A NOTE ON THE COMPUTATIONAL COST OF THE
LINEARIZER ALGORITHM FOR QUEUEING NETWORKS

-

Edmundo de Souza e Silva June 1987
Richard R. Muntz CSD-870025






Abstract

Linearizer is one of the best known approximation algorithms for obtaining numeric solu-
tions for closed product form queueing networks. In the original exposition of Linearizer,
the computational cost was stated to be 0(M K3) for a model with M queues and K job
classes. We show in this note that with some straight forward algebraic manipulation
Linearizer can be modified to require only 0(MK?).



1 Introduction.

The Linearizer algorithm is one of the best known approximation techniques for closed
product form queueing network models. The algorithm was proposed by Chandy and
Neuse [CHANS82] in 1982. In that paper the authors indicate that the computational cost
of the algorithm is O(M K3) where M is the number of centers in the network and K is the
number of closed chains. However, the computational cost of Linearizer can be reduced to
O(M K?). This reduction cost was mentioned in a footnote of [DeSO86], and was obtained
after a small modification to the original algorithm. Due to the importance of Linearizer
we feel that these results needed fuller exposition and dissemination.

In the interest of brevity we will assume familiarity with the Linearizer algorithm.
We rely on [CHANS2] to provide motivation and requisite background. We feel this is
appropriate since we are presenting a small modification to the original algorithm and
wish to avoid a lengthy presentation. However, to make this note self contained, we will
briefly describe the algorithm and its equations which will be referred throughout the note.
In section 2 we summarize the Linearizer algorithm. In section 3 we emphasize why its
cost was O(M K®) and show how the reduction in cost can be achieved. We present our
conclusions in section 4.

2 The Linearizer Algorithm.

The discussion in this section parallels the one presented in [CHANS2| and is introduced
here for completeness. The following notation will be used throughout the rest of the note
and is summarized below. (This notation is the same one used in [CHANS2)).

M = number of service centers.
K = total number of chains in the network.
N = number of customers in chain k.

=
I

population vector = (Ny,...,Nk).

m(k) = a specified service center visited by chain k.

Vink = visit ratio of a chain k customer to center m, scaled so that Vm(k)k = L.

Sk = mean service time of a chain k customer at center m.

Yk = mGlf'k = mean throughput of chain k customer at center m, where Y} =
Yo(kr-

L . = mean number of customers of chain k at center m.

L = K.L

m Zk:l mk-



Wk = mean waiting time (queueing time + service time) of a chain k customer

at center m. )
€k = K -dimensional vector whose k-th element is one and whose other ele-

ments are zero.

The main equation of the mean value analysis algorithm [REIS80], equation (1) below,
Wok(V) = 8,i(1 + L (¥ — &) (1)

requires a solution for all populations from (0,... ,0) up to N. Statistics for a network

with population N are calculated recursively from statistics for the same network with
population ¥ — €, for all values of k, 1 < k < K. Linearizer "breaks” the recursion by
estimating, heuristically, statistics for population N — & from statistics for population N,
in the following way:

Define ka(l\-f ) as the fraction of chain k jobs at service center m when the population
is N ,
Lmk(ﬁ )

Fur(N) = —N (2)

Define D,.x;(N) as the difference in the fraction of chain k jobs at service center m,
when we have full population and the same fraction when we have full population in all
the chains except chain j where there is one less job.

Dnii(N) = Frt(N — &) — Frp(V) (3)

From (2) and (3) it is easy to see that the following identity is true:
Lok(N = &) = (N — &)(Fui(N) + Douii(W)) (4)

where (N — €;)x is the population of chain # when one chain J job is removed from the
network.

In order to compute L,,1(N) we use equations (4), (1) and Little’s result. However, to
solve (4) we need the values of D,,;;(N). As we will indicate later, Linearizer estimates
the values of D..,,k,-(f\-f ), by invoking successively the following Core algorithm:

Core Algorithm

Step 1 Initialization: get estimate values for Dmkj(l\_f ) and L (N YV m, k, j.

2



Step 2 From equations (2) and (4) compute new estimates Lnx(N — &),V m, k, j.

Step 3 Use the values of Lmk(ﬁ — &) computed above to compute W, (V) from (1). New

estimates of Lmk(N } can be easily obtained using Little’s result (i.e., by applying the
other two MVA equations).

Step 4 If the biggest difference between the new and old estimates of L.(N) is less than
a specified tolerance, then stop. Otherwise go to Step 2.

The Core algorithm above assumes the values of Dmk,(ﬁ ) are known. Linearizer esti-
mates these values by invoking the Core algorithm for population N and all populations
N - €; Vj, and assuming that Dmk,(ﬁ —-§) = r,,,,J.(N) In summary we have:

Linearizer Algorithm:

-

Step 1. Initialization: assume initial values for Lyk(N), Lmi(N —¢;) and assume Dyii(N) =
0. Set I = 1.

Step 2. Apply the Core algonthm for population N. For that, use the most recent values
of Lmk(N) and Dmk,(N)

Step 3. If I = 3, then stop. Otherwise continue.

Step 4. Call the Core algorithm for all populations N —&;, VY j. Use the most recent values
of Loi(N — &) and Dpue;(N).

Step 5. From equations (2) and (3) compute new estimates of Fi.(N), Fou(N — €;) and
ka(N ).

Step 6. I =TI+ 1. Go to Step 2.

3 Reduction of Computational Cost.

The Linearizer algorithm as described in [CHANS82], requires K + 1 calls to the Core
Algorithm for each iteration through the top level steps (steps 2 through 6 above). The
computational cost of 0(M K?) comes from an assumed cost of O(MK?) for each call to
the Core Algorithm. (In fact O(M K?) is the cost of a single Core iteration but tests have
shown that the number of iterations is approximately a constant independent of M and K.
More details concerning the number of iterations are presented in [CHANS82].) It is easy



to see that this indeed is the cost of each call to the Core algorithm if it is implemented as
described. We show below that the cost of each call to the Core algorithm (more precisely,
the cost of each Core iteration) can be reduced to 0( MK ) by some algebraic manipulations
and simple restructuring of the algorithm. We emphasize that these manipulations will
not change the algorithm in any material sense and the final outputs of the new algorithm
will be identical to the original Linearizer algorithm. Thus all of the empirical evidence on
the accuracy of Linearizer and comparisons with other approximations still hold with the
new version of the algorithm.

The new version of the Core algorithm which we propose repla.ses Step 2 of the original
algorithm (which requires computing Lo(M — &) (Vm, k, j, M =Notr M = N — €:)

-

with computing L,,(M — &) (¥m, j) directly. Note that the L,.(M — €;) are not actually

required in the Core algorithm. Only the L, (M — €;) are actually used in Step 3 of the
Core algorithm, to compute W, (M).

We proceed then to develop an expression for L,,(M —&;). First assume M = N'. From
(2) and (4),

Los(N - &) = (N - &) [L’"Kr(kN) + Dmkj(N‘)] (5)
But then,
— K —
La(N-&) = 3 Lu(N-¢)
k=1
K 4
= kZ_: (N - &k [&"}%\2 + Dmkj(ﬁ)] (6)

To simplify the sum in the above equation we separate it into two parts: k #jand k= ;.
We also note that,

(F-&x = N k#j
and
(N—&% = Ne—=1 k=j
We then obtain,
K .
LN -8) = Z_:'Nk L%kﬁ) + Dmkj(ﬁ):l + (N;-1) [LLRSE + Dmss(N)| (7)

Kt



Simple algebraic manipulation results in the following form of the above equation.

Lo(¥ - &) = La(W) = 2280 4 D1 () - D) 9

3

where D'mj(]\-.r) = EkK=1 NkDmk_,'(ﬁ).
Using the same development as above when M = N — &., we have:

LM
5 )Jr

Lm(ﬁ"gj) = Lm(ﬁ)_ (ﬁ)

D' 1j(M) — Dnji( M) = Dine; (M) (M); > 0 (9)

Assuming that the values for the D/, ;(M)Vm, j , M = N and M = N — g, are
available a priori, then the cost of the Core algorithm is easily seen to be 0(M K).

Now consider the computation of the D’m,(ﬂz‘ ) Vm, j in the context of the Linearizer
algorithm. In each top level iteration of Linearizer, the Core algorithm is called once for
population M = N and for each population M = (N —&),e=1,2 ..., K. If, for each
of these calls to the Core algorithm, it was required to recompute the D’mJ (population
vector) then each Core algorithm call would indeed cost 0( M K?). However, in Linearizer

Dii(N) = Dpii(N = &) Vm, k, j, c (10)

and thus,
Dpj(N) = D'mj(N—&)  Vm, kj,c (11)
Therefore we can pre-compute D’mj(l\_f ) Vm, j at a cost of 0( M K?) and use these values

for each of the K + 1 calls to the Core algorithm. It is simple to see that the cost of
Linearizer is then O(MK?).

In summary, the following modifications are made to the original Linearizer algorithm.

1. In Steps 1 and 5 of the Linearizer algorithm, compute D',,;(N) ¥ m, j prior to all
other computations and store for use in the calls to the Core algorithm during Step
2 and Step 3.

2. Step 2 of the Core algorithm is replaced by a computation of Lm(M —-&)VYm, j
using (8) if M = N or (9) if M = N — &, with the precomputed values for D' i (N)
(_ mJ(N - 61)) and Dka(N) ( Dmkj(N - é'c))'



4 Conclusion.

We have shown how Linearizer can be reorganized to reduce the computational cost to
O(MK?). This is accomplished without altering the algorithm in any way that affects the
results and thus preserves the empirical evidence of the accuracy of the method.

It is tempting to consider the reduction of the space requirements of the Linearizer to
O(MK) (from O(MK?)) since we need only values for D',,;(N) and Dpj;{N). However,
each call to the Core algorithm for population (N — &) requires the previous estimates for

Lmj(ﬁ — €). Thus it does not appear possible to reduce the order of magnitude space
requirements for Linearizer without surgery that would matenially alter the algorithm.

Acknowledgment

We thank Glenn Mackintosh for his careful reading and comments on an earlier version
of this note.



References

[REIS80] M. Reiser & S. S. Lavenberg, “Mean-value Analysis of Closed Multichain
Queueing Networks”, JACM, Vol. 27, no. 2, pp. 313-322, April 1980.

[CHANS82] K.M. Chandy & D. Neuse, “Linearizer: A Heuristic Algorithm for Queueing

Network Models of Computing Systems”, CACM, Vol. 25, no. 2, pp- 126-134,
February 1982.

[DeSO86] E. de Souza e Silva, S. S. Lavenberg & R. R. Muntz, “A Clustering Approxima-
tion Technique for Queueing Network Models with a Large Number of Chains”,
IEEE Transactions on Computers, Vol. C-35, no. 5, May 1986.



