SIMPLE RADIX-4 DIVISION WITH DIVISOR SCALING

Milos D. Ercegovac , March 1987
Tomas Lang CSD-870015

Simple Radix-4 Division with Divisor Scaling

Milo$ D. Ercegovac and Tomas Lang
Computer Science Department

University of California, Los Angeles

Abstract

A radix-4 division algorithm with divisor scaling is proposed. The algorithm uses a re-
currence with carry-save addition and combines simple scaling with a quotient-selection func-
tion that depends only on the estimate of the partial remainder and is independent of the divisor.
The redundant quotient is converted on-the-fly into a conventional representation without carry-
propagate addition. The scheme results in a significant speed-up with respect to both the radix-2

and radix-4 without scaling, with about the same hardware.

1. Introduction

Subtractive radix-4 division algorithms have been proposed that use a signed-digit
representation of the quotient. This quotient representation reduces the complexity of generating
the multiples of the divisor and allows the use of carry-save addition and limited precision com-
parisons. However, the quotient selection function is still complicated, resulting in a
significantly larger step-time than that of a radix-2 implementation, which almost eliminates the

advantage of using the higher radix [TAYL85,BUSH83].

To simplify the quotient selection function it is possible to prescale the divisor, as report-
ed in [ERCES83, ERCE84, ERCES8S5]. However, the derivations performed there result in a range
of the divisor that requires a complicated scaling. Here we discuss a variant that combines a sim-

ple selection with a simple scaling. The resulting scheme is significantly faster than both the

radix-2 and the radix-4 without scaling.

The overall division algorithm consists of three steps: scaling of the divisor and the divi-
dend, division recurrence, and conversion of the quotient (Figure 1). We now present each of

these steps.

2. Divisor and Dividend Scaling

We want to transform the divisor X into the scaled divisor D such that

D=MX and 1-a<iDIS1+p

We choose o and § so as to have a simple scaling implementation and a simple
quotient-selection function. Several alternatives were explored; we report here on the most at-

tractive solution, which results in

8 <ipigd

64 8

The corresponding scaling to the specified range is described by the following table (for

D >0

Y dividend X divisor

OPERAND
SCALING

Y* D

DIVISION
RECURRENCE

g

CONVERSION

l

Q

Figure 1. Division Scheme with Scaling

X M D
[14/16, 1) 9/8 = 1+1/8 [252/256, 288/256)
[13/16, 14/16) | 10/8 =1+1/4 [260/256, 280/256)

[12/16, 13/16)
[11/16, 12/16)
[10/16, 11/16)
[9/16, 10/16)

[8/16, 9/16)

The same scale factors apply for a negative divisor. The implementation requires a 3-
input carry-save adder, with each input having a selection of two possible multiples of the divi-
sor (dividend), as shown in Figure 2. The details of implementation are given in Appendix A.
The same scaling operation has to be performed on the divisor X and on the dividend Y. To
share the same hardware, these scaling operations can be performed in sequence. The carry-save
adder can also be shared with the recurrence step. The output of the adder is the scaled divisor
(dividend) in carry-save form. The scaled dividend is directly used as the first partial remainder.
For the scaled divisor, there are two alternatives: to transform it to conventional form with a
carry-propagate adder or to use it directly in carry-save form. The second alternative has the big
advantage that it does not require a carry-propagate adder nor does it have the corresponding

time overhead. However, it complicates the recurrence step. We explore these alternative further

in the next section.

11/8 =1+1/4+1/8
12/8 = 141/2

13/8 = 1+1/2+1/8
14/8 = 1+1/2+1/4

16/8 = 1+1

Table 1

[264/256, 286/256)
[264/256, 288/256)
[260/256, 286/256)
[252/256, 280/256)

[256/256, 288/256)

Divisor/Dividend

l

X1/2; x1/8

4—F

-]

v
OPERAND
x1/4; x1/2
CSA

Scaled operand

Figure 2. Operand Scaling

3. Division Recurrence

The recurrence we use is the standard radix-4 division algorithm with redundant quotient
in the range [-2,2] [ROBE58, ATKI68]. The recurrence is

R[j1=4R[j-1] - Dg;

where the quotient is
n —j .
Q= g:lqj4 with ¢; € [-2,2]

The bounds on the partial remainder are given by

2 2
—=D sR[j]s—
3 Ul 3D

and the selection interval for q; =k is

—%D + kD S4R[j—1]S-§-D + kD

The P-D diagram (first quadrant only) of Figure 3 shows the selection intervals for the
divisor in the standard range 1/2 <D < 1. As can be seen, the selection intervals overlap and
this allows the selection to be performed using an estimate of the partial remainder and of the
divisor, For a particular implementation, it is necessary to choose the precision of the partial
remainder and the selection constants. The standard procedure [ATKI68] to determine these is

as follows:

i) Divide the range of the divisor into subintervals so that in each of these subintervals

the selection depends only on the estimate of the partial remainder.

4R[j-1]

PP Y T R R Y P L Y R R

3(1.,2)

1/2

e

5/2 4

e

Y T T I T T T TSP PR TS PR P

3/2

pmsarasannassshansssnnns

1/2

63/64

Figure 3: P-D Piot

i) Select the subintervals in a way that a) reduces the number of bits of partial remainder
that have to be assimilated to get the estimate, and b) reduces the number of bits of the divisor
and partial remainder required for the quotient-selection function. Since these factors are con-

tradictory, a compromise solution is required. Some solutions are given in [ATKI68, TAYLS85].

Analysis of the indicated selection function [TAYL.85] shows that it requires the assimi-
lation of 8 bits of the partial remainder, and the use of 6 bits of the assimilated partial remainder
and 4 bits of the divisor (Figure 4). The implementation of the corresponding function has a de-
lay that increases significantly the recurrence step time, and consequently, the division time. For
example, in the implementation described by Taylor [TAYL85] the radix-4 case has a step time
roughly double that of the radix-2 case, which eliminates the advantage of using the higher ra-

dix.

The objective of scaling the divisor is to reduce the complexity of this selection function.
This idea has been used in the algorithms presented in [ERCE83, ERCE85] where the selection
function used is rounding the partial remainder, independently of the value of the divisor. The
analysis done there requires that the scaling be to the range [1-275,14+27%] which makes the
transformation relatively complex [ERCE84, MAZES6). In this paper we decided for a simpler
scaling to the range [63/64,9/8] and will now determine a selection function that is suitable for

this range.

As a first step in the determination of the selection function, we show that for the range
of the transformed divisor (i.e., [63/64, 9/8]) it is possible to use a selection function that is in-

dependent of the divisor. For this, we now calculate the overlap between the selection regions

8
< ™
Xo XXX X XXX KX X x} partial remainder
X, X X X X X X X X X X X

CPA

5] divisor
X. X X X X X X X X X
Selection f 4

Network <+
i: 3
q

Figure 4 Quotient selection requirements for
standard scheme

]

for g; =k—1 and for g; =k in the range of the divisor {63/64,9/8]. This overlap is (see Figure

3

. 1[63/64] = L, [9/8] for k=1,2
Ale-1.k) =Yy [9/8] - L, [63/64] for k=0,—1

where U,[D1] and L, [D] are the upper and lower limits of the selection interval for ¢ ;= k asa

function of the value of the divisor D . Since

Up_1[63/64] = (2/3)(63/64) + (k—1)63/64 = -21/64 + (63/64)k

and
L [9/8] = —(2/3)(9/8) + (k)(9/8) = -3/4 + (9/8)k
we get
Atk-1,k) =27/64 - (9/64)k fork =1,2
Similarly,
Up_1[9/8] = (2/3)(9/8) + (k—1)9/8 = -3/8 + (9/8)k
and

L, [63/64] = —(2/3)(63/64) + (k)(63/64) = —(42/64) + (63/64)k
Consequently,

A(k-1,k) = (18/64) + (9/64)k for k =0,-1
Introducing the possible values of k, we obtain

A(1,2) = 9/64
A(0,1) = 9/32
A(-1,0) =9/32

A(=2,-1) = 9/64

Since the overlaps are positive, it is possible to obtain a single selection function (in-

dependent of the value of the divisor) for the whole range.

We now determine the selection function and the required precision of estimate of
4R [j]. The estimate is computed by a carry-propagate adder of ¢ fractional bits and an addition-

al carry propagation up to fractional bit v (Figure 5). :From the figure we see that

4R[j1=a2?* +b2™ +c2™
and the estimate is
4R(jl1=a-2" +d-2"*

where de{0,1} is the carry of b-2™™ into fractional bit .

Consequently, the error is

AR[j1-4R[j1=(b2™ -d2¥)+c2™
Since

0 (b 2™ —-d27*)<2™ (by definition of d)

and

0Sc2™M <2

we get

0<4R[j1-4R[j1<2* +27

t| v P

N W s] shifted partial remainder

C

Selection
Network

£3
a
]

Figure 5. Quotient selection requirements for
proposed scheme

That is,

AR[j1-A<4R[j1S4R[j] A=27"+27)

Moreover, if M (k) [m (k)] is the largest [smallest] value of 4R [j] for which a quotient

value of k is chosen, we have

mk)<SK SMK) - gjq=k
mk+1)y =M k) + 27 (since t fractional bits are used in selection)

LEk)SME) SU®K)-A

These relations are illustrated in Figure 6.

Consequently, the selection function is determined as follows. Select the smallest ¢ such

that,
LEYEME)=AKR)2 <U@)-2" (Ak) integer)
and
mk+1) = (A (k)+1)27 2 L{k+1)
Then, determine v 2 t such that
Uk)-ME) 22 +2
Table 2 shows the selection for =1 and the minimum value of 27¥. We conclude that
y=3,

7 §
27t 27V
I . SER———
i 20
>t v
7 Y
‘ 20
20
\ 4

Figure 6. Selection Relations

Ly M (k) 27V = U, -Mk)-2"
U m (k)
(fort=1)

Lo[9/8] =—(2/3)(9/8) + 2(9/8) = 372 m(2)=3/2

U ,[63/64] = (2/3)(63/64) + 63/64 = 105/64 M(1)=1 11/64
L,[9/8] = —(2/3)(9/8) + 9/8 = 3/8 m(1)=1/2

Ul63/64] = (2/3)(63/64) = 21/32 M0)=0 5/32
Lo[63/64] = —(2/3)(63/64) = -21/32 m(0)=—1/2
U_,[9/8] = (2/3)(9/8)—(9/8) = -3/8 M(-1)=-1 1/8
L_,[63/64] = —(2/3)(63/64) ~ (63/64) =~105/64 | m(-1)==3/2
U _5[9/8] = (2/3)(9/8) — 2(9/8) =-3/2 M(=2)=2

Table 2

The binary-level specification of the quotient-selection function and the corresponding

switching expressions are given in Appendix B.

We now summarize the values of the critical parameters for this scheme. They are

i) The selection function requires the assimilation of four bits of the shifted partial

remainder.

ii) The carry of two additional bits of the partial remainder has to be propagated.

iii) The number of bits of the divisor required by the selection function. In our case the

selection is independent of the value of the divisor (in the range after scaling).

The block diagram of the implementation showing the number of bits required is given
in Figure 5. The comparison with the case without scaling, as shown in Figure 4, indicates a
significant reduction in the complexity of the quotient selection function. The actual reduction in
step time that this produces would depend on the specific implementation constraints. As an ex-
ample, for the implementation described by Taylor [TAYL85] we estimate a speed-up of

between 1.33 and 1.6 (2 or 3 fewer logic steps).

4, Quotient Conversion

Finally, the redundant representation of the quotient is transformed into the conventional
radix-4 representation using the on-the-fly scheme presented in [ERCE8S5]. As the quotient di-
gits are generated, the most significant digit first, the corresponding part of the conventional
quotient is obtained without carry-propagate addition. Thus the conversion has no effect on the

overall delay.

10

5. Overall Implementation and Timing

We now discuss the overall implementation of the division scheme. As indicated in Sec-
tion 3, two alternative implementations are possible depending whether the scaled divisor is as-
similated or not. These alternatives are shown in Figure 7(a) and 7(b), respectively. The assimi-
lated version uses a 3-2 carry-save adder while the nonassimilated one requires a 4-2 reduction.
On the other hand, the nonassimilated case does not require a carry-propagate addition for divi-
sor scaling. To choose between these alternatives requires a detailed implementation, which is

outside of the scope of this paper.

The timing of the divider consists of three parts: a) scaling of operands, b) division re-
currence, and ¢) quotient conversion. As mentioned in previous sections, the times per quotient
digit of parts b) and c) is significantly reduced with respect to the standard radix-4 scheme
without scaling, and have estimated a speed-up of between 1.3 and 1.6 for the implementation

constraints described by Taylor [TAYLS835].

This speed-up is reduced by the overhead in the scaling operation. We estimate that this
scaling operation would take three cycles: one to scale the dividend (without assimilation) and
two to scale the divisor (with assimilation). For a 56-bit quotient the overhead would be of 3/28
cycles, that is, roughly 11%. Consequently, taking again as a reference the implementation
described by Taylor [TAYL85], we estimate an overall speed-up of between 1.22 and 1.45 with

respect to the scheme without scaling.

11

Divisor/Dividend

Scaled Divisor

'

v

v

Scaled Dividend (C,S)

Scaled Divisor

<

D SC PS
SClj-1] Ps{-11
v v 1
q . x1/4 1/2
j® @ | 2] (xass ij‘
Quotient
Selection
v \ 4 \ 4
3-to-2 CSA
#SC[]] lPS[J]
CPA
!
CONVERSION o =
| '
Q qj

Figure 7(a). Division Scheme with Scaled Divisor and

3-to-2 CSA

Divisor/Dividend

L Scaled Divisor (C,S)

'

Scaled Dividend (C,S}

v

v

DC q DS SC i
J
’ SClj-1] PS[j-1]
| D-\
v v v [cPA
x1/4 1/ ' I
q0C qDS x1/2 N A
Quotient
I%- Selection
I I
4-to-2 CSA
SCljl PS(j]
CONVERSION H—
q .
Q]

Figure7(b). Division Scheme with Redundant Scaled Divisor
and 4-t0-2 CSA

The proposed scheme would also produce a significant improvement in speed for higher
radix dividers, such as the radix-16 divider with overlapped quotient selection stages proposed
by Taylor [TAYLSS].

Summary
A radix-4 division scheme is proposed having the following features:
(i) Divisor and dividend are scaled into a suitable range using a simple scaling scheme.

(ii) The recurrence uses a carry-save adder to produce partial remainders.

(iii) The quotient-selection function does not depend on the (scaled) divisor: it requires a

4-bit estimate of the partial remainder.

(iv) The conventional (2’s complement) representation of the quotient is produced on the

fly, without an extra carry-propagate addition.
The proposed scheme should result in a significantly faster implementation than the pre-

viously proposed radix-4 schemes.

Acknowledgements This work has been supported in part by the ONR Contract N00014-85-K-
0159 and Hughes Research Laboratories. We appreciate interest and comments of Dr. J. G.

Nash.

12

References

[ATKI68] D.E. Atkins, "Higher-Radix Division Using Estimates of the Divisor and Partial
Remainders", IEEE Trans. on Computers, Vol.C-17, No. 10, October 1968, pp.925-934.

[(BUSHS83] L.B. Bushard, "A Minimum Table Size Results for Higher Radix Nonrestoring Divi-
sion", IEEE Trans. on Computers, Vol. C-32, No. 6, June 1983, pp.521-526.

[ERCES83] M.D. Ercegovac, "A Higher Radix Division with Simple Selection of Quotient Di-
gits", Proc. of 6-th IEEE Symposium on Computer Arithmetic, 1983, pp.94-98.

[ERCE84] M.D. Ercegovac and T. Lang, "Radix-4 Division with Range Transformation",
UCLA CSD Internal Report, August 1984,

[ERCE85a] M.D. Ercegovac and T. Lang, "A Division Algorithm with Prediction of Quotient
Digits", IEEE Proc. of 7th Symposium on Computer Arithmetic, 1985, pp. 51-56.

[ERCE85b] M.D. Ercegovac and T. Lang, "On-the-Fly Conversion of Redundant into Conven-
tional Representations”, UCLA CSD Internal Report, August 1985. (to appear in IEEE Trans.
Computers, 1987)

[MAZES86] J. Mazerolle, "Simulation of a Fast Division Algorithm", UCLA CSD, Internal Re-
port, August 1986.

[ROBES58] J.E. Robertson, "A New Class of Digital Division Methods", IRE Trans. on Elec-
tronic Computers, September 1958, pp.88-92.

[TAYLS85] G.S. Taylor, "Radix 16 SRT Dividers with Overlapped Quotient Selection Stages”,
IEEE Proc. of 7th Symposium on Computer Arithmetic, 1985, pp. 64-73.

13

Appendix A
We determine here the control signals for the scaling of Figure 2. As required by Table
1, the scale factor is defined as

M=1+e18+f-1/4+h-172+j-1/2

>From the same Table 1, we determine that the binary variables e, f, A, and j are

switching functions of bits xg, x4, X3 and x4 of the divisor X, as defined in the following table:

n
b

o
S

XX 1 X2X3X4

01110
01101
01100
01011
01010
01001
01000
10001
10010
10011
10100
10101
10110
10111

SO OO IOO = QO =0 -
O~ OO~~~ QO OO —=O
—_ O = OO0 |I= O = =000
- OO0 OO0

Let w =x,€Xxq, y =x3&x, and z = x,€Xx. Then the control signals for the scaling net-
work are

e=w+y)z’ f=w+z)y’

h=@+zW j=wly’

14

Appendix B

The switching expressions for the quotient digit selection network are obtained from the

following table.
% | Z.92.120.21
0110

010.1
0100
001.1
1 001.0

The quotient digit is represented by (k,.k .k q.k_;,k_5) as follows:

q; | ko ky ko kg ko
2 1 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 0
-1 0 0 0 1 0
-2 0 0 0 0 1

The corresponding switching expressions are:
ky=z_9'z_1+2 5792}
4 ’ ’ ’ ’ 4
ky=z.,z2 202 +2 32 12924
k—l = Z_ZZ_IZO’ZI + 2_22__1202 1’
ko=z_9z {42 9z¢'z¢

ko=z_y'20'z)+z_y2¢2;

The last expression need not be implemented since kg = 1 if all other k; =0.

15

