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Abstract - In [1,2], we have shown that the delay estimation problem can be solved by finding the inverse
of the node-conductance matrix G of a resistive network. The problem of finding R=G™ is
approached in this report in several ways. First, the use of an exact expression is examined. This method
involves examining the geometry of the network and then applying a topological formula to find the
desired driving-point resistance. Second, bounds for R are presented; we attempt to find two matrices

I_Iz(k-i, ;) and R=(R; ;) such that R; ; 2R; ;2 R; ;, for all i and j. Evaluating these bounds largely

involves finding a least-resistance path between the ground node and the rest of the nodes in a network.
Third, these bounds can serve as initial guesses in an iterative procedure that would tighten up the delay

bounds from both sides.

1. Tree and Mesh Networks

Topologically, we can classify RC circuits as either tree or mesh. By a tree network, we
mean that the resistor network formed by replacing all voltage sources by short-circuits and
removing all capacitors is a tree; otherwise it is a mesh network. Recall that the node-
conductance matrix of a given network is denoted by G, and that R = G™! is therefore the

resistance matrix.



For a given RC tree network, R; ; is the resistance of the portion of the (unique) path
between the excitation and k that is common with the (unique) path between the excitation and
node i. In particular, R;; is the resistance between the excitation and node i [10]. Hence, the
resistance matrix R can be readily found by inspection. Also, evaluating delays for all n nodes
of a tree network requires only n multiplications. Figure 1.a shows an RC tree network. In this
example, entries of the R matrix are Ry ; =R, Ry 2 =R1+R,, Ry 2 =R, etc. And the signal

delay at node i is
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Figure 1.a. RC Tree and its Graph.

Tree networks are easy to evaluate; unfortunately, many practical MOS circuits are mesh
RC networks. As pointed out by Wyatt [15], the RC mesh networks arise in MOS circuits on a
number of occasions. One class of examples comes from lumped network models for the gates
of large transistors used in the final stages of clock or pad driver. To minimize resistance and

capacitance, the gate poly is sometimes laid out in a rectangular grid or a closed loop [7], and



therefore cannot be modeled as an RC tree. Another class of examples include interconnect
loops created by automatic routers and pass transistor networks in which reconvergent paths are

enabled simultaneously.

Speaking in terms of the components of the R matrix, R;; is the input resistance or
driving-point resistance between node i and the ground, and R; ; is the transresistance between
R;;and R; ;. Algebraically, R; ; is the common term or sum of common terms between R; ; and
R;;. For instance, Figure 1b shows a mesh RC circuit with R;; =Ry,

Rg'g =R1+R,1 |(R3+R4+R5)),R1'2 =R, etc.
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Figure 1.b. RC Mesh and its Graph.

There are substantial differences between finding delays for a tree and a mesh
network. Given an arbitrary network, it seems helpful to determine first whether it is a tree
or mesh. When the ground node is taken into account, given a connected graph of n+1
nodes and b branches (edges), the necessary and sufficient condition for the network to be a

tree is that b=n.



Subsequently, our focus for the rest of this report will be on treatments of mesh

networks.,

2. A Topological Method for Finding Driving-point Resistances

First, we examine a classical approach for finding the driving-point resistance R;
between any pair of nodes i and j of a given network [14]. Despite the fact that this method
delivers the exact expression for R; ;, it is not attractive since it involves listing all the
spanning trees and two-trees of the network. Alternatively, we shall consider bounds;

namely, to find two quantities 13,-. j and R; ; such that

)

Rij2Rij2R;;.

We shall demonstrate that this is a viable approach since it involves no more than finding a

least-resistance path of a network.

To facilitate further discussion, we cannot avoid at least a few definitions. These
definitions are fairly standard in the literature. Consider a graph G =(N,E), consisting of a
set of nodes N={ng,n1,,n,} and a set of edges E=fe,,~,ep}. There is a positive real
number R (¢;)=R; associated with each edge ¢;. Without loss of generality, the node ng

designates the ground node.
Definitions:

A path P .v->w in G is a sequence of nodes and edges leading from v to w. A path is simple

if all its nodes are distinct.



A path P:v—v is called a closed path. A closed path P:v—v is a cycle if all its nodes are
distinct and the only node to occur twice in P is v.

The resistance of a path is the sum of the values of edges on the path.

A graph is connected if there is a path between every pair of nodes.

A tree T is a connected graph without cycles.

A tree T is a spanning tree of G if T is a subgraph of G and T contains all nodes in G.

A two-tree of (5 is a pair of disjoint trees Ty and T such that N =N UNj,.

The degree, d;, of a node i is the number of branches connected to it.

An (s,1) cutset is a set of edges such that any path from s to 7 uses at least one edge of the

set.

A classical result [3, 14] states that
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Let us define the value of a tree as the product of its branch conductances. A term in the
summation for D is equal to the value of a spanning tree; the summation is carried out over
all the S spanning trees. Thus, D is a homogeneous polynomial of degree n in R. If from
any spanning tree one branch is first removed, then we have a pair of disjoint trees (two-
trees). If the ground node and the ith node are not on the same tree, then the product of the
values of these two disjoint trees constitute a term of 7;. Thus, T; is a homogeneous

polynomial of degree n—1 in R.



The main difficulty lies in using formula (4) involves listing all the spanning trees as
well as the two-trees. For instance, applying the topological formula to node 4 of the mesh

network as shown in Figure 1.b yields,
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3. Bounds on Driving-point Resistance

As illustrated, the problem of finding the driving-point resistance R;; for node i is
often cumbersome. We attack the related but easier problem of finding bounds for R; ;.

That is, we aim to find two quantities E,-. i and R; ; such that
Rii2R;; 2R;; si=l,...n.

First, we establish bounds for R; ;, which is the driving-point resistance between a given

node / and the ground. Then we consider bounds on the transresistance R; j» for i#j.

3.a. Some Provable Bounds

Lemma 1: The value, R; ;, of a least-resistance path (shortest path) between node i and the

ground is an upper bound on R; ;. That is, §,~, i2R; ;. 0
To prove the stated result, we need the following theorem.

Theorem 1. Consider a one-port network consisting of two-terminal, positive resistors and
a switch, as in Figure 2. Let R, and R, be the input resistances of the network with the

switch open and closed respectively. Then R, 2 R_.. O

This theorem was proved quite elegantly from Tellegen’s theorem [9].



Figure 2. Open and Close Resistances.

Proof of Lemma 1: With Theorem 1 in mind, we are ready to establish the upper bound.
Let n, and n, be two nodes of a resistive network G at which we wish to find the driving-
point resistance R. Let P be a shortest path from n, and n,. Now, let G, be G—P. We can
envision the network G comprising P and G, connected to each other by some switches, as
in Figure 3. When all the switches are closed, the input resistance of the network is R;
whereas the input resistance is equal to the resistance of P when all the switches are opened.

Thus, it follows immediately from Theorem 1 that R 2 R.

Figure 3. Proof of the Upper Bound.



Lemma 2: Since, by Theorem 1, introducing short-circuits in a resistor network cannot
increase the input resistance, for a given resistive network G, a lower-bound network can be
derived by short-circuiting some nodes in G such that the resulting network is a series-
parallel resistor network. According to Duffin [5], a network is a series-parallel connection

if and only if there is no embedded network having the Wheatstone bridge configuration.

The absence of Wheatstone bridge configuration enables the input resistance, R; ;, of
such a series-parallel network to be easily evaluated by Ohm’s Law. Namely, a) resistances
are additive for resistors in series, and b) conductances are additive for resistors in parallel.
Alternatively, a worst-case estimate for the resistance of a parallel connection of resistors is

the least resistance among the resistors divided by the number of resistors.
a

There can be many ways of short-circuiting some nodes of a given network to derive
a series-parallel network. Here is one systematic way. First, we arrange G=(VV,E) as a
multistage graph G’ with respect to a given node i. A multistage graph G’=(N,E) is a graph
in which the nodes are partitioned into s22 sets, N'; (or stages), 1<j<s; such that for each
edge (u,v)eE, then ue N’; and ve N, for some 1<j<k<s. This implies that there can be
edges within a stage. The sets N'; and N’ are chosen to be N'y={i} and N’;={0}. There
may be edges that skip stages. For instance, in Figure 4.a the edge that has resistance R
connects stages 2 and 4 and bypassing stage 3. By introducing new nodes and edges to
redistribute the resistances, we come up with a multistage graph which does not have edges
that skip stage. The white nodes in Figure 4.b are there for the purpose of bridging.
Specifically, the resistor R has been split into two resistors of resistances R/2 joined

together by a white node. In general, if a resistor skips A number of stages, we split the



resistor into A+1 pieces and introduce k white nodes, one for each of the stages that is
skipped. Finally, a lower-bound network is derived by short-circuiting all the nodes within

each stage. This results in a series-parallel resistor network as in Figure 4.c.

(a)

(b)

(c)

Figure 4. Steps in Deriving Series-Parallel Network.
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In order to obtain a tight lower bound by the forementioned procedure, it seems
appropriate to short-circuiting those branches with smaller resistances, Therefore, in
rearranging G as a multistage graph one should place the smaller resistors within the same

stage whenever it is possible.

Example: Figure 5.a illustrates a Wheatstone bridge resistor network. R is the resistance
between the two terminals when the switch is open. A lower-bound network, as in Figure
5.b is derived by short-circuiting R ;. Let R be the resistance of such a network. We have,

RoR; R4R5
R,+R4 R4+Rs

R2R = > % [min(Rg,R_o,) + min(R4,R5)] .

R, R,
R MAN——— VWY
o—= Rl k 0
MW
(a)
R, R,
R
O—......_n Rl u_o
R, R
MM AN
(b)

Figure 5. Wheatstone Bridge and its Derived Network.
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After furnishing fi’—,-! i R j.j» Ri.i» and R; ;, the next problem is finding I?,-_ jand R; ; for

i),

Lemma 3: Since R; ; is the common terms between R; ; and R} ;, an upper bound for R; ; is

&)
a

E,',j =min(§i_l- :Ej,j ) .

When all the k"i,,- 1i=1,...,n are desired, the upper bound suggests by Lemma 1
involves finding a shortest path between the ground node and the rest of the nodes in the
network. The shortest path problem is a well solved problem. Dijkstra’s algorithm is
probably the best algorithm for our purpose since it requires only O((n+1)?) additions [4].
Admittedly, the lower bound of Lemma 2 is not as convenient to evaluate as the upper
bound, since it requires multiplications and divisions for the step in calculating parallel
connection of resistors. More seriously, it does not seem easy to establish a reasonable
lower bound R; ; based on R;; and R; ;. To remedy this, we suggest another lower bound
which is efficient to evaluate. Unfortunately, we are unable to prove its validity rigorously

at this point, so we shall only conjecture.

12



3.b. A Dubious Lower Bound
Alower bound, R;; onR;; is

(©)

R;;
w

where w is the max cut of the graph. The max cut is the number of nodes in an maximum
cutset. This cutset partitions the graph G into two disjoint graphs G,=(N;,E,) and
G,=(N,,E;), where N, and N, are disjoint, and G, and G, are connected graphs, such
that the number of edges in the cutset is maximized. Figure 6 shows the max cuts for a tree

and a mesh network.

Figure 6. Max Cuts of Tree and Mesh Networks.
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The max cut for a planar graph can be found by a polynomial bounded algorithm
[8]. When the graph is nonplanar, the problem of finding the max cut is NP-complete [6].
Even so, we can map the nonplanar graph into a planar one by introducing new nodes and
edges at the crossovers. The max cut of this planar graph would obviously be greater than
or equal to the max cut of the original nonplanar graph. But since we are looking for a
lower bound for R;;, an over estimate of the max cut would only make the lower bound
cruder. Intuitively, the max cut is an upper bound on the maximum possible number of
parallel branches. Notice that w is equal to one for any tree network, therefore the upper
bound (I_i',-‘ i) and lower bound (R; ;) are both equal to R; ;; whereas the lower bound is exact

if a network consists of b identical parallel branches.

Claim {6) can be established by a conjecture. The intuition behind it is as follows.
Let n; and n; be the two nodes of a resistive network G at which we wish to find the input
resistance. Let w be the max cut for the network, and P be a shortest path. Notice that if all
dy branches that are connected to n, are replaced by w number of P branches running from
ni to n,, this cannot increase the input resistance. Because P is a shortest path, any other
path that runs from n; to n, must be greater than or equal to P. After the replacement, we
have a network consisting of w parallel branches of Ps. The input resistance of such a
network is simply the resistance of P divided by w, hence the stated lower bound is

established.

Assuming that (6) is true, then we proceed to find R; ;. For any given node i there
can be more than one shortest path from i to the ground. Let { Py, - Pgi} and
{ Py, Py } be the sets of shortest paths for nodes i and j respectively. Then, a lower

bound on R; ; is the maximum sum of the common edges for all the shortest paths between

14



node i and j, that is

x| Z R(e)}

1<r<g,1<qsk | €€P NP, ;

™)
O

R: . =
—hJ W

This lower bound may be conservative in the sense that it is possible for R;; and R;; to
have common resistances which do not lie on any one of the shortest paths. In this case,

R; ; will be grossly under-estimated to be zero.

Example:

Figure 7 shows a mesh resistive network with 5 branches. Given that the resistance
values are as shown, we wish to find the resistance matrix bounds of this network and

compare them with the exact answer.

1Q @ 40 0]

AMA——AMAN—2
2Q o R, R,
— M
R, 30 © 20
ANMA——AN
= Rg RS

Figure 7. Resistive Network.

Since }_?_,-.,- is just a shortest path from node i to the ground, we have
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Ri1=2Q R,;;=3Q R33=5Q Rs4=7Q,
and with w=1,wy=w3=w 4=2; by using the lower bounds in (6), we have
Ri1=2Q Rp»=15Q R33=25Q R4,=35Q,
whereas using the exact expression gives

Rl.l =2Q Rz'z =2.9Q R3‘3 =4.1Q R4,4 =4.5Q .

We see that these lower bounds are a bit conservative. We suggest one way to
improve them. A graph that can be divided into two complementary subgraphs with only
one node in common has been called separable. The common node is referred to as the
articulation point. If the network under consideration is separable, a tighter lower bound
can be obtained as the sum of the lower bounds of the separable components. A good
algorithm for separating a connected graph into components has been described by Tarjan

[12]. This algorithm requires O(b) time when applied to a connected graph with b edges.

ANV ——— A —1
AV —e @ o © -
R, I @ 20

A —s—AMA—+
= R, Ry

Figure 8. Decomposed Resistive Network.
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Now, returning to Figure 7, node 1 is an articulation point. We decompose the

resistive network at node 1 into two parts, as shown in Figure 8. The lower bound of the

network is evaluated as the sum of the lower bounds of its components. Thus, the improved

lower bounds are,

R11=2Q Ry2=250Q R33=3.5Q R44=450.

Using (5) and (7), the R and R resistance matrices are

222 2 2 2 2 2
R = 2333 0 R = 20252025
2355 — 120 2.0 35 35
2357 20 2535 45
whereas the exact R matrix is
2 2 2 2
R= 202923 27 Q
2023 4.1 35
2027 3545

4. Bounds on Delays

From the bounds on the resistance matrix R, bounds for the delays (t;) for the linear

model can simply be,
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s = RC[v(e2)~v(0)] + RD- [[e(ce) — e(r)]dt ,
0

ts = RC[V(=}-v(0)] + R'D- [[e(e0) — e(¢)]dr . ®)
0

If these bounds are unsatisfactory, we need some way to tighten them up. The idea is to

present the problem as a system of linear equations; namely,
G-ty = C-[v(2)-v(0)] + D- [[e(eo) — e(t)]dr ,
0

and use a numerical iterative procedure to solve for ty. If one is interested in an estimate of
t4, then it is appropriate to use the mean of (8) as a good initial estimate for the iterative
procedure. On the other hand, bounds on t; can also be obtained if there is an iterative
bounding procedure that would use (8) as the initial conditions and successively tighten up
the bounds. Iterative bounding procedures have been presented in some excellent literature

such as [11] and [13].

5. Remarks and Conclusions

We have addressed the problem of finding the inverse of the node-conductance
matrix of a resistive network in several ways. Our main result is the bounding matrices, R
and R. Since the derivation of these matrices depends solely on Tellegen’s theorem, our
result apparently is applicable to all resistive networks that obey Kirchhoff’s laws, whether

the networks are linear or nonlinear, time-invariant or time-varying, reciprocal or

18



nonreciprocal.

We observe that the upper bound matrix R tends to be closer to R if the resistive
network is tree-like. Likewise, B tends to be closer to R if the resistive network consists

mainly of paralle! connections of identical resistors.

From the bounding matrices, we can obtain bounds on delays.
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