DECOMPOSING AN N-ARY RELATION INTO A TREE
OF BINARY RELATIONS

Rina Dechter February 1987
CSD-870011



TECHNICAL REPORT
R-76

CSD-8700##

January 1987

DECOMPOSING AN N-ARY RELATION INTO A TREE OF BINARY RELATIONS* +

Rina Dechter
Cognitive Systems Laboratory
UCLA Computer Science Department
Los Angeles, California 90024

*This work was supported in part by the National Science Foundation, Grant #DCR 85-01234; _
1 accepted for publication in Proceedings of the 6th ACM SIGACT-SIGMOD-DIGART Symposium,

March 1987.



DECOMPOSING AN N-ARY RELATION INTO A TREE OF BINARY RELATIONS

Rina Dechter

Artificial Intetligence Center
Hughes Aircraft Compan({, Calabasas, CA 91302

an
Cognitive Systems Laboratory, Computer Science Department
University of California, Los Angeles, CA 90024

ABSTRACT

We present an efficient algorithm for decomposing an
n-ary relation into a tree of binary relations, and provide an
efficient test for checking whether or not the tree formed
represents the relation. If there exists a tree-decomposition,
the algorithm is guaranteed to find one, otherwise, the tree
generated will fail the test, then indicating that no tree decom-
position exist, The unique features of the algorithm presented
in this paper, is that it does not apriori assume any dependen-
cies in the initial relation, rather 1t derives such dependencies
from the bare relation instance.

1. Introduction

The primary use of functional dependencies and mul-
tivalued dependencies in relational databases is to guide the
decomposition of a relation scheme into a database scheme
consisting of smaller relations that satisfy the join-dependency
property, i.e., the reconstruction of the whole relation from its
components by the natural join operaton is lossless [6]. The
goal in decomposing a relation is to save storage by avoiding
redundancy. Query processing, on the other hand, which may
sometimes require the reconstruction of the whole relation,
becomes more expensive as the result of decomposition.

Some of the shoricomings of decomposition are
avoided if it is decomposed into a tree of binary relations.
Such decomposition will improve storage representation since
binary relations require considerably less space then an n-ary
relation. At the same time it also posses desired properties for
query processing. The fact that the relations do not contain
cycles guarantees that when the natural-join operations are
performed in an order prescribed by the tree-structure, the size
of the intermediate relations will grow monotonically. The
same goal is achieved by constructing join-trees for given acy-
clic data-bases [6].

In this paper we present a greedy algorithm for lossless
decomposing a relation into a tree of binary relations provided
that such decomposition exists. We also provide a simple test
for determining whether a lossless tree decomposition exists.
Furthermore, we show that if the relation is not tree-
decomposable then the tree of binary relations generated by
the algorithm is the best approximation of the given relation in
a certain sense (to be expounded later). This work was
motivated by a method proposed in [l] for approximating
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discrete probability distribution with a dependence tree.

The results reported here have their origins in area of
solving Constraint Satisfaction Problems (CSPs), which have
many applications in Artificial Intelligence {5]. Constraint
satisfaction problems involve the assignments of vatues to
variables subject to 2 set of constraints, where each constraint
is an {-ary relation on a subset of i variables (i <n), and the
task is to find one or all consistent solutions. The task of
finding all consistent assignments is equivalent to that of
reconstructing the whole relation from a given lossless decom-
position, Thus, a CSP is a data-base instance, variables in a
CSP correspond to attributes in a database and the constraints
of the CSP correspond to the relations in the database.

The general CSP is NP-Complete since some NP-
complete problems (e.g., the graph coloring problem) fall into
this class. However, various subclasses can be solved
cfficiently and their solutions were found to be useful in solv-
ing more general problems [4, 2],

One way for characterizing easy CSPs is by identify-
ing dependencies and independencies in the relation. If we
associate an hypergraph representation with a given database
scheme, where the nodes of the graph are the atributes and
the hyperarcs are subsets of atmibutes which appear in the
same relation, the graph structure explicitly represents
independencies that can be used by algorithms that process the
constraints. A special graph representation arises for binary
CSPs, i.e., where all the constraints are binary. In that case
the hypergraph is a regular graph (called a constraint graph),
and each arc corresponds to a binary constraint.

The best known and most useful result in this area is
that binary CSPs whose constraint graph is a tree can be
optimally solved in time bounded by O{nk*), where n is the
number of variables and £ is the number of values for each
variable [2]. Therefore, having a tree-representation of a
binary-CSP is valuable. Consider, for example, the relation
on FLIGHT, DAY-OF-WEEK and PLANE-TYPE
presented in figure 1. This relation can be decomposed loss-
lessly into the pairs (FLIGHT, DAY-OF-WEEK) and
(FLIGHT PLANE-TYPE). The associated graph is given in
figure 2.

In general CSPs the r-ary relation is, of course, not
available explicitly. However, having a procedure for deriv-
ing a tree decomposition from the whole relation can benefit
those applications where the CSP is being used several times,
e.g., databases and Truth-maintenance systems [3].



FLIGHT | DAY-OF-WEEK | PLANE-TYPE
106 Monday 747
106 Thursday 747
106 Monday 1011
106 Thursday 1011
204 Wednesday 707
204 Wednesday 727

Figure 1: the relation (FLIGHT, DAY-OF-WEEK PLANE-TYPE)

DAY-OF-WEEK PLANE-TYPE

Figure 2: the graph associated with
(FLIGHT,DAY-OF-WEEK),(FLIGHT PLANE-TYPE)

2. Definitions and Preliminaries

Let p denote an n-ary relation over the set of atribute
U= {X,,...,X,}, which is a subset of the cartesian product
Dom(X1)x,..., xDom(X,) when Dom(X;) is the set of
values of attribute X;. ps denotes the projection of p on a sub-
set § of attributes. The assignment of specific values to some
subsets of attributes is called instantiation. An instantiation
corresponds to a restriction of p to only those n-tuples that
"match” the instantiation. The property of a relation that
enables a lossless decomposition into two smaller relations is
what we call conditional independence which is closely
related to the notion of Multi-valued-dependencies (MVDs).
Two subsets of atiributes §; and S, are said to be indepen-
dent in p if pg g, =ps, x ps, where 5,5, denotes the union
of 5y and 5. If X; and X; are independent, then instantiating
one of them to any legal value does not make any legal value
of the other illegal.

Definition: 5, and §; are conditionally independent given
§3, denoted by <5, | §3 | §5>, if they are independent in
the resirictions corresponding to ail possible instantiations of

S3.

The conditional independence <§; | 53 | §7> means
that knowing any particular instantiation of 53 makes the
instantiation of § irrelevant for §; (and vice versa). Condi-
tional independence parallels the notion of embedded MYDs
[6]. Tharis, <§;18315;> iff §3——5, in the projection of
p on §§,8;. If in a relation p, <§3 | §; t 83>, when
§3=U -85 then p can be decomposed losslessly into the
database scheme §,5, and §,53. For instance, in Lhc_rplauon
of figure 1, the atribute DAY-OF-WEEK is conditionally
independent of PLANE-TYPE give FLIGHT.

The constraint-graph associated with a particular
decomposition explicitly represents some of the conditional
independencies embodied in the relation. Every separation in
the graph corresponds to a conditional independence, ie., if a
subset .5y separates (in the graph) subset §; from S then
<85 | 81 | §3>. The term separation will therefore, be also
used to denote conditional independence. For a detailed dis-
cussion of conditional-independencies and their graphicat
representation see [7].

The following notations will be used throughout.

(x;) & number of n-tuples in p for which X; = x;
r;((x;, xj) & number of n-tuples in p for which X; =x; and

=X
and in!gcneml, n(x;y, ....x;) 2 number of n-tuple in p for
which X; 1 TXiLs ....,X,'; =X
Let S be any subset of U. ng(x;) & number of ISI-tuples in the
projection pg for which X; = x;
and in general, n5(x;,, . .. ,x;) 2 number of iSl-tuple in pg for
which X,'l =Xi1 ,....,Xi, = Xjp

3. Tree-decompesition
The following is a demonstration of the algorithm

which will be developed in the sequel. Consider the relation
over the binary atributes {X,Y,Z,T,F}, given in figure 3,

X|ZIY|T]|E
[ K] 1 1 1
0 0 1 1 0
0 1 1 1 I
0 1 1 110
0 1 1 0 1
0 170 1 1
0 119 10
G 1 0|0 1
Figure 3:

The first step is to compute the n-quantities {n(x;)} and

{nlx;,x;)} for all anributes and their values. Obtaining:
n(X=0)=8, n(Z=1)=6, n{Z=0)=2,
n(Z=0,Y=1)=2, n(Z=1,Y=1)=3 etc.

Next, for each pair of atmibute (X;,X;) we compute the

weights m (X;,X;) according to the formula given in equation

(3) that follows:

mX.Zy=mX,Y)=mX,T}=m(X,F)=-16.63.
m(Z,Y)=-1397, m(Z,T)=-1595, m(ZF)=-16.55,
m(Y.,T)=-16.55, m(Y.F)=-17.13, m(7T,F)=-15.50.

Finally, using the maximum-weight spanning-tree algorithm
on these weighted arcs, the tree shown in figure 4 is produced.
This tree, and its associated data-base (see figure 4) is a loss-
less decomposition of the relation.

N
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Figure 4



The following paragraphs contain the justification to
this algorithm,

Let T be a directed tree on Xl-_--X,,,T can be
represented by (parent, son) pairs of directed arcs ic.,
T ={(X; Xj(,'))}, where Xj(,') iS_ the parent of Xi n T: XO
denotes the root of the tree. With each Ercc T we afsocmtc &
mapping (denoted alse by T) T:p — R* where R™ are real
numbers, defined by:

Y¥Iep X=X1,--.1%n

m=lon(x, X))

- L 2 A 1
T@ =ntxo) 11—y m

For each tree T we define a measure F 5 (T)
Fo(T)= I logT(X)
Tep
!I(X" I'(i))
= Tlog nxo) - 2 %)
i (xx;) €T n(,tj(;))
n—1
X
Fo=35 | B log 2EHO)

- i=1 X
€9 (x‘_x}_(")) € T J(‘))

+log n{xg)

n-1

x| Z
- i=1 X -

*EP Mz X e T nGxInGj)

LG + b log nix;)
i=0

n(x;, X))
n{xn(x;iy)

= "f Xlog

izlfsp

-1
+ Iplnz log n(x;)
i=0

We get that:
-1 n(xi, Xj))
Fo(T)= A(xiXjp) log ———=== (2)
P E; Wge o i n(xn(x;gy)
n-1
+lpl Slogn(x)
=0
and therefore,
n-1
z n-1
Fp(T)= ) m(X;, X;p) + 1pl X log n(x;)
= i=0
X Xja)eT ‘
where
n(x;xj(,-))
mXX; ) = Axix;jq)) log ———=—=—(3)
i) (x.-x,»u,?épu, G nxn(X;a))

Since the second element in the sum is independent of the tree
structure, F,(T) can be maximize by the MST algorithm
when m is the weight of the arcs.

We will show next that if p is representable by a tree
and if F gets its maximum value in Ty then Ty is a tree
representing p. Otherwise the relation represented by the
data-base T, is the "closest” to p, in some sense.

Theorem 1: Ifp has a tree representation then any T which
maximizes F provides such a representation, when each arc
of Ty is associated with the projection of p on the pair of attri-
butes connected by the arc.

The validity of theorem 1 follows from:

Theorem 2: T is a wree representing relation pr if and only if
¥X e pr
n(xix;,)

n —-=1 4
"(XO)(i.jo'»er nx;,) @

To show that theorem 1 follows from (4) we reason as
follows: Since F is a concave and symmetric function on
V={TG).... TG)ITeTREES} and it is bounded by a

symmetric constraint ¥, T (x) £/ [1] where / is the size of the

F 4
relation pr, F’s extremum (maximum) is achieved when T(X)
are all equal. Moreover, since F is monotone w.r.t. each of its
components, if there exist 7 5.4 T(x) = 1 *k, F will get its max-
imum in this T.

If p is not tree-decomposable, property (4) is not
satisfied and therefore the point (1,1,..,1) is not in the
domain, V, of the optimizaton function. The optimal 7, in that
case, will not constitute a lossless representation. However,
the tree found will still represent a relation “closest” to p in
the proximity measure defined by F. In that sense, the tree
associared with this maximum can be regarded as the best
approximation of p. We cannot conclude, however, that the
relation represented by the maximum-weight-tree is also the
closest to p in terms of the number of extra tuptes it con-
tains, although we believe that there is a strong correlaton
between the two measures.

Although, the proof could be derived from probability
theory using Chaw's result and a mapping between relations
and probability, we preferred to derive it in terms of relations
and thus to have the advantage of additional insight into the
properties of ree-decomposable relations.

Proof of theorem 2:

If an auribute, X;, separates two.subsets of attributes,
S1 and 8§, each containing X;, then, in the joined relation
each value of X; that appear in ps, will be duplicated as many
time as it appears in pg,. The following lemma states this

property.

Lemma 1: Let §1, 5, and §3 be subsets of U, s.t U/ =5, 5,55
then S5 separates 5, from §; iff

Yx e ps, mplx)=ns;s, (X)nss,(0)

A similar product form holds for a tuple in p:
Lemma 2: If X; separates §; = X, +-X;_, from §; =
Xiep X thcn*/fe p

H(Ij) = H(Xl . -xf-_lxj) . ?!(ijjﬂ X)) (5



8 .

Figure 5: <§,1X;15,>

Proof:

L&fc;sﬁ:gifm&:llz Since <Xy -+ Xj_y 1Xj1X;4 - Xp>
Yx;jeDom(X;) n(xj)=ng (x;)- ng, (x;) (6)

however

8 ong () =nlxXie c Xa)

b. ng, (x)=nlxy - x)).

(a) is true since {x;x;,1 - - - x,) & Pg, will appear in p as many
times as X; = x; appears in ps-, i.e., as many as ng-, (x;). The
same argument works for (b). Substituting (a) and (b) in (6)
yields (5).

O

Lemma 3: Let p be a relation on X - - - X,, represented by
tree 7. Let § be a subtree of T rooted at X; with X; = as its

parent nodes (see figure 6) then

Figure 6

X =X, ..., X)) € Py

n(xixj,) - A& = Xjp)
n(x;)

where §” is the union of § with X;;), and X — x;¢; is the tuple
in pg- without its j (i) element.

Proof;

P(Xi s XigaonXy ) =

LetS” be the complement of Si.e. S” = U - 5, ¥ be a member
of pg- and X ~ x;; is the tuple in ps- without its j (i) element.

From lemma 2 when applied to the relation pg, and from the
fact that X; separates X;(;) from S, we ger:

ngr(xj %) - g (X ~x;,.)

1= i tin P
ns-(x;)
Frorm the tree-structure we can also infer the following:
n(x;)=ng(x;) K
where K is defined by
K= p2i

x’'jqy compasible with x,
K denotes the number of times all values of X;¢;, which are

legal with the value x; of X; appears in the complement rela-
tion of 5.

also

®

ng~(x’jiy)

(¢}
n(xXj0y) = ag- (X0, X)) ns” (Xjy)
and (10)
n(x - x;gy) = ng (X ~ X i)y K
Substituting (8) , (9) and (10) in (7) we get:
n(x;, Xy ) R = X;(0)

s~ (Xjy) = prom) (11)

From the tree-structure we can also infer that 12)
ng" (xjiy) = n(X)

which yields the desired result -

Lemma 4: if § is a subtree of T rooted at X; and if X;
separates 51, 5, (see figure 7)

Xl

Figure 7
then¥x e §
n(x15,X;) n(x15,X;)
) = a3
@ )
where X |5 denotes the restriction of a tuple X to atributes
appearing in S.

Proof: (exactly as the proof of lemma 3)

From lemma 2:
ne(@18,1X))  ng(x152X,)

X = 14
YxeS§ 1 s %) (14)




Let §” = (U — §)X;, from the tree-structure we get:

(15)
n{x;) = ns(x;) - nslx;)
also for both $; and §'5 it holds that: 16)
n(x185.X;) = ng(X 15Xy ng (x;)
Since also
1
n(@) = ng(x;) an
we get that
n(x 1S5 X) - n(x15:X)
n@) = ) (18)
O

Theorem 2 can be proved by recursively applying lem-
mas 2,3, and 4. Given an n-tuple xep, then for xq, the root
value we first apply lemma 2 to yield:

n@L - Xg) A(xo "t Xa)
= . . = 1

L=nxy " xp° " Xa) (o) (19
where the indices in the first tuple and in the second tuple
correspond to two subtrees separated by X5. We continue 10
decompose each pant of the nominator by applying lernma 3
and lemma 4 as necessary until we have only single and pairs
of n-quantities. In this decomposition, each parent node
appears b—1 times in the denominator when b is its degree in
the ree. For all parents accept X, b-1 is also the number of
children; we therefore get:

nix;x; )
1= nrg) I——2- (20)
"(xfm)
which completes the proof of theorem 2.
4. An algorithm for tree-decomposition

The tree-decomposition algorithm obtain as input an
arbitrary relation p and returns a set of tree-structured binary
relations.

Tree-generation-algorithm
a. Compute basic quantities: n(x;} and n{x;,x;)

b. For every two attributes X; , X; compute the weights
m(X;,X;) given in (3).

c. Find the Maximum weight spanning tree algorithm
on the complete graph w.r.1. the above arc-weights.

d For each two mtributes that correspond to an arc in the
selected tree find the associated relation by projecting
the overall relation on them.

The compiexity of the algorithm is O {{{ + k)n?) where
n is the number of attributes, and k& bounds the domain sizes,
which can be shown by following its individual steps. The
computation of part (a) can be completed in O(In”) steps
when [ is the size of the relation. Part (b) is bounded by
O (n*k?) since O(n?) is the number of weights needed 1o be
computed, and each compwmation can take O (k“) steps. Since
part (c), i.e., the MST alggrilgm, takes just O(nz) steps, the
total complexity is O ({({+£“}n*).

To verify that the generated tree represent the input
relation, we can compute the number of n-tuples represented
by the tree and compare it to the size of the given relation. If
the two numbers are equal, the data-base losslessly represents
the relation, otherwise, we know that no tree-representation
exist. The size of a relation represented by the tree can be
computed in linear time. For details see [2].

5. Conclusions

We have presented an efficient algorithm for decom-
posing an n-ary relation into a tree of binary relations, and
have provided an efficient test for checking whether or not the
tree formed represents the relation. If there exists a tree-
decomposition, the algorithm is guaranteed to find one, other-
wise, the tree generated will fail the test indicating that no tree
decomposition exist. Moreover, the decomposition generated
represents the best possible tree-approximation along the
proximity measure defined by F. In that case, it may be advis-
able 1o regroup some attributes, and reiterate the process, until
8 lossless tree among the compound variables is achieved.
The initial tree generated by the algorithm may serve as a
good starting point for selecting candidates for regrouping,

The unique features of the algorithm presented in this
paper, compared to other work on Muli-valued-
dependencies, is that it does not assume any dependencies or
decomposition in the initial relation, it actually derives such
dependencies from the bare relation instance.
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