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AN IMPROVED CONSTRAINT-PROPAGATION ALGORITHM FOR DIAGNOSIS*

Hector Geffner & Judea Pearl

Diagnosing a system requires the identification of a set of components whose abnormal behavior
could explain faulty system behavior. Previously, model-based diagnosis schemes have proceeded
through a cycle of assumptions — predictions — observations — assumptions-adjustment, where
the basic assumptions entail the proper functioning of those components whose failure is not esta-
blished. Here we propose a scheme in which every component’s status is treated as a variable;
therefore, predictions covering all possible behavior of the system can be generated. Remarkably,
the algorithm exhibits a drastic reduction in complexity for a large family of system-models. Addi-

tionally, the intermediate computations provide useful guidance for selecting new tests.

The proposed scheme may be considered as either an enhancement of the scheme proposed
in [de Kleer, 1986] or an adaptation of the probabilistic propagation scheme proposed in [Pearl,
1986] for the diagnosis of deterministic systems.

I. Introduction

The diagnosis of a system exhibiting abnormal behavior consists of identifying those subsystems
whose abnormal behavior could produce the manifested behavior. In model-based diagnosis, the system is
treated as an idealized structure of components whose local behaviors interact to pfoduce overall system
behavior. Previous diagnostic schemes have tackled the task by partitioning the problem into two phases.
First, making use of a set of observations and assuming the proper local behavior of components, predic-
tions are generated about the behavior of unobserved points. In the second phase, the assumptions under-
lying those predictions contradicted by observations are identified, and a set of hypotheses which ““best”

explains the manifested system behavior is assembled about the individual component’s behavior.

While many proposed schemes fit within this paradigm [Reiter 86, Genesereth 84], the work of
[deKleer et al., 1986] has especially focused on algorithms for performing these two tasks efficiently. In

their scheme, predictions are generated by constraint propagation [Stallman et al,, 1977), while the process

*This work was supported in part by the National Science Foundation Grant DSR 83-13875.



of identifying the (minimal) set(s) of assumptions underlying a contradicted prediction (conflict sets) is fa-
cilitated by the ATMS [deKleer 86]. The diagnoses chosen as "best" are those minimal sets of assump-
tions (candidates) which, if removed, render the model behavior compatible with manifested behavior.

These are assembled from the conflict sets by a set-covering algorithm.

The diagnostic algorithm we propose here consists of of a single task: Instead of predicting only
those behaviors which assume proper functioning of components, the proposed algorithm generates pred-
ictions about all possible behavior. Since the point value corresponding to a new observation is surely
among the set of possible behaviors, the optimal diagnoses that account for the enhanced set of observa-
tions will be simply the set of assumptions underlying that value prediction.

The algorithm takes advantage of the fact that there is usually a small set of hypotheses compati-
ble with the current set of observations that will best explain any single new observation. The resulting

scheme

» diagnoses failures due to multiple faults;
« is incremental; and (in contrast to two-phase approaches)

» fully exploits the topology of the system mode! under diagnosis.

Interestingly enough, the algorithm can be viewed as either an enhancement of the scheme pro-
posed in [de Kleer et al., 1986], a non-probabilistic adaptation of the propagation scheme proposed in
[Pearl, 1986] or as a message-passing mechanism for solving constraint satisfaction problems with func-
tional dependencies [Dechter, 1986].

In this paper we first describe the ideas underlying the scheme proposed (Section I), introduce
some notation and present the propagation algorithm for models of singly-connected constraint networks
{Section I1) and (Section IIT) illustrate its application to the diagnosis of a simple digital circuit. We then
extend the propagation scheme properly handle both multiply-connected networks as well as component

models with different prior probabilities of failure. In Section V, we summarize the main results.

II. The Proposed Scheme

For the purpose of illustrating the ideas underlying the scheme being proposed, let us first intro-

duce some convenient notation. Let L (S,0 ) denote a particular labeling that assigns a specific status to



each component of a system S, compatible with a set of observations O . For the time being, we shall as-
sume that the merit of a given diagnosis is determined by the number of faulty components involved; so,
every labeling L(S,0) will be assigned a figure of (de)merit denoted by N(S,0), representing the
number of S -components labeled "faulty" by L (S,0).

Let us now consider two complex system circuits, S ; and S ,, with outputs X | and X ,, and obser-
vation sets O | and O ,, respectively, as depicted in Figure 1. Let us also assume that, for each of these
circuits, we have computed a set of diagnoses accounting for both their observation sets and each of the
possible values of their output variables, X; and X,. In other words, two sets of labelings,
L(§,,0,v{X,=x,}) and L(§,,0, U {X, =x,}), are available, each associated with the range of
values x | and x , that variables X ; and X , may take.
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We next consider composite circuits formed by an adder A with output ¥ and inputs X | and X ; and at-
tempt to find the best labelings over the components of S compatible with the set of observations
O =0,V 0, and each of the possible values y of Y. In other words, we want to determine
L{(S,0 u{Y =y})foreachvaluey of Y.

The main point to note is that, to determine L (S,0 U {Y =y }), we need not reconsider all the
combinations of labelings over the individual circuits §| and S; L (S,0 U {Y =y}) is made up of ex-
actly those labelings that were already found optimal over S ; and S, for some values of X | and X ,. In
particular, assuming that the adder A is working properly (denoted by A = ok), the weight associated
with the optimal labeling will be given by:

Npot S0 V(Y =y} = Tin NSO UX =x 1)+ NS0,V Xy=x20)], (1)
X+X =Y

where x, and x4 range over the possible values of X | and X 5, respectively. Thus, if the minimum is

achieved at values x; and x;, the optimal labeling for ¥ =y under the assumption A = ok, can be con-

structed from:



Ly—ok($,0 U{Y =y} =L(S,01 U (X, =x1 ) UL(S,0,U X2 =x3) UfA =0k} . @

To find the overall optimal labeling, we must also include the possibility that A is not working properly,

denoted by A = —ok, yielding:

NA=_10k(S,O U {Y =y}) =1+ minN(Sl,Ol U {Xl =x1})+ rninN(Sz,Ozu {Xzzx?}) s 3)
X1 X3

The constant 1 stands for the penalty associated with the faulty component A = —ok which, in tum, re-
moves the constraint between the values of X  and X 5. (The two rightmost terms of (3) were precomput-

ed on the individual circuits S| and §5.)

The overal! best labeling(s) compatible with ¥ =y can now be obtained simply by comparing the
weight computed from (1) with the one computed from (3) and choosing the labeling(s) corresponding to
the lowest one. If ¥ =y is now observed, L (§,0 U {Y =y }) would emerge as the labeling defining the
best diagnosis.

A question remains, however, of how to minimize over sets of values that, in principle, may have
infinite cardinality. Its solution is based on the fact that there will be labelings which are compatible with
all the values a variable can take. For example,

xX-?7 g L({A}, {Y=2Z=8} U {X=6)}) = {A=0k]
Y‘z _— A Z-% L&{’Aﬁ ,g=2,z=8}u{X¢6})={A=—|ok}

Figure 2 - Best Labelings for X

in the simple adder circuit depicted in Figure 2, we have only two labelings, {A = ok} and {A = —ok}.
The best labeling compatible with X = 6 is {A = ok} while, for any other value of X, {A = —0k } is the
best and, in fact, the only compatible labeling. Moreover, f{A = —ok } is the best labeling compatible with
any value of X except X = 6. Therefore, certain subsets of X values (e.g., X #6) will be treated as special
x -values, denoted by {2y and will be assigned labling as though they were singletons. The introduction
of these "special" values will allow us to keep the state representation of the problem concise; the algo-
rithm, however, should behave as though an explicit representation were used for each value in the subset.



This example illustrates two important properties on which our algorithm is based: first, that the
problem of determining the optimal labeling for a variable can be solved from information associated with
neighboring variables, making feasible a distributed diagnostic inference engine in a form of constraint
propagation; and secondly, that it is possible to predict all the possible model behaviors by handling a
finite (and usually smali) set of "explanations," allowing the constraint propagation algorithm to accom-

plish a global identification task without appealing to non-local set-covering procedures.

A critical assumption implicit in the example of Figure 1 is that circuits S, and §, are only con-
nected via A or, more generally, that the constraint network induced by the composite circuit S is singly-
connected. In Section IV this assumption will be relaxed and we shall generalize the algorithm to deal
with multiply-connected constraint networks. These extensions will provide interesting points of com-
parison with [de Kleer, 1986].

Notation

As we stated before, the global behavior of the system-model is characterized by a pattern of in-
teractions among a number of local behaviors that, in turn, correspond to the constraints induced by the
components on their inputs and outputs. We assume that a component C; can be in either of two
states: it is working properly, denoted by C; = ok, or it is failing, denoted by C; = —ok. Since we are
going to treat components as any other variable in the model, we choose to draw them as nodes in Figure 3
rather than depict them as blocks as in Figures 1 and 2;

Y — y}'l’j‘z

Figure 3 - Components as Nodes of a Constraint Network

where C; € {0k, —ok } stands for the name of the variable corresponding to the component status and j
is the undirectional constraint among the component input(s), its output(s) and its status. The resulting
network is composed of

« nodes (or variables), denoted by upper-case letters
X,Y,W, .., for observable system points and C;, C j+ - fOr components);
» constraints, denoted by small letters (i, f, ...); and

» links connecting nodes to constraints.



The set of nodes linked to a constraint ¥ will be denoted by P “ A more useful set is
P§ =PF_X , which reads as the port k of node X, and stands for the set of all other nodes different
than X linked to constraint k. C (X ) will refer to the set of constraints linked to X . Lower-case letters x,
Y, Wouc', ¢/ ,..., will refer to the values of variables X, ¥, W .., C*, C/, and subindices x 1, X 5,..., wil
be used to differentiate among the values of a single variable. We will extend this convention to refer to
p)’fv as the values of the variables in the port P)’f. For example, the port P‘y’é in Figure 3 is the set of vari-
ables (Y, Z, C;}, while P} stands for their associated values {y, z, ¢/ }. As stated before, the "value"
Qy will serve as a place holder for all those values of node Y that are not explicitly represented.

In constraint-propagation algorithms such as the one used here, the ports of a variable contain
enough information for the variable to update its state. This updating is usually done incrementally,
whenever a new state of a variable can be deduced from a neighbor constraint and its associated ports. We
shall refer to such inferences as messages, denoted by m(P§ — X)), where node X is the recipient and
port P)’E the origin. The specification of what information these messages carry, how they are generated

and how they are combined is described in the following subsections.
The Algorithm

Messages: Messages m (Pf — X) are built from a vector of sub-messages m (Pf —X;),
where the x;’s refer to values X may take. Each of these submessages is composed of three fields: x;,
N k(x,-) and S k(x,-), where the last parameter stands for the set of values p;’f of Pf which would "best"
support the potential observation X = x; and the second one for the weight associated with such support
(i.e., the minimum number of faulty components, in the subnetwork behind the port PX", necessary to ac-
count for X =x).

In short, a message m (Pf — X') can be expressed as:

mPg —>X)=_mPg —>x),
i
while m (P§ — x;) assumes the form:
m(P§ - x) =0, N¥(x) , SEGo).

IftN "(x,-) =oo , for some value x; of X, we simply remove x; from the set of values X that need(s) to be

considered.



Message Combination: The first requirement for message combination is that every node save
the last message received from each of its ports. New messages override old messages from any one port.
>From this set of messages, every node computes its state m (X ). That is, if we denote the combination of

messages by the M, then (for each of its values x;) X computes the states:

m@)= ( mP§ox)

ke C{X)
= (xl » N(x;) s S(xi ))& (4)
where
Nxp= ¥ Nx) ©)
ke CX)

is called the weight associated with x; and represents the minimum number of faulty components necesary
to account for the current set of observations and the instantiation X = x;, and
Sty= U S, (6)
ke CX)
the support of x;, encodes the state(s) of the neighborhood of X that will best account for all the observa-

tions and the instantiation X = x;.

Upon observing X = x;, the set of optimal diagnoses can be easily retrieved by tracing the sup-
port associated with x;. N (x;) represents the number of faults involved in any of these hypothetical diag-

noses.

Message Assembling: To illustrate how messages are computed, let ¥4, ¥»,....Y, stand for the

variables of P)‘E . The parameters of the message m (P)‘(t — x;) are computed from:

n
N*(;) = min > ING)-N*O)I . Q)
Y1Y 20¥ i=1
subject to CH{(x;,¥ 1yeids)
and
k 1 = k
S*(x) = min X INOH-N I, (8)
Vi zdn j=1
subject to CHxY 10endn)
where the y f 's range over the values of Yj, and C k(x,- Y1.Ya .- ., Y,) denotes a predicate indicating the

compatibility of its arguments according to constraint £. The subtraction of the component N k(y) from
the weight N (¥ ) amounts to subtracting the contribution of X to N (y), and procedures counting any fault
more than once.



Initialization: The propagation algorithm requires that nodes be properly initialized. A node, C,
representing a component status will be initialized to:

m(C) = ((0k,0,( )
(—ok,1,0))) ,

while any other variable ¥ will have an initial state:

m(¥)=(Qy,0,()).

Observations: The observation X =x is codified as a message from a virtual port Oy of X :
m(Ox = X) = ((x,0,0))), ©)

where absence of sub-messages corresponding to other values of X is interpreted as N (X =x;)=ee for
any x; #x . For the purpose of applying formulas (5)-(8), for any observable node X , virtual ports Oy are
taken to be members of the set C (X ) of ports linked to X .

Control of the Propagation Process: While an orderly and incremental propagation scheme would be the
most efficient implementation in serial machines, the algorithm can also work under distributed control, in
which each node inspects the state of its ports at its own discretion. The final state reached at equilibrium
would be the same.

We now proceed to illustrate the working of the algorithm on a simple circuit discussed in [deKleer 86],
[Genesereth 84] and [Davis 84].

I11. Example

Let us consider the circuit depicted in Figure 4: Components M |, M , and M 5 are multipliers, while A ;
and A ; are adders. The former will correspond to constraints C |, C'5 and C 3, and the latter to constraints
C 4 and Cs. Initially, all inputs are known and propagated through the rest of the network, generating the
pattern of messages shown in Figure 5(a). Figure 5(b) displays the states of nodes X and F'. Let us as-
sume, now, that F = 10 is observed. From Eq.(9), a message m (Op — F) = ((10,0,())) is posted at F/
so that the resulting state of /', according to Eqs. (4)-(6), becomes:



Figure 4 - A Simple Circuit and Its Constraint Network

m(X) = ((6,0,{U,=3,],=2,M =0k)})

I3 " | (el A wrad
( . £ UL ".)} (QX sls{(II=3’12=2’M 1=_!0k )}))

I -2 "y (j,éfca').
7 {2 t)) \ m(F) = ((12,0,{X =6,Y =6.A =0k )
ue3- oy (66, Au, (2.c) (Qp,1,{(X=6,Y=6,A ;=—0k)
- e (e 1 ) (X =Qy,Y =6, 1=0k)
=3 = (X =6,Y =Qy A 1=0k)}))

Figure 5 - (a) Pattern of Messages Generated by the Input  (b) States of X and F

mEY=m@Pg->F)nm(Op > F)

= ((12,0,{X =6,Y =6,A 1=0k }) N ((10,0,00)) ,

(Qp ,1,{(X=C2y,Y =6,A ;=0k)
(X =6,Y =y A 1=0k)
(X =6,Y =6,A |=-0k)}))
Since F = 10 was not explicitly represented in the previous state of F, the best "prediction” of the ob-
served value is the one associated with (. Furthermore, since all values of F other than 10 are ruled out

by the observation, we obtain:
m(F) = ((10,1,{(X=Qy Y =6,A ;=0k)
(X =6,Y =Qy A (=0k)
(X=6,Y=6,A =—0k)])) .
Since the observed value F =10, has three unit-weight supports, we can immediately assert that there are
at least three different, equally meritorious, diagnoses accounting for the enhanced set of observations,
each of which is encumbered by a single faulty component (A , M | or M ;). We can uncover the identity
of the faulty components involved in these diagnoses by simply tracing their respective supports. For in-

stance, underlying the support (X =£2y,Y =6,4 ;=ok ) of F =10, we find a single fault C | = —ok associ-

ated, in turn, with the support of X = Qy.
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The new message m(Op — F) also causes a pattern of additional messages to propagate
throughout the network. However, this propagation is necessary not for finding the diagnoses, (these can
be found by tracing the existing supports) but for preparing the support lists of the network to accommo-

date new observations. Figure 6 illustrates the computation of one of these messages, m (P)‘fl - X).

LR T
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")(- ('R_‘lll.): ! (O’u.,l‘ '”
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(6, 0,°)
CINR)
mP¢ =X =Qy) = (Qy,1,{(Y=6,F =10,A ;=—ok)
m(Py — X =4) = (4,0,{(Y =6,F =10,A =0k)}) (Y =Qy F=10,A 1=0k)})

Figure 6 - Computing (a)m(P)? -X =4) (b)m(PX4 — X = Qy) after Observing F =10

Note that, for the purpose of computing N 4(X ), the weights associated with the variables in Pf (ie.,Y,
F and A ;) do not include the contributions of messages originating from P 4 as specified in Eq.(7).
Figure 7(a) illustrates the new pattern of messages resulting after the observation F = 10. Each message
is depicted next to its originating port; additionally, any node that has receiving messages from more than
one port computes its new state according to Eq.(4). Figure 7(b) displays the updated state of nodes A ;
and G.

Assume that G = 12 is now observed. By simply tracing the supports associated with this value of &, the
optimal diagnoses accounting for this and all previous.observations is retrieved. Since the only support of
G =12 is (Y=6,2=0,A =0k ), and the support of Z=6 involves no fault, the two best explanations arc
found encoded in the support of Y =6, namely, either {M | = —ok } or {A | = ok}, respectively.

The computations required by the algorithm also provide information useful in selecting test pro-
cedures. Not only do the resulting data structures encode the best diagnoses accounting for any potential
observation at any point in the circuit, but they also encode, through the supports attached to component
nodes, the network state most compatible with any component status. This tums out to be especially use-

ful when we want to select test points to discriminate between different hypotheses.
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IR m(A )= (ok,1,{(X=Qy ¥ =6,F =10)
e (X=6,Y =Qy F=10)})
@) (mok,1,{(X =6,Y =6,F =10)}))

]

(2uy) by W (12,1,((Y =6.2=6.A =0k )))
’ ¢ (Qg,2,((... ))))

‘ ‘}Lﬂf;i‘ﬁ m(G) = ((10,1,{(Y =4,Z=6 A y=0k )})

Figure 7(a) - Pattern of Messages after F = 10 (b) - New States of A and G

Let us also note here that the scheme proposed does not guarantee finding all irredundant diag-
noses [Peng 86], but only those with a minimum number of faults, i.e., the optimal diagnoses. A method
of enumerating the former is described in [Dechter 1986).

IV. Enhancements

In this section we will discuss some modifications to the scheme introduced in Section II to
enhance the types of models with which the algorithm can deal. We first discuss how to extend the
message-passing algorithm to handle constraint networks containing loops and then propose a slight

modification to accommodate models with specified component-failure probabilities,
Handling Constraint Networks with Loops

The strengh of the proposed scheme lies in its ability to decompose global optimization problems
into local ones. To achieve this, we assumed that messages received by a node from different ports carricd
independent information, i.e., do not emanate from common observations. It is easy to find systems in
which this assumption is violated, as in the example of Figure 8. Clearly, the information carried by both
inputs of C'4 will depend on the status of C,. Thus, knowing m (¥) and m (W) no longer suffices to
compute m(Z). The reason is simply that, for some pairs of values y and w of ¥ and W, respectively,
m(y) and m(w) might involve a common set of faulty components; so, the weight associated with a
value z of Z supported by y and w will not necessarily be the sum of the weights of its supporters. In ad-
dition, m (y ) and m (w ) may involve incompatible labelings of X ; so, we must ensure that they do not ap-
pear in a same support set.
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Figure 8 - A Circuit Comtaining a Loop.

The solution that we will pursue is not new [Pear] 86.a] [Dechter & Pearl 86] and rests on the idea
of treating a "loopy" network as a family of singly-connected networks in which some of the variables
(usually those corresponding to a cycle cutset and referred to here as "assumption" nodes) have been as-
signed a fixed value (Figure 9). A fixed-value node can be partitioned into a set of identical nodes, cach
connected to one and only one of its original ports while still preserving the overall behavior,

T Z o
- » oo
\
_ t i
! |
=~ %00
Figure 9 - A Loopy Network Treated as a Family of Singly-Connected Networks.

To illustrate the modifications needed to handle loops, let us consider (Figure 10) constraint network S
where the instantiation of assumption node A decomposes it into a pair of singly-connected networks, S ;
and § 2.

DRV

SNl
< _"' .
<) C"l

Figure 10 - Breaking Loops by Introducing Assumptions.

Let O =0 {0, represent the set of observations gathered and O f correspond to observations in sub-
network § ;- Recalling the notation introduced in Section II, N (S,0) stands for the number of faulty
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components needed to account for the set of observations O in system S, while N (y) is simply shorthand
for N(§,0 w{Y=y}). We shall now use the abbreviations:

W,(x)=N(S;,0;UfA=a X=x]) forX S, (10)
N,(x)=NE$S,0UfA=a X=x}). (11)

and
Ni@)=N(S;,0; U{A =a)}) (12)

By applying the algorithm previously described and assuming A =g, we are in a position to com-
pute W, (x), for any node X € S;, i.e., the minimum number of faults in S;, needed to account for the ob-
servations O;U{A=a X=x}. We are interested, however, in computing the weight
N(X=x)=N(S,0 U {X=x}),ie., the total number of faults in § needed to account for the entire set of
observations O \U {X =x } without any assumption about the value of A . This can be obtained by writing:

N(x) =min N, (x)
=minN(S,0 U{A =a,X =x})

= min |:N(SI,01U{X =x]uU{A =a})+2N(SJ,OJU{A =q})

J#i
= min [W,,(x)+N(a)-N*‘(a)} (13)

where

N(a)=3 N/(a) (14)
i

Thus, if the minimum is achieved at A =a ¥, the optimal set of diagnoses will be obtained from the sup-
ports associated with X =x under the assumption A =a * and from those associated with A =a " in itself,
unconditioned by X =x. >From Eq.(13) it is clear that the computation of N (y ) for any node Y can be
reduced to the computation of W, (x) for every value @ of A and every value x of the nodes X in S.
These weights can, in tum, be computed by executing the procedure discussed in Section II. Independent-
ly, for each of the singly connected sub-networks S;, we still need, though, to provide a mechanism to
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keep track of the weight N i (a) associated with that subnet (S;) which contains X .

The Algorithm

Since each instantiation of the cutset variables identifies a set of singly-connected networks, let us
tag every message that is supposed to propagate in that set with the identity of such an instantiation. We
shall refer to the instantiated nodes as assumption nodes, 10 their instantiations as assumptions or tags, and
to each of the virtual singly-connected networks corresponding to particular tags as contexts. The manner
in which tags are treated in this modified scheme bears a strong resemblance to the way assumptions are
treated in the ATMS [deKleer 86].

As with node values, the message-passing algorithm will not explicitly represent each of the pos-
sible contexts but will appeal, instead, to the special Q-values introduced in Section II. Now, however,
tags containing Q-values will be required to specify the range of values for which any £2-value stands. For
that purpose, to do this, we will use €(x{,...,x,) as the place holder for values of X other than
Xy, ...,X,. This will render a tag containing the instantiation X = x; incompatible with any tag contain-
ing the instantiation X = Q(...,x;,...). The -values assigned to non-assumption nodes are not required

to keep this extra information explicit; so, for them, we preserve our previous, simpler notation.

Messages will now be formatted as:

m(Pf = X) =1 ma(P§ - x;)
i
where a represents the tag of the message, and each submessage m, (PX" — X ) contains five fields:
ma(P§ = x) = (x, WE(x), S¥(x), a , Nf(@)),
where
Wff(x) represents the component of W, (x ) originated in the & -th port of X ;

Sf(x) denotes its underlying support; and
NX" (a) stands for the contribution N { (a)toN(a), forX € §;, as received from the & -th port.

Note that N;f(a) does not depend on the value of X . We have included it in the sub-messages only to

simplify the local computations.
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The state of a node is computed by combining all messages with compatible tags received by the
node from its different ports. For a value x of node X, the resulting state m (x ) is given by:

ma(x)z M\ mb‘(P)i{ —)X) ,
ieClX)
Ob;=ﬂ

=(x,W,(x),S,(x),a,Nx@a)), (15)

where W, (x) and S, (x) are computed as usual, within the context defined by each a, while the weight
Ny (a) is computed from:

Nx(a) = max Nx(a) . (16)

Since X € §;, Nx(a) is synonymous with N {(a), and we shall use the two notations interchangeably.
Messages are now assembled as in the case of singly-connected networks, with the additional constraints

imposed by the tags.

When a new observation, ¥ =y, is obtained, the optimal weight can be obtained according to Eq.(13):

N(y)=minN,(y)
= min [N (@)~ Ny(@)+W, ()] . am

If Y € 5;, and the minimum is achieved at A =a *, the set of optimal diagnoses can be obtained by tracing
the supports §,+(y) and § I@a*), for J #1i. Additionally, the message posted by the observaton ¥ =y

will have the form:
m,(Oy =Y)=((y,0,(),a,W,»)), (18)

where the last component amounts to setting N i(a) to the current value of W, (y), as specified by
Eqgs.(10) and (12).

The complexity of the resulting algorithm depends on the topology of the constraint network. If
X1.X5,...,X, are the assumption nodes, the worst-case complexity will be attained when all the as-

sumption combinations must be considered, yielding a total number of (tagged) messages proportional to;
JIVX: !,
i

where 1X; | refers to the number of values explicitly represented at node X;. On the other hand, if loops
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do not interact, a single assumption for each loop suffices, and the number of messages is reduced to:
p IR . €3 I
i

Figure 11 shows examples of each of these cases.

Figure 11 - (a) Complex Loopy Network  (b) Simple Loopy Network

To take advantage of the topology of the network, a preprocessing step should both select the assumption
nodes as well as delineate their scopes. In Figure 11(b), for instance, to decouple the information carricd
by the variables in the ports of ¥, it is sufficient to instantiate only node X . Similarly, node Z requires
only that node W be instantiated, while tagging m (Z) with X will unnecessarily increase the number of
messages propagated.

Another problem generated by the presence of loops in constraint networks is the inability of
unaided local constraint-propagation methods to enumerate, in advance, all the distinguished instantia-
tions of the cutsct variables. For instance, if we regard the components in Figure 8 as adders, and we hap-
pen to observe Z=13 instead of the predicted Z =135, the only value of X compatible with C; = —ok is
X =4, To arrive at this conclusion, we need either to solve a linear equation 2-X +5=13X or to step
sequentially through all the values in the domain of X. One way to obtain these solutions would be to
permit the engine to propagate symbolic values [Stallman 77]. This approach seems suitable for imple-
mentation in the scheme proposed here and corresponds to viewing the {2-values of assumption nodes as
symbolic values.

Example

To illustrate the extensions discussed in this section, let us consider the diagnosis of the four-
adder circuit depicted in Figure 8. To render the constraint network singly-connected, it is sufficient to
select X as an assumption node which breaks the circuit in two halves, S and § ,, as in Figure 12. Pro-
pagating the inputs yields the pattern of messages shown in Figure 12, where the middle field, correspond-
ing to message support, was omitted for clarity. Within § 5, messages have been split into two sets (dep-
icted in brackets), corresponding to each of the assumptions: X =35 and X = Qy(5) (X #5). Within
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c‘l A C"! (O -Y) -

)y o4
2 ,-m(e.;-»_k;) 5%: *’é_ L m( 15 2 2)
3 PR & ¢ < .Mim ((m_l\’_—_—_—-—-,
S S 5
m(Py — X)=([(5,0X=5,0)] m(P3 — W)=([(9,0.X=50)
[(Q2x(5),0,X=Qx (5},1DD (Qw ,1,X=5,0)]

[(Qx (5)+4,0X=Qx(5).,0)
(Qw ,1.X=Qx (5),0)])
m(P# — ¥)=([(6,0X=5,0)
(Qy,1,X=5,0)]
[(Qx(5)+1,0X =0 (5).0) m(P# - Z)=({(15,0X=5,0)
(Qy,1.X=Qx(5).00D) (Qz,1.X=5,0)]

(2 Qy(5)+5,0.X =0, (5) 0
@ 1 x=0, o

Figure 12 - Pattern of Messages Generated by the Input

each of the sub-networks delimited by X, the second field W, (V) denotes the number of faults (in the
subnetwork containing V') needed to account for the observations and the assumption X =x. Note that the
computations in 5 5, in the context X =35, proceed as if S5 were the entire network and X =5 were the in-
put. The difference with the singly-connected case is essentially that messages propagated in this context
carry, besides the previous measures and the identifying tag, a weight ¥ 2(x) that quantifies the context it-
self (the last field). On the other hand, L5 (5) is propagated as a symbolic value, and its argument 5 en-
codes the range of X values for which it stands (i.e., any value except 5). The weights are combined ac-
cording to Eq.(9), so that no single fault is counted more than once.

Let us assume now that Z = 13 is observed. According to Eq.(18), the set of messages that will
be posted at Z will have the form: m,(O; — Z)=((z,0,( ),a ,W,(Z=13))), where a is the correspond-
ing tag. For the tag X =5, we have Wy_s(Z=13)=0, which is retrieved from Wy_s(Z =Q). For
X =Qx(5), the requirement that 2- Qy(5)+5=13 yields (by simple manipulation) the new tag X =4,
with an associated weight Wy _,(Z=13)=(. For values of X other than 4 and 5, i.e., 2y (4,5), we have
Wy-q,@4,5Z=13)=W _q 5(Z =Qz)=1, so the resulting observation message posted becomes:

m(0z = Z) = ([(13,0,().X =5,1)]
[(13,0.().X =4,0)]
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[(13,0,(),X =Qx (4,5),1)] .

The optimal weight N (Z=13), as obtained from Eq.(15) is:
N(Z=13) =min [N{x) - Nz(x)+ W_(Z=13)] .
X

since N (X =5)=0, N(X=Qx (5)) =1, while N2(X =5) = N}(X =Qy (5)) =0, the minimum is achieved
at both X =5 and X =4, rendering N(Z =13)=1. At this point, the optimal diagnosis can be obtained
from the supports {Sy-5(Z=13) U S (X =5)}, and from {Sy_4(Z=13) U S (X =4)].

This observation generates a new pattern of messages to be propagated through the rest of the network.
The computation of the message m (P? — Y ) is illustrated in Figure 13,

. m(C 4)=((ok ,0)
m(Py — Y)=([(4,0X=5,1) e (—ok,1))

(%Qg,kl'}izs’l)]
[(ﬁy ,1,_X’=2,0)] C— m(O0z2Z)= ([[((llggi =Z,(1)))]]
9-0y(4,5,0,X=0 4.5),0 s =4,
[((QY 1X ,J(f =g%x(f5) 531() : )\ [(13,0,X =Qx(4.5).1)D
m Py — W)=(1(9,0,X=5,0)
(Qy ,1,X=5,0)]

[(Qy (5)+4,0,X =0x(5).,0)
(Quw . 1.X=Qx(5),0)]

Figure 13 - Computing m (P}it — Y) after Observing Z=13.

and the new state of Y, m(Y'), is computed as illustrated in Figure 14, If, now, Y =5 is observed, the op-
timal diagnosis weight is obtained by minimizing N, (¥ =5) over x, according to Eq.(17), yielding the
weight N (Y =5) = 1. That is, there exists at least one diagnosis involving a single faulty component that
accounts for all the observations. While we did not show the supports in the previous computations, it is
easy to show that the single optimal diagnosis obtained by tracing the supports,
{Sy4Y=50US 1(X =4)}, cormresponds to {C1=—0k}.



mN=mP} >Y) N mP}>Y)

=([(6,0.X=5,0)
(Qy,1,X=5,0)]
[(Qx(5)+1,0,.X = (5) ,0)
(Qy,1,X =Qx(5),0)])

=([(4.1,X=5,1)

(6,1,X=5,1)
(Qy,2,X=5,1}]

[(5,0.X=4,0)
(Qy,1,X=4,0)]

[(9_ QX(4’5) ,1,X=Qx(4,5) ’ 1)
(QX(4-»S)+ 1 ,1,X=Qx(4,5) sl)

Qy ,2.X=L2x(4,5),1)])
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([(4,0,X=5,1)
(Qy,1,X=5,1)]
[(5,0,X=4,0)
(Qy.1,X=4,0))
[®-€2x(4,5).0,X =0y (4,5),1)
(Qr,1.X=0(4,5),1)])

Figure 14 - Computing m (Y) after Observing Z=13.

Varying Failure Rates

The criterion of minimizing the number of faulty components is reasonable in situations where

there arg no reasons to believe that different components fail with significantly different frequencies. If

such is not the case, information about component failure rates could be easily integrated in the scheme

proposed. One needs only to change the initial states of the component nodes. For example, instead of ini-

tializing component node C;, to:
m(C;) = ((0k,0,())
(_‘Okal’( ))) s
we can initialize it at:

m(C;) = ((0k,0,( )
('"'Ok ’k log Pi:( ))) »

where P; is the probability of failure in component C;, and % is any suitable constant.

For those cases (the majority) in which the components’ failures are independent, the set of diag-

noses obtained with this slight modification, will be those with the highest probability.
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V. Conclusions

We have introduced a distributed diagnostic algorithm which fully exploits the topology of the
network of the system being diagnosed. The algorithm has linear complexity for singly-connected net-
works and a worst-case complexity of exp (| cycle —cutset 1) for multiply-connected networks.

The proposed scheme departs from previous work by treating each component status as a variable,
thus facilitating the prediction of all possible model behaviors. This allows the message-passing algo-
rithm to perform the whole diagnostic task without appealing to non-local set-covering procedures. It also
simplifies probabilistic approaches like {Pearl 86] by taking advantage of the deterministic nature of the
models analyzed.

The intermediate computations generated by the algorithm provide information useful for select-

ing of new tests. Additionally, information about component failure rates can easily be accommodated.
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