LOG(F) A NEW SCHEME FOR INTEGRATING REWRITE RULES,
LOGIC PROGRAMMING AND LAZY EVALUATION

Sanjai Narain July 1987
CSD-870027

LOG(F): A New Scheme for Integrating Rewrite Rules,
Logic Programming and Lazy Evaluation

Sanjail Narain

ABSTRACT

We present LOG(F), a new scheme for integrating rewrite rules logic
programming and lazy evaluation. First, we develop a simple vyet
exXpressive rewrite rule system F* for representing functions. F* is
non-Noetherian, i1.e. an F* program can admit infinite reducticens.

For this system, we develop a reduction strategy called select and show
that it possesses the property of reduction-completeness. Because of this
property, select exhibits a weak form of lazy evaluation.

We then show how to implement F* in Prolog. Specifically, we compile
rewrite rules of F* into Prolog clauses in such a way that when Prolog
interprets these clauses it directly simulates the behavior of select. In
particular, Proleg behaves lazily. Since it is not necessary to change
Prolog it is possible to do lazy evaluation efficiently. Since Proleog is
already a logic programming system, a combination of rewrite rules, logic
programming and lazy evaluaticon is achieved.

1.0 DEFINITION OF F*
Variables. There is a countably infinite list of variables.

Function symbols. There is a countably infinite 1list of O-ary

function symbols. In particular, [], 0, true, false, are O-ary function
symbels. There is a countably infinite list of l-ary function symbols.
In particular, s 1s a 1-ary function symbol. There is a countably
infinite list of 2-ary function symbols. In particular, | 1is a 2-ary
function symbol. And so on, for all other arities.

Connectives. The connectives are =>, (, Y, ",',.

Constructor Symbols. There is an infinite subset of the function
symbols called Constructors. Each element of Constructors is called a
constructor symbol. For each n, n>=0, Constructors contains an infinite
number of n-ary function symbols. In particular, 0, true, false, [] and |
are constructor symbols.

Terms. A term is either a variable, a 0-ary function symbol or an
expression of the form £(tl,..tn) where £ is an n-ary function symbol,
n>0, and each ti is a term. A term is called ground 1if it contains no
variables. However, unless explicitly stated otherwise, by a term we
mean a ground term.

Subterms. Let E be a term. Then E is a subterm of E. Also, if
E=f{tl,..,tn}), n>0, then X is a subterm of E if X is a subterm of ti. If

X is a subterm of E, X is said to occur in E.

Abbreviations. The symbols 1,2,3,... are, respectively,
abbreviations for s(0), s{(s(0)), s(s(s{(0))),.....

Substitutions. A substitution is a set {<X1,tl>,..,<Xn,tn>} where

each ¥X¥i is a variable and each ti is a term. A variable X is defined in a
substitution g iff for some term s, <X,s> occurs in ¢. Let ¢ be

a substitution and E be a term, possibly containing variables. Then EG
represents the result of applying ¢ to E.

Reduction Rules. A reduction rule is of the form:
LHS=>RHS

where LHS and RHS are terms. LHS is called the head of the rule. The
following restrictions are placed on LHS and RHS:

(a}) LHS is not a variable.

{(b) LHS is not of the form c¢(tl,..,tn} where ¢ 1s an n-ary
constructor symbol, n>=0.

{c) If LHS=f(tl,t2,..,tn), n>=0, each ti is a variable or a term
of the form c¢(X1,..,Xn) where ¢ 1is an n-ary constructor
symbol, n>=0, and each Xi is a wvariable.

(d) There is at most one occurrence of any variable in LHS.
(e} All variables of RHS appear in LHS.

These restrictions are not very limiting. As can be seen from the
examples below, many common functions can be defined in F*. However,
these restrictions enable F* to possess many useful properties.

F* programs. An F* program consists of a set of reduction rules.
Some examples of F* programs are:

append([],X)=>X
append ([U|V],W)=>[U|append(V,W)]

if(true, X, ¥Y)=>X.

if({false,X,Y)=>Y.
not (true)=>false.
not (false)=>true.

lesseq(0,X)=>true.

lesseg (s (X) ,s(Y))=>lesseq{X,Y).
leaseq(s (X),0)=>false.

greater (X, Y)=>not (lesseg(X,Y)).

merge ([A|B], [C|D])=>
if (lesseqg(A,C), [A|merge (B, [C|D]), [Clmerge([A|B],D)]).

int (N)=>[Nlint (s(N))].

partition (U, [A|B],L,R)=>if (lesseq(U,A),partition(U,B, [A|L],R),
partition(U,B,L, [A|R])}).
partition(U, [1,L,R}=>t (L,R).

quicksort ([])=>[].
quicksort ([A|B])=>quicksortl(A,partition(A,B, [],(]1)).
quicksortl{a,t (L,R))=>append(quicksort (L), append([A],quicksort(R))}.

2.0 REDUCTIONS

We now consider the reduction of terma. Again, unless explicitly
stated, by a term we mean a ground term.

E=> El. Let P be an F* program and E and El be terms. We say

E=>PE1 if there i3 a rule LHS=>RHS in P such that LHS and E unify with
m.g.u. ¢ and E1 is RHSG. We also say that E reduces to El1 by the

rule LHS=>RHS, or that the rule applies to the whole of E. Note that if E
is ground and E=>_El1 then, by restriction (e} El is also ground. If P

is clear from the context we write E=>El in place of E=>PE1.

E-> E1,E-*> El. Let P be an F* program and E be a term. Let

G e a subterm of E such that G=>_H. Let El be the result of
substituting H for G in E. Then we say Ehat E-> El1. Note that if
E=> El1 then E unifies with the left hand side of some rule in P. If
E->_El1 then some subexpression of E, including possibly E, unifies
witE the left hand side of some rule in P. We define -*>_ to be the
reflexive transitive closure of ->_. Again, if P 1is <¢lear from
context we write E->El or E-*>El in place of E->PE1 or E—*>PE1.

Reductions. Let P be an F* program. A reduction in P is a sequence
El,E2,... such that for each i, when Ei and Ei+l both exist, Ei—>PEi+1.

Simplified forms. A term 1s said to be in simplified form or
simplified if it is of the form c¢{tl,..,tn) where ¢ 1is an n-ary
constructor symbol, n>=0, and each ti is a term.

Successful reductions. Let P be an F* program. A successful
reduction in P is a reduction El1,..,En, n>»0, in P, such that for each i if
i<n then Ei is not simplified, and, if i=n then Ei is simplified.

{(G,H,A,B). Let P be an F* program. Where G,H,A,B are terms,
RP(G,H,A,B) is defined as follows:

RP(G,H,A,B) if (a) G=>H, and
(b) B 1is identical with A except that zeroc or more
occurrences of G in A are replaced by H.

Note that A and G can be identical. Again, 1f P is clear from context we
omit the prefix from RP.

Reduction strategy. Let P be an F* program. A reduction strategy
for P takes as input a term E and selects a subterm G of E such that there
exists a term H such that G=>PH.

A special reduction strategy. Let P be an F* program. We now define
a reduction strategy, select_ for P. Informally, given a term E it
will select that subterm of E wﬁose reduction is necessary in order that
some => rule in P apply to the wheole of E. Where £(tl,..,tn) is a term,
n>=0 the relation selectP is:
select_(£(tl,..,tn),£(tl,..,tn}) if f(tl,..,tn)=>PX.
selectP(f(tl,..,ti,..,tn),X) if

there is a rule £(Ll,..,Li,..,Ln}=>RHS in P, and

ti does not unify with Li, and

selectP(ti,X).

BAgain, if P is clear from context the subscript P on select is
omitted. Note the following: (1) when selectP takes as input E and
returns G, it also, implicitly, returns an occurrence of G in E. This
occurrence can be obtained from the proof of select_(E,G) (2) if
selectP(E,G) then there is a term H such that G=>_H (g) if there

is more than one => rule in P, then there could be more than one G such
that select_(E,G) (4) since, by restriction (b) there is no rule in P

of the form c{tl,..,tn)=>RHS3, where c is a constructor symbol, if E is
simplified, select is undefined for E. For example, where P is the

set of reducticn ruEes which appear above, we have the following:

select (merge (int (1) ,int (2)),int (1)) .

select (merge (int (1) ,int (2)),int (2)}.

select (merge([1,3],int(2)),int(2)).

select (merge ([1,2],[3,4)) ,merge([1,2]),[3,4])).

If E=[1llmerge(int{1l),int(2))) then select is undefined for E.

N-step. Let P be an F* program and E,G,H be terms. Suppose
select (E,G) and G=>_H. Let El be the result of replacing G by H

in E. Then we say hat E reduces to El1 in an N-step in P. The
gqualification "in P" is omitted when P is clear from context. It should
be noted that there may be many occurrences of G in E. However, the
specific occurrence in E to be replaced by H is the occurrence returned by
selectP. The prefix N in N-step is intended to connote normal order.

N-reduction. Let P be an F* program. An N-reduction in P is a
reduction E1,E2,.... in P such that for each i when Ei and Ei+l both
exist, Ei reduces to Ei+l in an N-step in P. 1In particular, the sequence
E where E is a term, 1s an N-reduction in P. The qualification "in P" is
omitted when P is clear from the context.

3.0 REDUCTION-COMPLETENESS OF select

Lemma 1. Let P be an FP* program. If A->B and B is simplified but &
is not, then A=>B.

Proof. Since A is not simplified, A=f(tl,..,tn) where £f is not a
constructor symbol and each ti is a term. Since the reduction of A to B
replaces this symbol, it follows that A must reduce as a whole to B. Thus
A=>B.

Lemma 2. Let P be an F* program. Let X1,..,Xn be variables,
G,H,tl,..,tn,tl*,..,tn* be terms such that for each i R(G,H,ti,ti*). Let
o={<X1l,tl>,..,<Xn,tn>) and T={<X1l,tl*>,..,<Xn,tn*>} be
substitutions. Suppose M is a term, possibly containing variables, whose
variables are a subset of {Xl,..,Xn}. Then R(G,H,Mg,MI) .

Proof. By induction on length of M. Since M 1is a term, possibly
containing wvariables, it is either a variable, a 0O-ary function symbol or
of the form £(Nl,..,Nk) where f is an n-ary functiocn symbol and each Ni is
a term, possibly containing wvariables.

If M is a wvariable Xi, then Mo=ti and Mt=ti* and so clearly

R(G,H,Mo,Mt). If M is a 0O-ary function symbol then Mo=M and

Mt=M and obviously R(G,H,M,M). Let M=f(N1l,..,Nk). Assume the lemma
holds for N1,..,Nk, i.e., for all i, R{(G,H,Nig, Ni1) .
f(N1l,..,Nk)o=f (Nlg, .., Nkag). Similarly,

f(N1l,..,Nk)t=f(N11,..,NkT), and hence R(G,H,Mg, MT).

Lemma 3. Let P be an F* program. If:

(1) G, H, El=f(tl,..,tn) and Fl=f(tl*,..,tn*) are terms, and
(2) R{(G,H,ti,ti*) for every i in 1,..,n.

(3) B=f(Ll,..,Ln) is the head of some rule in P, and

(4) E1 unifies with B with m.g.u. ©

Then:

(1) F1 unifies with B with m.g.u. 7, and

(2) 0 and T define exactly the same variables, i.e. only those
occurring in B, and

(3) If pair <X,s> occurs in ¢ and <¥,s*> occurs in 71T then
R(G,H,s,s8%*).

Proof. Since by restriction (d) a variable occurs at most once in
B=f(Ll,..,Ekn), a texrm £{(dl,..,dn) unifies with B iff for each i, di
unifies with Li with m.g.u. ¢i. So, the union of the ¢i is a
unifier of f£(d1,..,dn) and B. Consider some ILi in L1,..,In. By
restriction (¢) there are the following cases.

Case 1. Li 1is a wvariable. Then Li wunifies with ti* with m.g.u.
Ti={<Li,ti*>}. Also, the pair <Li,ti> appears in ¢. By assumption,
R(G,H,ti,ti*).

Case 2. Li=c(Xl,..,Xm), m>=0, ¢ a constructor symbol and each Xj a
variakle. Then since ti unifies with Li, ti=c(sl,..,sm) where each si is

a term. Thus the pairs {<Xl,sl>,..,<Xm,sm>} appear in G.

If ti is identical with ti*, ti* alse unifies with Li with m.g.u.
Ti={<X1l,s81>,..,<Mm,sm>}. Of course, for every i, R(G,H,si,si).

If ti is not identical with ti* then since R(G,H,ti,ti*), ti contains at
least one occurrence of G and G=>H. Since ti=c(sl,..,sm), ¢ a constructor
symbol, by restriction (b) ti=/=G. Hence ti*=c(sl*,..,sm*) each si* a
term and for every i R(G,H,si,si*). Hence ti* unifies with Li with m.g.u.
Ti={<X1,s1l*>,..,<Xm, sm*>}.

The same argument can be repeated for every other Li. Let T be the
union of the Ti. Then T is a unifier of B and Fl. Since for each
pair <X,d> in 1, 4 is ground, T is most general. Thus (1).

Since T is an m.g.u. of F1 and B, it contains only pairs <X,d> such
that X is a variable of B. For the same reason, if X is a variable of B
then some pair <¥,d>, where d is a term, occurs in T. Otherwise Bt

would contain X. Thus T defines only those variables which occur in B.
Similarly for 6. Thus ¢ and T define exactly the same variables.

Thus (2).

If some pair <¥,d*> appears in 1, then, by the above discussion <X,d>»
appears in ¢ and R{(G,H,d,d*). Thus (3). QED.

Lemma 4. Let P be an F* program. If:

(1) £(t1,..,ti,..,tn}) is a term, and

(2) £(L1,..,Li-1,c{X1,..,¥m),Li+l,..,In)=>RHS is a rule in P, and
(3) ti=dl,d2,d3,..,dr, r>0, is an N-reduction.

Then:
£(tl,..,ti-1,di,ti+1,..,tn), £(t1,..,ti-1,d2,ti+l,..,tn), .t
£f{t1,..,ti~1,dr,ti+l,..,tn) is also an N-reduction.

Proof. Let Li=c(Xl,..,¥m). Since f(L1l,..,Li,..,Ln)=>RHS is a rule,
by restriction (b} £ 1is not a constructor symbol. If r=1 then, by
definition of N-reduction, the lemma is obvious. So, assume r>1.

By definition of N~reduction, at most the last member of the sequence
dl,d2,d3,..,dr can be in simplified form. Hence, since Li=c(Xl,..,Xm),
none of the di, 0<i<r unify with Li.

We now show that for all j, 0<j<r, f£(tl,..,ti-1,dj,ti+l,..,tn) reduces to
f(t1,..,ti-1,dj+1,ti+l,..,tn) in an N-step. Since dj is not simplified,
it does not unify with Li. Hence, by definition of select, for every X
select (f(tl1l,..,ti-1,4j,ti+l,..,tn),X) if select(dj,X}).

Since dj reduces to dj+l in an N-step there are terms pj and gj such that

selectP(dj,pj), pi=>gqj and dj+l is the result of replacing pj by gqj in dj.
Then £{tl1l,..,ti-1,di,ti+l,..,tn) reduces to £(tl,..,ti-1,dj+1,ti+1,..,tn}

in an N-step.

Hence, f(t1,..,ti-1,d1,ti+l,..,tn), £(t1,..,ti-1,d2,ti+l,..,tn),
f(t1l,..,ti-1,dr,ti+l,..,tn) is an N-reduction. QED.

Theorem 1.

Let P be an F* program. Let E1,F1l,F2,G,H be terms such that
(1) E1 is not simplified, and

(2) R(G,H,E1,F1), and

(3} Fl reduces to F2 in an N-step

Then there is an N-reduction El,..,E2 in P such that R(G,H,E2,F2).

Proocf. It is helpful to draw the following diagram:

El Fl1 G occurs 0 or more times in El
; | G=>H

* N-step

| |

v v

E2 F2

We have to show that R(G,H,E2,F2).

We proceed by induction on length of El1. The cases we have to consider in
the proof can be laid out as below. Here, if a case is annotated with =

it is easy to deal with, while if annotated with +, it requires some
consideration.

El=0-ary fn symbol?

/ A
yes no, Bl=f£(tl,..,tn)
/ \
El=F12? El=F1?
/A /N
yes no yes no
/ A / \
= = = El=G?
/N
yes no
/ \
= Fl reduces to F2 by some rule R in P7?
/A
yes no
/ \
El reduces to EZ2 by R? +
/ \
yes no
/ \
+ +

Suppose El is a O-ary function symbol. If El=F1 then E1,F2 1is an

N-reduction and R(G,H,F2,F2). If El=/=F1 then since R(G,H,El,Fl) G must
occur in El, and Fl is the result of replacing G in El1 by H. 8o, El1=G and
El=»F1, there is an N-reduction E1,F1l,F2 and R(G,H,F2,F2). That is,

putting E2=F2 satisfies the theorem.

Otherwise, since we are given that El is not simplified, El=f(tl,..,tn),
n>=0, £ not a constructor symbol. Assume the theorem for every term whose
length is less than that of f£i(tl,..,tn}).

If E1=F1 then El,F2 is an N-reduction and R(G,H,F2,F2), so putting E2=F2
satisfies the theorem. Otherwise El=/=F1. If El=G then since
R(G,H,E1,Fl), El=>F1l, and E1,Fl,F2 is an N-reduction and R(G,H,E2,F2).
Again, that is, putting E2=F2 satisfies the theorem.

Having considered the easy cases, we arrive at the interesting cases, with
El=/=Fl1 and G occurs in El but G=/=El. Hence Fl=f(tl*,..,tn*) where for
every i, R(G,H,ti,ti*). We now consider the following subcases:

1. Fl1l=>F2. Then there is a rule f{Ll,..,Ln)=>RHS in P such that F1l1 and
f(Ll,..,Ln) unify with m.g.u. T and F2=RHST.

1-1. El and £(L1,..,Ln) do unify. Let the m.g.u. be ¢. By Lemma 3,
F1 and f(L1l,..,Ln) also unify with some m.g.u. B. Since Fl already
unifies with £(L1l,..,Ln) with m.g.u. 1, 1=B.

E1=>RHSC and so E2=RHS¢. The N-reduction is E1,E2. 0Of course
F2=RHST. By Lemma 3, o© and 1 define exactly the same
variables, and if <¥,s8> occurs in ¢ and <X,s*> appears in T then
R(G,H,s,s*). Hence, by Lemma 2, R(G,H,E2,F2).

1-2. E1 and f£(L1l,..,Ln) do not unify. Then, since El is ground and
each wvariable occurs at most once in £(L1l,..,Ln), there is at least
one Li in Ll1,..,Ln such that ti does not unify with Li. Hence Li is
not a wvariable and so Li=c¢(Xl,..,Xnm}, ¢ a constuctor symbol and each
Xi a wvariable.

Since R(G,H,ti,ti*}, and ti does not wunify with Li, ti is not
simplified. Suppose ti were simplified. Either ti=c(sl,..,sm), each
si a term. But then ti must unify with Li. Contradiction. Or,
ti=d(sl,..,sm), d a constructor symbol, d=/=c¢, each si a term. Since
R(G,H,ti,ti*), ti=G and ti*=H. By restriction {(b) this is impossible.

Since Fl1 unifies with £(L1,..,Ln}), ti* unifies with Li, and so ti* is
simplified. Since ti 1is not simplified, and R(G,H,ti,ti*), ti=>tix*,
Thus select(El,ti). Hence f(tl,..,ti,..,tn) reduces to
£(tl,..,ti*,..,tn) in an N-step.

Hence there exists an N-reduction E1=P1,P2,P3,.. where for each i
Pi=f(sl,..,sn), sk=tk or sk=tk?*, and if sk does not unify with Lk then
Pi+l is derived from Pi by replacing sk by sk* such that sk=>tk*. We
also have for each i R(G,H,Pi,Fl). This reduction cannot be infinite

since Fl=f(tl*,..,tn*) unifies with £f(Ll,..,In). Let the last term be
Pm. Let the m.g.u. of Pm and f£(L1,..,Ln) be ¢. Then Pm=>RHSG.

Hence we have the N-reduction EL,P2,P3,..,Pm,RHSG6. By Lemma 3,
there is an m.g.u. of Fl and f£(Ll,..,Ln) and clearly this is <T.
Already, F2=RHSt. By Lemma 2, R(G,H,RHSG,F2).

2. There is no F2 such that Fl=>F2, i.e. select(Fl,Fl) is not true. Or,
Fl1 does not unify with the head of any reduction rule in P. Hence
select (E1,E1) is not true. If it were, there would be a contradiction
with Lemma 1. We are given that F1l reduces to F2 by an N-step. We now
have to show that there is an N-reduction El1,..,E2 such that
R(G,H,E2,F2).

Suppose select (Fl,u). Then u occurs in some ti*. That is, there 1is
some 1 such that select(ti*,u). Let u=>v and let ti** be the result of
replacing u in ti* by v. Hence ti* reduces to ti** in an N-step, and
also F2=£(tl*,..,ti**,..,tn*}. By definition of select, there is a rule
f(rLl,..,Li,..,Ln)=>RHS in P such that ti* does not unify with Li. Hence
Li=c(Xl,..,¥m), m>=0, where c is a constructor symbol and each Xi is a
variable.

Clearly, ti* is not simplified. So, by restriction (b) ti is alse not

simplified. ti* reduces to ti** in an N-step. We already have
R(G,H,ti,ti*). Since the length of ti is less than f(tl,..,ti,..,tn},
by induction hypothesis there is an N-reduction ti=dl,d2,..,dr, r>=1,
such that R{(G,H,dr,ti**) . By Lemma 4, the sequence
f£(t1l,..,ti-1,ti,ti+l,..,tn), £(t1l,..,ti-1,d2,ti+1,..,tn),..,
f(tl,..,ti-1,dr,ti+l..,tn) is an N-reduction. We already have
F2=f (L1*,..,ti**, .., tn*) and for each k R(G,H,tk,tk*). Hence

R(G,H,£{tl,..,ti-1,dr,ti+l,..,tn), £(t1,..,ti-1%,ti** £i+i* ., tn).
QED
Theorem 2. The reduction-completeness of F*

Let P be an F* program and DO be a ground term. Let
bo,Dl,..,Dn=c(tl,..,tx), be a successful reduction in P for some ground
terms D1,..,Dn and tl,..,tx and some constructor symbol c. Then there is
a successful N-reduction DO0,Ql,..,Qp=ci(sl,..,sx) in P for some ground
terms Qt,..,Q0p and sl,..,s8X.

Proof. By induction on length n of successful reduction DO,D1,..,Dn.
If n=0, then D0 is already simplified and D0 is the successful reduction
and DO=c(tl,..,tx).

If n=1 then D0=>Dl. Hence, select(D0,D0), so we have the successful
N-reduction D0,Q1=D1l. Again, Ql=c(tl,..,tx).

Assume the theorem holds for n=k-1 i.e. for the successful reduction
Di,..,Dk=c(tl,..,tx). We now show that it holds for the successful
reduction DO,DL1l,..,Dk. By induction hypothesis, D1 has a successful

- 10 -

N-reduction, say D1,F2,F3,F4,..,Fm=c{pl,..,px). Of course, all terms in
this sequence, except Fm, are unsimplified.

Since D0-»>D1, there are terms G,H such that G occurs in DO, G=>H and D1 is
the result of replacing G by H in D0. Hence R(G,H,D(,D1l).

Hence by theorem 1 there 1is an N-reduction Do, ..,E2 such that
R{G,H,E2,F2). If F2 is not simplified, then since R(G,H,E2,F2), by
restriction (b) E2 is also not simplified.

By repeatedly applying theorem 1 we have the N-reductions DO,..,E2, and
E2,..,E3, and Em-1,..,Em for some finite m>=2, such that for each i,
2=<i=<m R(G,H,Ei,Fi) and at most Em 1is simplified. The resulting
situation can be laid out in the following diagram:

DO Dl R(G,H,D0,D1)

| |

| N-step

* i

v v

E2 F2 R(G,H,E2,F2)

| |

| N-step

* |

v v

E3 F3 R(G,H,E3,F3)

Em-1 Fro—1 R(G,H,Em-1,Fm-1)

| |

| N-step

* |

v v

Em Fm R{G,H,Em, Fm)
Since at most Em is simplified let] be the reduction

Do,..,E2,..,B3,..,...,Em~1,..,Em. Clearly, § is an N-reduction.

If Em is simplified then since R{G,H,Em, Fm) and Fm=c(pl,..,px),
Em=c(sl,..,sx) and for each i, R(G,H,si,ti). Then, 5 is the required
N-reduction.

Otherwise, since Fm is simplified, R(G,H,Em,Fm), G=>H, we have Em=G and
Fm=H, i.e. Em=>Fm. Hence, select(Em,Em), and so0 we have the N-step
Em,Fm. The required N-reduction 1s then S,Fm which is S,c(pl,..,px).
QED.

- 11 -

4.0 COMPILATION OF F* INTO PROLOG AND ITS CORRECTNESS
4.1 Compilation of F* into Prolog

Let P be an F* program. The translation of P into Prolog proceeds in two
stages.

Stage 1. For each n-ary constructor symbol ¢ in P generate the clause:
reduce(c(Xl,..,Xn),c(Xl,..,Xn))

Stage 2. Let f(tl,..,tn)=>RHS be a rule in P where f is an n-ary, n>=0,

non-constructor function symbol and each of RHS and tl,..,tn is a term,

possibly containing variables. For each such rule perform the following
steps:

{(a) Let Al,..,An be n distinct Prolog variables none of which cccur in the
rule. If ti 1s a variable generate the predication Ai=ti. If ti is
c(X1l,..,Xn) where ¢ is a constructor symbcl and each Xi a variable,
generate the predication reduce(Ai,c(X1l,..,Xn)). Let LHS_CONDS be the set
of predications so generated.

(b} Let Out be a Prolog variable not occurring in the rule and different
from Al,..,An. Generate the predication reduce (RHS,Out).

(¢} Generate the clause
reduce (f (A1, ..,An),Qut) :-LHS _CONDS U {reduce (RHS,Out)}
For example, the F* rules:

append([],X)=>X
append ([U|V],W)=>[U|append({V,W)]

are compiled into:

reduce{[], [1) .
reduce{[U|V], [U|V]).

reduce {append (A1, A2),0ut) :—reduce (Al, []) ,A2=X, reduce (¥, 0ut) .
reduce (append (Al,A2) ,Out) :-reduce (Al, [U|V]} ,A2=W, reduce {[U|append (V,W}],0ut} .

4.2 Correctness of translation of F*

Lemma 5. Let P be an F* program. If:

(1) BO=f(tl,..,ti,..,tm), and

(2} Ek=f(sl,..,s8i,..,sm), and

(3) si is simplified, and

(4) EO,..,Ek, k>=0, is an N-reduction such that for no i Ei=>Ei+l.

Then there is a successful N-reduction ti,..,si of length 1less than or

- 12 -

equal to the length k of E0,El,..,Ek.

Proof: By induction on length of N-reduction EO0,..,Ek. Suppose k=0.
Since EQO=f(ti,..,ti,..,tm), ti=si. The successful N-reduction is simply
ti whose length is 0.

Suppose k>0. Assume that the lemma holds for all N-reductions of length
k=1. Consider the N-reduction E1,..,Ek, k>=1, of length k-1. Since there
is no i such that Ei=>Ei+l, El=f(ul,..,ui,..,um) for terms ul,..,um. By
induction hypothesis, there 1s an N-reduction ui,..,si whose length is
less than or equal to k-1.

If ti=uil then there is a successful N-reduction ti,..,si, whose length
is less than or equal to k-1 and so less than or equal to k.

If ti=/=ui then since E0 reduces to El by an N-step, by definition of
select, ti reduces to ui in an N-step. We now have the successful
N-reduction ti,ui,..,si of length less than or equal to k. QED.

Lemma 6. Let P be an F* program and PC its compiled version. Let A
be a ground term and B a term, pessibly containing wvariables, such that
reduce (A,B) succeeds with answer substitution o. Then BO is ground.

Proof: By induction on 1length n of successful SLD-derivation
reduce (A,B),G1l,..,6n=0. If n=1 then A=c(tl,..,tm), c a constructor
symbol each ti a term, m>=0. The query reduce(’,B) will succeed by
matching the head of the clause reduce(c(Xl,..,Xm),c(X1l,..,Xm)). The
answer substitution ¢ will be such that Bo=A. Clearly Bo is

ground.

Assume lemma for successful SLD-derivations of length less than n. Let
the successsful derivation starting at reduce(A,B) be of length n, n>1.
Then A=f(tl,..,tm), m>=0, where f 1is a function symbol, but not a
constructor symbel, and each ti is a ground term. Then there is a clause:

reduce (£ (X1,..,Xm),2) : -0, reduce (RHS, Z} .

such that (a) this clause is the compilation of a rule £(L1,..,Lm}=>RHS
(b) each of XI,..,¥m,Z2 is a distinct wvariable not appearing in
£f{Ll,..,Lm)=>RHS (¢} if Li 1is a wariable then Xi=Li appears in Q.
Otherwise reduce(Xi,Li) appears in Q (d) reduce(f(tl,..,tm),B) unifies
with the head of this clause with some m.g.u. T and its immediate
descendant (Q,reduce(RHS,2))T has a successful SLD-derivation of length
n-1. Clearly, 1={<Xl,tl>,..,<Zm,tm>,<2,B>} and so0 %Zt=B. Also,

since RHS does not contain any of the Xi, RHST=RHS.

If Q is empty then m=0, so, by restriction (e) RHST is ground. By
induction hypothesis, reduce(RHST,B) succeeds with answer substitution
¢ such that Bo is ground. S¢, reduce(l,B) succeeds with answer
substitution ¢ such that B¢ is ground.

- 13 -

Assume Q is non-empty. Let Ql,..,0Q0m be the members of ¢. If Qi is Xi=Li
then Qit=(ti=Li) and succeeds with answer substitution Gi={<Li,ti>}.

If Qi is reduce(Xi,Li) then Qit=reduce(ti,lLi) and has a successful
SLD-derivation o¢f length less than or equal to n-1. Hence, by induction
hypothesis, Qit succeeds with answer substitution ¢i such that

Liol is ground.

By restriction {(e) all variables of RHS occur in L1l,..,Lm. Hence, since
each Lioi is ground, RHSTOLl,..,0m is ground. Already Z1=B.

Since B does not contain any wvariables in Ll1,..,1Im, Bol,..,om=B.

Hence reduce(RHS,Z2)161,..,0m = reduce(RHSCl,..,0m,B}. By

induction hypothesis, this succeeds with answer substitution ¢ such
that BG is ground. So, reduce(A,B) succeeds with answer substitution

¢ such that Bo is ground. QED.

Lemma 7. Let P be an F* program and PC its compiled version. Let A

and B be ground terms such that reduce(A,B) succeeds. Let D be a term
possibly containing wvariables such that for some substitution «,
Da=B. Then reduce(A,D) succeeds with answer substitution c.

Proof: By induction on 1length n of successful Sib-derivation
starting at reduce(A,B). If n=1 then A=B=c(tl,..,tm), ¢ a constructor
symbol each ti a term, m>=0. The query reduce(d,D) will succeed with
answer substitution which 1is the m.g.u. of B and D. Since B is ground
this m.g.u. is a.

Assume lemma for successful derivations of length less than n. Let the
successful derivation starting at reduce(A,B) be of length n, n>1. Then
A=f(tl,..,tm) where £ is a function symbol, but not a constructor symbol,
and each ti is a term. Then there is a clause:

reduce (£ (X1, ..,Xm}, 2) : ~QU{reduce (RHS, Z) }

which is the translation of some rule in P, Alsc, reduce(f(tl,..,tm),B)
unifies with the head of this clause with some m.g.u.
T={<X1l,tl>,..,<¥n,tn>,<Z,B>} and its immediate descendant is
(QU{reduce (RH5,2) })T. Since RHS does not contain any of the Xi, this

is QtU{reduce({RHS,B)}. It has a successful derivation of length n-1.

If Q is empty, by restriction (e) RHST is ground. Otherwise let
0l,..,0m be the members of Q. Consider some Qi. If Qi is Xi=Li, then
Qit=(ti=Li) which succeeds with answer substitution oi={(<Li,ti>}.
Otherwise Qi=reduce(Xi,Li}, 50 Qit=reduce (ti,Li). By Lemma 6
reduce (ti,Li) succeeds with answer substitution ¢i such that Lici is
ground. Since all the wvariables of RHS are in L1,..,Lm, RHScl,..,om

is again ground.

Since reduce(RHSGL1,..,0m,B) succeeds, by induction hypothesis,
reduce (RHSGl,..,0m,D) succeeds with answer substitution a. Now
consider the query reduce(A,D}. Again, by reasoning as above,
reduce (RHS (*sl..0om,D) appears in an SLD-derivation of reduce(A,D).

- 14 -

Hence reduce(i,D) alsc succeeds with answer substitution a. QED.

Lemma 8. Let P be an F* program. Let PC be the compiled version of
P. Let EO0,..,En be a successful N-reduction. Then reduce(EQ,En) succeeds
(in the sense of SLD-resoclution) in the presence of PC.

Plan of Proof: By induction on length of successful N-reduction
EQ0,..,En. We show that there is some Ej in EO0,..,En such that an
SLD-derivation of reduce(E0,En) contains the goal reduce(Ej,En). Since
Ej,..,En 1is alsc a successful N-reduction, by induction hypothesis,
reduce (Ej,En} succeeds. Hence reduce (E(},En}) succeeds.

Proof: By induction on length n of successful reduction EO0,..,En.

If n=0 then E0 is already simplified. 1In particular, E0=c{tl,..,tm) where
¢ is an m-ary constructor symbol, m>=0, and tl,..,tm are terms. There 1is
a c¢lause in PC reduce(c(Xl,..,Xm),c(Xl,..,¥Xm)) where each Xi is a
variable. Clearly reduce(E0,E0) succeeds.

Let n>0 and EO0=£f(tl,..,tm), £ not a constructor symbol, each ti a term and
m>=0. Assume theorem holds for all successful reductions of length less
than n.

Since EO0 1is not simplified, the N-reducticn is of the form
EQ,..,Ek-1,Ek,..,En, 0<k=<n, such that Ek-1=>Ek, but for each i, 0=<i<k-1,
not (Ei=>Ei+1}. Hence, Ek-1=f(sl,..,sm) for some terms sl,..,sm. Since
Ek-1=>Ek, there is some rule f(Ll,..,Lm)=>RHS such that Ek-1 unifies with
f(Ll,..,Ilm) with m.g.u. & and Ek=RHSG. Since none of the Li share

any variables ¢ is the union of ¢l,..,0m such that Li and si

unify with m.g.u. ¢i.

For each i, if Li is not a variable, then since Li and si unify, si is in
simplified form. For such i, there is, by Lemma 5, a successful
N-reduction ti,..,si of length less than or equal to k-1.

The rule f£(L1l,..,Lm)=>RHS is compiled intec the Horn clause
reduce(f (X1, ..,Xm),2) :— QU{reduce (RHS,Z)}

in accordance with the compilation rules stated above. This c¢lause is
contained in PC.

Consider the query reduce(E0,En), i.e. reduce{f(tl,..,tn),En). It unifies
with reduce(f(X1l,..,¥Xm),En) with m.g.u. 1= {<X1l,tl>,..,<Xn,tn>,<Z,En>}
and its immediate descendant is (QU{reduce(RHS,Z}})T. Since RHS does
not contain any of the Xi, this is QtU{reduce(RHS,En)}.

Let Q1,..,Q0m be the members of Q. Consider some Qi. If Qi is Xi=Li, then
Qit=(ti=Li} which succeeds with answer substitution Gi={<Li,ti>}.

Otherwise Qi=reduce(Xi,Li), so Qit=reduce(ti,Li}. Since there is a
successful N-reduction ti,..,si of length less than or equal to k-1, by

- 15 -

induction hypothesis, reduce(ti,si) succeeds. Since Ligi=si, by Lemma
7 reduce(ti,lLi) also succeeds with answer substitution &i.

By repeating the same argument for each Qi, we see that an SLD-derivation
starting at reduce(E0,En) contains reduce(RHSGl,..,0n,En) as a
member. Since O is the union of ¢i and no variable is defined in

more than one si, RHSG1l,..,06n= RHSG. But RHSo=Ek. Hence the

SLD-derivation starting at reduce(E0,En) contains reduce(Ek,En). Since
the length of the successful reduction Ek,..,En 1is 1less than n, by
induction hypothesis, reduce (Ek,En} succeeds. Thus, the query

reduce (E0,En) succeeds. QED.

Lermma 9. Let P be an F* program. Let PC be the compiled version of

P. Let EO and En be terms such that reduce(E0,En) succeeds (in the sense
of SLD-resolution) in the presence of PC. Then there 1is a successful
N-reduction RO, ..,En.

Plan of Proof: By induction on length of successful SLD-derivation
reduce (E0,En},..,[0. We show that there is some goal reduce(Ej,En) in
this derivation such that there is an N-reduction EO,..,Ej. Since
reduce (Ej,En) succeeds, by induction hypothesis, there is a successful
N-reduction Ej,..,En. So there is a successful N~reduction
EO,..,Ej,..,En.

Proof: By induction on length n of successful SLD-derivation
starting at reduce (E0,En) . If n=1 then there is a clause
reduce(c(X1,..,Xm),c(X1l,..,Xm)) in PC such that reduce(E(0,En) unifies with
the head of this clause. <C(learly, then, E0=En, En is simplified and the
required N-reduction is simply EO.

Let n>0. Assume lemma for all successful derivations of length less than
n. Assume EO=f(tl,..,tm) for some non-constructor function symbol f and
terms tl,..,tm. Since reduce(E(0,En) succeeds there is a clause in PC:

reduce(£(X1l,..,Xm),2) :~Q U {reduce(RHS,2)}

such that it is the compilation of a rule £f{(Ll,..,Lm)=>RHS in P.
Moreover, reduce(f(tl,..,tm),En) unifies with the head of the above clause
with m.g.u. T={<X1l,tl>,..,<Xm,tm>,<Z,En>} and ot U
{reduce (RHS,Z) }T has a successful derivation of length n-1. Moreover,
RHST=RHS and 2Z71=En.

If ¢ is empty, m=0. So, by restriction (e) RHS is ground. By induction
hypothesis there 1is a successful N-reduction RHS,..,En. EQ0 unifies with
£(Ll,..,Ilm) and so EQO=>RHS. Hence EOQO,RHS,..,En is a successful
N~reduction.

Suppose Q is non-empty. Let Ql,..,Qm be the members of Q. Consider Qi.
If Qi=(Xi=Li) then ti unifies with Li with substitution Gi={<Li,ti>}.
Construct the singleton sequence f£(tl,..,ti,..,tm). This sequence 1is an
N-reduction.

- 16 -

If Qi=reduce (¥i,Li) then Li=c(Ul,..,Uk) for some constructor symbol ¢ and
variables Ul,..,Uk. Aalso Qit=reduce(ti,Li). Clearly, reduce(ti,Li)
succeeds. Let the answer substituticn be 6i. By Lemma 6 Ligi is
ground. Then reduce({ti,Lici) alsc succeeds. The successful derivation

of reduce(ti,Lici) is the same as that of reduce(ti,Li) with Li
replaced by Lici. Moreover, the length of this derivation is alsc less
than n. By induction hypothesis, there 1s a successful N-reduction
ti,..,Lici. By Lemma 4, the sequence
f£(t1,..,ti,..,tm}, .., £(t1,..,Lici,..,tm) is an N-reduction.

Hence we obtain the N-reductions £(tl1,..,tm),..,f(L10l,..,tm) and
f(Llol,t2,..,tm),..,f(Llcl,L202,..,sm) and ..
f(Llol,L202,..,tm),..,f{LlCl,L2G2, .., LmGm) .

The concatenation of these reductions is itself an N-reduction. If m=1
this is clear. If m>1, assume assertion for m-1. That 1is,
f(tl,..,tm),..,f(L1lcl,..,Lmn~10m-1,tm} is an M-reduction. If ILm is a
variable, Lmom=tm. Hence, the reduction is not extended. If ILm is not

a variable, then if tm unifies with Lm, then again the reduction is not
extended. Ctherwise select {£(L1cl,..,Im-10m-1,tm)=tm and the
reduction £(tl1,..,tm),..,£f(L1lcl,..,Lm-1C0m-1,tm), ..,
f(Llcl,..,Lm-10m~1,Lmom) is also an N-reduction.

Since none of the Li share any variables, £f(L1¢l,..,Imom) unifies
with £(Ll,..,Lm). Moreover, the m.g.u. is the union of &l,..,0m.
Let ¢ be this union. Hence f(L161l,..,Lmom)=>RHSG. Since all

the wvariables of RHS are in Ll,..,Lm and for each ¢i, Lici is
ground, RHSG is ground.

The predication reduce(RHSG,En} succeeds and the length of the
associated successful derivation is less than n. By induction hypothesis,
there 1is a successful N-reduction RHSO,..,En. Hence there is a
successful N-reduction £(tl,..,tn),..,f(Llol,..,Lmom),RHSG, ..,En.

QED.

Theorem 3. The correctness of the compilation of F*, Let P be an F*
program and PC be its compilation. Let E0 and En be ground terms. Then
there is a successful N~reduction beginning with E0 and ending with En iff
PC|-reduce(EQ,En}.

Proof: Lemmas 8 and 9 state, respectively, the if and only if parts
of the theorem. By their proofs, we obtain the proof of the theorem.
QED.

Theorem 4. Simplification theorem. Let P be an F* program and PC

its compilation. Let E0 and En be ground terms such that there is a
successful N-reduction EO,..,En. Then reduce(E0,Z), 2 a variable,
succeeds in the presence of PC, with answer substitution ({<Z,En>}.

Proof: Let En be a term such that there is a successful N-reduction
E0,..,En. By Theorem 3, there is a successful SLD-derivation starting at

- 17 -

reduce{(E0O,En). A simple induction on the 1length of this derivation
establishes that reduce(E(0,2) succeeds with answer substitution {<Z,En>}.
QED.

5.0 LAZY EVALUATION

The completeness property of the reduction strategy select enables it to
exhibit a weak form of 1lazy evaluation. That is, it simplifies terms
whenever it is possible to do so. In particular, it can simplify terms
even 1f they contain subterms denoting infinite structures. For example,
suppose we define in F*:

first{0,X)=>[].
first(s(A), [(U|V])=>[U|first(A,V)].

intfrom(N)=>[Nlintfrom(s{(N))].
The first set of rules defines the function for computing an initial
segment of a list whose length is some specified number. The second rule
defines the function for computing the infinite list of integers starting

at some integer.

The term intfrom(0) can be thought of as denoting the infinite 1list of

integers 0,1,2,... However, select, if given the term
first(s(s(0)),intfrom{0)), will simplify it to
[01first (s{0),intfrom(s(0)))]. If the above functions are defined in the

usual way in say, Lisp, and the above term is evaluated, a non-terminating
computation will occur.

To perform reductions in Prolog we first compile the above rules into
Prolog:

reduce (0,0} .
reduce (s (X} ,s({X)).

reduce([],[]).
reduce ([U|V], [UIV]).

reduce (first (A1,A2),0ut) :-reduce (A1, 0) ,A2=X, reduce{[],0ut) .
reduce (first (A1,3a2),0ut) :-reduce (Al,s (R)), reduce (A2, [U|V]),
reduce ([U|first {(a,V)],0ut).
reduce (intfrom(aAl),Out) : -Al=N, reduce ([N|intfrom(s (N})]1,0ut).
Now the goal reduce (first(s(s(0)),intfrom(0)),2) succeeds with
Z2=[0|first (s (0) ,intfrom(s(0)))]. Thus, Prolog also exhibits the above
weak form of lazy evaluation, as intended.

6.0 FUTURE DIRECTIONS

In future, we intend to accomplish the following goals:

- 18 -~

(a) Showing that if an F* program satisfies certain conditions,
then select also satisfies the property of minimality. That is,
it simplifies terms in a minimum number of steps.

{b) Investigating properties of an F* program satisfiying these
cenditions, e.g. a simple test for confluence.

{c) Precisely defining the notion of lazy evaluation. It appears
there are two notions: a weak one which is a consequence of
reduction~completeness, and a strong one which is a consequence of
minimality.

{d) Implementing the above conditions in Proleg, so that Prolog
also simplifies terms in a minimum number of steps.

(e} Identifying how to let the user specify which functions to be
evaluated eagerly. These functions can be implemented as Prolog
relations. For example, arithmetic could be done this way. The
dominant mode of evaluation in wusual languages is eager.
Sometimes they allow the user to specify which functions are to be
evaluated lazily. 1In F*, the situation would be reversed.

(f) Reasoning why the Prolog implementation of F* is "efficient",
especially compared to previous approaches for combining rewrite
rules and logic programming, or for realizing lazy evaluation.

{(g) Identifying advantages of a combined functional/logic
programming systems and lazy evaluation. One advantage is that we
can efficiently simulate a special case of the following axioms of
equality: =x=y & g{x)->q(y). Another advantage 1is that we can
compute with infinite structures.

ACKNOWLEDGEMENTS

I am very grateful to Professor D. Stott Parker for his many insightful
comments on this report.

REFERENCES

Henderson, P. [1980]. Functional Programming: Applicatien and
Implementation. Prentice Hall International, New Jersey. 1980

Lloyd, J. [1984]. Foundations of logic programming. Springer Verlag, New
York.

Narain, S. [1986]1. A technique for doing 1lazy evaluation in legic.
Journal of logic programming, vol. 3 no. 3. Elsevier North-Holland.

Vuillemin, J. [1974]. Correct and optimal implementations of recursion in
a simple programming language. Journal of computer and systems sciences,
9, 332-354. Academic Press.

