goall(argsl), goal2(args2), ... goalN(argsN), are true." There may be more
than one clause of the same goal. If one clause fails, other clauses with the same clause head are

tried in order to satisfy that goal.

Data in Prolog is U{uypcd. Strings beginning with a capital letter or ’_’ are variables.
Strings beginning with a small letter are constants. The ’_’ alone is a don’t care condition. It
will match with anything. A list can be represented in one of two ways. The first is by specify-
ing all its elements in square brackets. The list with the elements 4,5,6 is [4,5,6]. The second
way is using head and tail notation. The vertical bar separates the head and tail. The previous
list would be written [4I{5,6]] in head and tail notation. The head and tail notation is similar to a
first-come first-served queue. The head is the first element of the list. The tail is the remaining

list. The null list, the list with no members, is written [].

When a goal is called, Prolog searches for a matching clause head with matching argu-
ments. A constant matches only the same constant. A variable will match with a variable or a
constant. A match between a constant and a variable will cause the variable to be bound to the
constant. For example, if "likes(john, books)" is a clause, then the Prolog goal

"likes(john,Variable)" will succeed with Variable bound to books.

21

One of the features of Prolog is that the variables in the clause head are not specified as
input or output parameters. To make the Prolog in this paper more readable, we have used the
convention that variables which are bound as a result of the call (output variables) are printed in

bold face. Variables which will be bound (specified) when the goal is called are in normal type.

22

[Berr82)

[Carr86]

[Cost81]

[Goyag6]

[Lend85]

{Maka82]

[Mars84]

[Saue81]

[Saue84]

[Triv84]

References

Berry, R, K. M. Chandy, J. Misra, and D. M. Neuse, Paws 2.0: Performance
Analyst’s Workbench Modelling Methodology and User's Manual, Austin,
Texas: Information Research Associates, 1982.

Carrasco, .A. and J. Figueras, “METFAC: Design and Implementation of a
Software Tool for Modeling and Evaluation of Complex Fault-Tolerant
Computing Systems,”’ Proceedings of FTCS-16, J uly 1986, pp. 424-429.

Costes, A.,]. E. Doucet, C. Landrault, and J. C. Laprie, “‘SURF: A Program
for Dependability Evaluation of Complex Fauit-Tolerant Computing Sys-
tems,”” Proceedings of FTCS-11, June 198 1, pp. 72-78.

Goyal, A., W. C. Carter, E. de Souza e Silva, S. S. Lavenberg, and K. S.
Trivedi, ‘“The System Availability Estimator,”’ Proceedings of FTCS-186,
July 198¢ pp. 84-89,

Lenders, P. M., Modeling Distributed Systems with Logic Programming
Languages: Colorado State University Department of Mechanical Engineer-
ing, 1985. PhD dissertation.

Makam, S. V. and A. Avizienis, ‘““‘ARIES 81: A Reliability and Life-Cycle
Evaluation Tool for Fault Tolerant § ystems,”’ Proceedings of FTCS-12, june
1982, pp. 267-274.

Marsan, M. A, G. Conte, and G. Balbo, ‘A Class of Generalized Stochastic
Petri Nets for the Performance Evaluation of Multiprocessor Systems,”
ACM Transactions on Computer Systems, May 1984, pp. 93-122.

Sauer, C. H,, E. A. MacNair, and J. F. Kurose, *‘Computer Communication
System Modelling with the Research Queueing Package Version 2,”” IBM T.
J. Watson Research Center, Yorktown Heigths, Tech. Rep. RA-128, No-
vember 1981.

Sauer, C. M., E. A. MacNair, and J. F. Kurose, “‘Queueing Network Simula-
tions of Computer Communication,”” [EEE Journal on Selected Areas in
Communications, Vol. SAC-2, No. 1, January 1984, pp. 203-220,

Trivedi, K. S., J. B. Dugan, R. R. Geist, and M. K. Smotherman, *‘Hybrid

Reliability Modeling of Fault-Tolerant Computer Systems,”” Comput. Elec.
Eng., Vol. 11, 1984, pp. 87-108.

23

High Level
Interface Layer

Application Layer

Prolog Implementation Layer

Kernel Layer

Figure 1 System Layers

CoU repair

memory failure

memory
failura

memory
repair

memory repair

Cpu repair
memory repair

cpu failure
CpuU repair

Figure 2

State Transition Rates

Cpu? Cpu2
Bus
Controllery Controiler2
Figure 3 Network Connectivity
Terminals :] O—

T}

Scheduler

CPUA

CcPU2

1O

Figure 4

Queueing Network Example

