AN INTEGRATED STRATEGY FOR IMPROVED BACKTRACK

Rina-Dechter February 1987
CSD-870010

TECHNICAL REPORT
R-77

CSD-8700##

January 1987

AN INTEGRATED STRATEGY FOR IMPROVED BACKTRACK* +

Rina Dechter
Cognitive Systems Laboratory
UCLA Computer Science Department
Los Angeles, California 90024

*This work was supported in part by the National Science Foundation, Grant #DCR 85-01234.

AN INTEGRATED STRATEGY FOR IMPROVED BACKTRACK

Rina Dechter

Artificial Intelligence Center
Hughes Aircraft Company
and

Computer Science Department
University of California, Los Angeles
Net address: dechter@!locus.ucla.edu

Tel: (213) 825-3243

Paper type: full paper

Track: Science track

Topic area: reasoning,

Keywords: problem solving, learning, constraint-satisfaction, backtracking, cycle-cutset.

ABSTRACT

In previous work researchers in the areas of Constraint-Satisfaction Problems
(CSPs) and Prolog had suggested various enhancements to the Naive Backtrack algo-
rithm. Each scheme was presented and tested individually, and the average performances
were compared.

The contribution of this paper is in devising a backtrack strategy that integrates
three improvement schemes: "Backjump”, "Learning while searching” and the™ycle-
cutset method”; Backjump and the cycle-cutset method work best when the constraint-
graph is sparse, while the learning scheme mostly benefits problem instances with dense
constraint graphs. The Integrated-strategy proposed here lets each scheme dominates
when instances favorable to its performance are presented and makes them cooperate on
intermediate instances. The experiments show that, in hard problems, the average
improvement realized by the integrated scheme is by 20-25 % higher then any of the
individual schemes.

1. Introduction

The extensive use of backtrack as the main control mechanism in many Al pro-
grams has prompted researchers to suggest various schemes for enhancing its perfor-
mance. Each scheme was presented and tested individually, and comparisons among the
different schemes were based on average performance [Haralick 1980, Gaschnig 1979a,
Bruynooghe 1984}, However, no attempt has yet been made to integrate several kinds of
improvements into one algorithm or, discuss the trade-offs involved in such effort, or

even characterize the domain of instances on which each scheme will work best.

The contribution of this paper lies in integrating three improvement schemes
named "Backjump”, "Learning while searching” and the cycle-cutset method"; the
first being a graph-based simplification of a method proposed by Gaschnig [Gaschnig
1979b] while the later two were proposed by the author [Dechter 1986, Dechter 1987.]
and evaluated individually. Graph-based backjump and the cyclecutset method work
best when the constraint-graph is sparse, while the learning scheme mostly benefits prob-
lem instances with dense constraint graphs. In order to exploit the distinct merits of each
scheme it is necessary to insure the continued influx of information that each component
would receive were it to operate alone. The Integrated-Backtrack proposed here lets
each scheme dominates when instances favorable to its performance are presented and

makes them cooperate on intermediate instances.

The paper is organized as follows: Section 2 presents definitions and prelim-
inaries. Sections 3,4, 5 and 6 summarize the three schemes and their individual perfor-
mances, section 7 presents the integrated-Backtrack scheme and describes a set of

experiments for evaluating it, and section 8 contains concluding remarks.

2. Definitions and Preliminaries

A constraint satisfaction problem involves a set of n variables X,,....X,, each
represented by its domain values, Ry, ...,R,, and a set of constraints. A constraint
CiXi,, ,X;J.) is a subset of the Cartesian product R; x - - - xR.-j that specifies which
values of the variables are compatible with each other. A solution is an assignment of
values to all the variables which satisfy all the constraints, and the task is to find one or
all solutions. A constraint is usuaily represented by the set of all tuples permitted by it.
A Binary CSP is one in which all the constraints are binary, i.e., they involve only pairs
of variables. A binary CSP can be associated with a constraint-grap-h in which nodes
represent variables and arcs connects pairs of variables which are constrained explicitly.
Consider, for instance, the CSP presented in figure 1 (from [Mackworth 1977]). Each
node represents a variable whose values are explicitly indicated, and the constraint

between connected variables is a strict lexicographic order along the arrows.

Figure 1: An example CSP

The search space associated with a CSP has states being consistent assignments
of values to subsets of variables. A state (X;=x;,...,X;=x;) can be extended by any
consistent assignment to any of the remaining variables. The states in depth n which are
consistent represent solutions to the problem, namely n-tuples satsfying all the con-
straints, If the order by which variables are instantiated is fixed, then the search space is
limited to contain only states in that specific order. The efficiency of various search‘algo-
rithms is determined by the size of the search space they visit and the amount of compu-
tation invested in the generation of each state. It is common to evaluate the performance
of such algorithms by the number of consistency checks they make rather than the size of
the search space they explicate, where a consistency check occurs each time the algo-

rithm query about the consistency of any two values.

The enhancements to backtrack described in this paper are given in terms of
binary CSPs using the concept of constraint-graph but they are not limited to this class.
By associating hyper-graph with non-binary CSPs all these schemes can be generalized.

3. Backjump

The idea of going back several levels up in a dead-end situation, rather then going
back to the chronologically most recent decision made, is first mentioned by Gaschnig
[Gaschnig 1979b] who also gave the name for this method. Most recent schemes for
improving backtrack’s performance like dependency-directed-backtrack [Doyle 1979]
in Truth-maintenance systems, and intelligent backtrack in Prolog [Bruynooghe 1984)
are variations of that idea. Gaschnig’s algorithm uses a marking technique that summar-
izes previous consistency checks and utilizes this information in dead-ends. Specifically,
for each value that failed instantiation the aigorithm records the furthest level with which
that value was incompatible, so in case of a dead-end variable, it jumps back to the most

recent among the levels recoreded. Although this scheme retains only one bit of infor-

mation with each variable, it requires an additional computation with each consistency

check.

Graph-based-Backjump, extract knowledge about dependencies from the
constraint-graph. Whenever a dead-end occur at a particular variable, the algorithm backs
up to the most recent variable connected to it in the graph. In that way, the additional
computation at each consistency check is saved at the expense of a less refined informa-
tion about the potential cause of the dead-end. For example, if the search on the problem
in figure 1 is performed in the order X3,X4,X,X4,X s, then when a dead-end occurs at
X' the algorithm will jump back to variable X4 since X 5 is not connected to either X,

norX,.
4. Learning while searching

Each time the algorithm encounters a dead-end situation it has an opportunity to
learn, or explicate a constraint " Whenever the current state S =
(Xy=x1,...,X;-1 =x;_;) cannot be extended by any value of X;, we say that S is in
conflict with X; or, in short, that S is a conflict-set. An obvious constraint that can be
learned at that point is one that prohibits the set S. Recording this constraint, however, is
of no help since under the backtrack control strategy this state will never re-occur. If, on
the other hand, the set S contains one or more subsets which are also in conflict with X;,
then recording this information in the form of new explicit constraint might prove usefu!

in future search.

In the process of identifying smaller conflict-subsets we first remove from § all
the instanti;t‘ions which are irrelevant to X;, i.e. those that do not constraint any value of
X;. Recording this set, named Conf-set, as a new constraint is called shallow learning
since, on one hand its discovery doesn’t require much effort and on the other hand many

more potentially explicable constraints may be overlooked. The explication of these

constraints is referred to as deep-learning, and is performed by identfying subsets of the
Conf-set which are still in conflict with X;, in particular those which are minimai,

namely which do not contain any conflict-set.

Consider again the problem in figure 1. Suppose that the backtrack algorithm is
currently at state (X| =b, X3 =b, X3 =a, X4 =b). This state cannot be extended by
any value of X 5 since none of its values is consistent with all the previous instantiations.
As pointed out above, there is no point recording this tupple as a constraint among the
four variables involved and smaller constraints should be looked for. A closer look
reveals that the instantiation X; = b and X, = b are both irrelevant in this conflict simply
because there is no explicit constraint between X | and X5 or between X; and X5. Nei-
ther X3 =g nor X4 =b can be shown to be irrelevant and, therefore, the Conf-set is
(X3 =a,X4=>5). This could be recorded by eliminating the pair (a,b) from the set of
pairs permitted by C (X3,X4). This Conf-set is not minimal, however, since the instan-
tiation X 4 = b is, by itself, in conflict with X s. Therefore, it would be sufficient to record

this information only, by eliminating the value b from the domain of X 4.

Discovering all minimal conflict-sets amounts to acquiring all the possible infor-
mation out of a dead-end. Yet, such deep learning requires an exponential time and

storage space and as an alternative we proposed several schemes of controlled learning.

Independently of the depth of learning chosen, one may restrict the dimensional-
ity of the constraints actually recorded, i.e, the number of variables recorded. Con-
straints involving only a small number of variables require less storage and have a better
chance of -prunning future search than constraints with many variables. We can record
only conflict-sets consisting of a single instantiation, by simply eliminating a value from
the domain of the variable, which is referred to as first-order-learning. First-order

learning does not increase the storage of the problem beyond the size of the input and it

prunes the search each time the deleted value is a candidate for assignment.

Second-order learning is performed by recording conflict-sets involving only
one or two variables. Since not every pair of variables appear as a constraint in the initial
representation (e.g. when all pair of values are permitted nothing is written), second-
order learning may increase the size of the problem, but still in a manageable amount. In
general, an i*-order learning algorithm will record every constraint involving i or less
variables. Obviously, as i increases, the amount of analysis required increases and also

storage increases.

The additional storage required for higher order leaming can be avoided, how-
ever, by further restricting the algorithm to only modify existing constraint without creat-
ing new ones. This approach does not change the structure of the constraint-graph asso-
ciated with the problem, a property which is sometimes desirable [Dechter 1985}, We
therefore include this option into the various learning scheme and we can either add con-
straint or only modify existing ones. For a detailed description of the learning schemes

see [Dechter 1986}.

When deep learning is used in conjunction with restricting the order of learning
we get deep first-order learning (identifying minimal conflict sets of size 1), deep
second-order learning (i.e. identifying minimal conflict-sets of sizes 1 and 2), and in
general deep i*- order <learning. The combination of the three learning parameters:
depth (deep vs shallow), order (first-order vs second-order), and the possibility of "add"
or "modify"” only yield 8 leaming schemes.

5. The cycle-cutset method

The cycle-cutset method is based on two facts; one is that tree-structured CSPs

can be solved very efficienty [Dechter 1985), and the other is that variable instantiation

changes the effective connectivity of the constraint graph. In Figure 1, for example,
instantiating X ; to some value, say @, renders the choices of X| and X, independent of
each other as if the pathway X | — X3 - X, were "blocked" at X 3. Similarly, this instan-
taton "blocks” the pathways X| — X3 -Xs, X5 ~X3 =Xy, X4 — X3 - X5 and others,
leaving only one path between any two variables. The constraint graph shown in Figure

2a reflects this situation, where the instantiated variable, X 3, is duplicated for each.of its

neighbors.

x1 x2 x1 x2

(a) (b) ©)

Figure 2: An instantiated variable cuts its own cycles.

When the group of instantiated variables constitute a cycle-cutset, the remaining
network is cycle-free, and the cfficient algorithm for solving tree-constraint problems is
applicable. In the example above, X4 cuts the single cycle X3 - X4 — X in the graph,
and the graph in Figure 2a is cycle-free. Of course, the same effect would be achieved by
instantiating either X4 or X5, resulting in the constraint-trees shown in Figure 2b and 2c.
In most praetical cases it would take more than a single variable to cut all the cycles in

the graph (see Figure 3).

One way of exploiting the simplicity inherent in tree-structured problems works

as follows: To solve a problem whose constraint graph contains cycles, instantate the

Figure 3: A constraint graph and a constraint-tree generated by
the cutset {C.D}

variabies in a cycle-cutset in a consistent way and solve the remaining tree-structured
problem. If a solution to the restricted problem is found, then a solution to the entire
problem is at hand. If not, consider another instantiation of the cycle-cutset variables and
continue. Thus, if we wish to solve the pro‘blcm in Figure 1, we first assume X3 =a and
solve the remaining problem. If no solution is found, then assume X3 = b and oy again.
Since the tree-CSP can be solved in O(nk?), the cycle cutset method can bound the

worst-case solution of CSPs to O(c*), when c is the size of the cutset.

This version of the cutset method is practical only when the cycle-cutset is very
small because, in the worst case, we may examine all consistent instantiations of the
cycle-cutset variables, the number of which grows exponentially with the size of the

cutset.

'A more general version of the cycle-cutset method would be to incorporate it
within a backtrack algorithm, i.e., to keep the ordering of variables, used by backwrack.
unchanged, and to enhance performance once a tree-structured problem is encountered.

Since all backtracking algorithms work by progressively instantiating sets of variables,

all one needs to do is to keep track of the connectivity status of the constraint graph.
Whenever the set of instantiated variables constitutes a cycle-cutset, the search algorithm
is switched to a specialized tree-solving algorithm on the remaining problem, i.e., either
finding a consistent instantiation for the remaining variables (thus, finding a solution to
the entire problem) or concluding that no consistent instantiation for the remaining vari-

ables exists (in which case backtracking must take place).

Observe that the applicability of this idea is entirely independent on the particular
type of backtracking algorithm used (e.g., naive backtracking, backjumping, backtrack-
ing with learning, etc.). Let B be any algorithm for solving CSPs and let B, be its
enhanced cycle-cutset version. Both algorithms will explore the cutset-part of the search
space in the same manner (dictated by the specifics of algorithm B), with algorithm B,
using a tree-algorithm for exploring the remainder of the search space (see Figure 4). In
cases where the probiem has a tree-constraint graph, B, coincides with a tree-algorithm,
and when the coastraint graph is completé, the algorithm becomes regular B again. In
general the cycle-cutset method can be shown to potentially improve any Backtrack
scheme. For details see [Dechter 1987.]

Backtrack's search
on tset

cutset-lea Tree's search

Figure 4: The search space of algorithm B...

10

The tree algorithm used is the one presented in [Dechter 1985], which is optimal
for tree-CSPs. The algorithm performs directional arc-consistency (DAC) from leaves to
root, i.e., a child always precedes its parent. If, in the course of the DAC algorithm, a
variable becomes empty of values, the algorithm concludes immediately that no solution
exists. Many orderings will satisfy the partial order above (e.g. child precede its parent)
and the choice may have a substantial effect on the average performance. The or&cring
we implemented is the reverse of "in-order” traversal of trees [Even 1979]. This order-
ings had the potential of realizing empty-valued variables early in the DAC algorithm
and thus concluding that no solution exist as soon as possible. When a solution exists,
the ee-algorithm assigns values to the variables in a backtrack-free manner, going from

the root to the leaves. The tree-algorithm is presented next.

Tree-backtrack (d =X,,....X,)

begin
call DAC(d)
If completed then ﬁnd-solunon(d)
else (return, no solution exist)
end

MEWN-

DAC- d-arc-consistency
(the order 4 is assumed)

begin
Fori=nto 1 by -1 do
For each arc (X;,X;); j<ido
REVISE(X;,X;)
IfX;is empty. return (no solution exit)
end
end
end

Nowuah L=

The procedure find-solution is a simple backtrack-algorithm on the order d
which, in this case, is expected to find a solution with no backtrackings. The algorithm
REVISE(X;,X;) fMackworth 1977] deletes values from the domain of X; untl the

11

directed edge (X;,X;) is arc-consistent i.e., each value of X ; is consistent with at least

one value of X;.

6. Summary of previous results

We experimented with Backjump and learning schemes on various classes of
problems among which we will focus on the two that were most characteristics. One is
the Zebra problem which represents a class of difficult problems and can be modeled as
a binary CSP by defining 25 variables each with 5 values (the problem statement is given
in the appendix). Several instances of this problem were generated by randomly varying
the order of variables’ instantiation. The other class is a set of randomly generated
Planar CSPs which yield easy and moderately difficult problems. Planar-problems are
CSPs whose constraint-graph is planar and therefore can be regarded as representative
for problems in vision. These problems were generated from an initial maximally con-

nected planar constraint-graph with 16 variables (see figure 5).

a b

Figure §: A 16-node, fully triangular planar graph
Two parameters p, and p;, were used in the generation. p; determines the probability

that an arc will be deleted from this graph, while p; determines the probability that pairs

12

of values belonging to constrained variables are compatible.

Backjump and the learning schemes were immediately integrated. We compared
backjump to naive backtrack without any learning and then added to backjump each one
of the learning scheme to see their additional impact. Each problem instance was solved
by eight search strategies: naive backtrack, backtrack with backjump (no learning}, and
backjump coupled with each of the six possibie modes of learning. The results (i.c. the
number of consistency checks performed) for six problem instances of the zebra problem
are given in figure 6 (the distinction between adding or modifying constraints are omit-
ted since the difference in impact between these two types of learning was negligible for
this problem). Figure 7 depicts the results for the planar-problems after grouping them

into clusters (of roughly equal instances) and averaging over each cluster.

Our experiments (implemented in LISP on a Symbolics LISP Machine) show that
the behavior of the algorithms is different for different problems. In all problem instances
we see an impressive improvement in performance due to backjump alone, and an addi-
tional more moderate improvement for the shallow learning schemes. For the zebra
problem, the second-order-deep leaming caused a second leap in performance, with
gains over no-leaming-backjump by a factor of 5 to 10. For the planar-problems the
behavior pattern is different. The improvemgnt gained by Backjump and shallow-
learning deteriorates by deeper forms of learnings. For this class, the amount of work
invested in these deeper learning schemes outweighs the saving in the search. Note also,
that the add leaming mode is compared unfavorably with the modify mode, which can
be cxplaineﬁ by the fact that adding constraints make the graph denser and cause

backjump to be less effective.

Two other classes of problems we experimented with are class-scheduling prob-

lems and random CSPs. The first class represent very easy problems (instances of this

13

problem were also generated by changing the order of variables) and their solution by
naive-backtrack was very efficient. We couldn’t therefore see an improvement by the
learning schemes but no significant deterioration was observed either. The random CSPs
were created by generating random constraint-graphs. For this class the results were of

the same nature as for the planar-problems and therefore are omitted here.

The performance of the cycle-cutset method was compared to that of the naive
backtrack on all the instances of the planar problems as well as on one instance of the
zebra problem. In figure 8 the performance of naive backtrack and backtrack with the
cutset method (denoted by Backrrack.) are compared. The X-axis is the number of con-
sistency checks (on a log-log paper) performed by Backtrack and the Y-axis displays the
same information for Backtrack.. Unlike Backjump, the cycle-cutset method do not
always improve naive-backtracks performance. This indicates that, for some problem
instances the tree algorithm was less efficient then naive backtrack on the tree-part of the
search space (although its worst case pcrfoi‘mancc is better). On the average, however,
the cutset method improved backtrack by 25% (by 20% on the random CSPs). We also
observed that when the size of the cutset is small Backirack, outperformed Backtrack
more often [Dechter 1987.]. On the Zebra-problem the performance of backirack with
and without the cutset method was almost the same (we tested only one instance of the
Zebra problem). This can be explained by the fact that the constraint-graph of this prob-
lem is very dense and 20 out of the 25 variables were required to cut all cycles. Since
most of the search is performed by naive-backtrack anyway, the impact of the tree-
algorithm is quite negligible.

Bothi the cutset method and graph-based backjump exploits the structure of the
constraint-graph, however it seems that backjump itself does it more successfully then
the cycle-cutset method alone. This is seen in figure 7, depicting the cycle-cutset perfor-

mance, averaged over the different clusters, alongside the other strategies. The reason

14

NO. OF CONSISTENCY CHECKS

THE ZEBRA PROBLEM

F 3
250,000 |-
200,000 |-
NB = naive backtrack
N BJ = backjump
| SF = shallow first
- SS = shallow second
i DF = deep first
1 n
50,000 ' DS = deep second
i
100,000
50,000 |-
25,000

N8B BJ _SF SS DF DS
STRENGTH OF LEARNING

Figure 6

NO. OF CONSISTENCIES

PLANAR PROBLEMS
100000 y _
n=56 CS = CYCLE-CUTSET
BJ = BACKJUMP
SF = SHALLOW-FIRST
SSM = SHALLOW-SECOND-MODIFY
SSA = SHALLOW-SECOND-ADD
DF = DEEP-FIRST
50,000 L DSM = DEEP-SECOND-MODIFY
DSA = DEEP-SECOND-ADD
n=717
10,000 Y= n =10
n=2
5000
4.000 —
n=11
3.000 < N
2,000 - — ///
1,000 - N B
{? 7 ' - T | | }
#8 cs BJ SF SSM SSA OF DSM DSA

STRENGTH OF LEARNING

Figure 7

PLANAR PROBLEMS

100.000

10.000

1000

NO. OF CONSISTENCIES IN BACKTAACK WITH CUTSET

- L
100 1.00¢ 2,000 10.000 100.000
NO. OF CONSISTENCIES IN BACKTRACK

Figure 8
may be that the initial phase of the cutset scheme is performed by naive backtrack and its
inefficiency is not compensated enough by the second phase. This motivates the possibil-
ity that integrating the cycle-cutset method with a more advance backtrack scheme like

Backjump and learning, might improve each individual scheme.
7. The integrated backtrack scheme

In principle the cycle-cutset method can be used with any backtrack scheme not
necessarily naive-backtrack. The backtrack algorithm will instantiate variables in a fixed
order, until a cutset is realized and then it will switch to a tree-solving algorithm. This
suggests th_g_t the cutset method may improve any backtrack scheme and thus provide a
universal improvement. This conclusion, however, is only valid when there is no flow of
information which is used by backtrack when it is between the first part of the search,
(denoted the cutset part), and that corresponding to the tree-search (denoted the tree

part) (see figure 4). This assumption is true for naive backtrack but not for all its

17

enhancements. For instance, when Backjump alone searches the tree-part of the search
space, it gathers some valuable information that helps it prune the search in the cutset
part by jumping back efficiently. If the integrated scheme backs up naively from the tree

part to the cutset part, no such information will be available.

Consider for example the constraint-graph of figure 3 and suppose that backjump
works on this problem in the order (D -C —E —A —B). The ordered graph is given in
figure 9 (a). If for instance, there is a dead-end at E, backjump will back-up to node D. If
the cutset method is integrated "naively"” into backjump, it will instantiate D and C (the

cutset variables) and give control to the tree algorithm (see figure 9 (b));

D

c ‘t_ree-part

A D back-up

- -part
S back-up I 4_c:utset o]

(a) {b)

Figure 9
When the dead-end at E is encountered the tree algorithm will indifferently switch back

to backjump, providing it no information for skipping C.

This difficulty may be corrected if we equip the tree-solving algorithm with abil-
ity to gather the same information needed by backjump, namely identifying the subset of

variables which may be responsible for a failure.

18

The tree algorithm which is integrated with Backjump will return, in a "no-
solution” situation, a subset of responsible variables. As soon as the tree-algorithm finds
that the domain-values of variable X; becomes empty (as a result of REVISE) it can con-
clude that only the variables which are located within the processed part of the subuee
rooted at X; may be relevant to the situadon. The cutset-leaves of this subtree can be
regarded as the Conf-set of this dead-end, they will be returned to backjump whidh will
back-up to the most recent variable among them. If, for instance, the tree-part of the
problem in the example of figure 9, is solved in left to right order and if the algorithm
finds that the domain values of E are empty after performing REVISE on (E,D) it will
return D as the Conf-set since D is the only cutset-leaf in the subtree rooted at £, and
backjump will back up to it and not to C as in the naive integration. The difference
between naive integration and the one suggested here were profound in our experiments

and only by this kind of integration the combined scheme was improved.

Leamning schemes introduce interaction not only between the tree-part and the
cutset-part of the search but also between successive solutions of the tree-part, t.e., suc-
cessive executions of the tree-part improve due to the learning process. We have not
attempted to achieve this capability in the integrated scheme, since the tree algorithm
was already fairly efficient and the improvement due to learning was estimated to be
meager. Regarding the interaction between the tee part and the cutset part in "no-
solution” situations, the same kind of information gathering process, as with backjump
alone, can be used. Namely, upon a "no-solution” situation identified at node X; of the
tree, the Conf-set is identified (like for backjump) and returned back for analysis. Shal-
low learning.can be performed on this set. For deep learning an additional analysis of the
Conf-set shouid be performed when X; is considered the dead-end variable.

The integrated scheme was tested on random problems, random planar problems

and the Zebra problem. Figures 9 and 10 compare the performance of Backjump against

19

the performance of Backjump-with-cutset on the first two classes. For most hard
instances (i.e. those requiring more than 1000 consistency checks for backjump) the
integrated scheme improved the performance and in some cases quite significantly (the
comparison is displayed on a log-log paper as in figure 8). On the average backjump was
improved by 25% on both planar and random-problems. For the easiest problems,
requiring less then 1000 consistency-checks for Backjump the integration didn't pé;y off.
The deterioration, however, is not severe; 50% for planar-problems and by 10% for ran-

dom problems.

Planar-CSPs

i .

consistency checks with cutset -back ump

” o e
consissancy checks with backxamg

Figure 9: comparing Backjump to cutset-backjump on Planar-problems

Figure 11 compares the ir;tcgrated learning and backjump schemes with their
unintegratéd counter parts on planar-problems. On the right hand-side of the Y-axis we
repeat the results appearing in figure 7 while on the left hand-side we added the
corresponding results of the integrated swategy. The actual numbers (without the deep

learning results) are given in table 1. The name of each integrated learning scheme is

20

Random CSPs

1009 =

consissency checks with cutset-back jump

ou

ase o 2
consimency checks with backjeme
Figure 10: Comparing Backjump to cutset-backjump on random-problems

preceded by "C" to indicate the cutset method which is embedded into it (e.g. CSF stands
for cycle-cutset method integrated with shallow-first-order-learning), "ratio” gives the
average cutset size to the number of variables. Thus we compare the performances of
naive-backtrack, the cutset method, Backjump, Shallow-first-order, shallow-second-
order-modify, shallow-second-order-add, deep-first-order, deep-second-order-modify and
deep-second-order-add averaged over clusters of instances with and without the cutset
method. We see that the curves on the left handside part of the graph are generally below
the right hand-side, indicating an improvement in performance. In two clusters, one
corresponding to easy problems and one corresponding to 5000-10,000 consistency

checks (that contains only two instances) a small deterioration is detected.

We tested the integrated scheme on one instance of the Zebra problem, the one on
which Naive backtrack showed the best performance. The results of running all the algo-

rithms on this problem instance are tabulated in table 2. Backjump alone improves per-

21

500490

_ PLANAR PROBLEMS

‘BJ = BACKJUMP

SF = SHALLOW-FIRST

SSM = SHALLOW-SECOND-MODIFY
SSA = SHALLOW-SECOND-ADD

DF = DEEP-FIRST
DSM = DEEP-SECOND-MODIFY

DSA = DEEP-SECOND-ADD
CS = CYCLE-CUTSET

C 0DsA

¢ DFE

CE8A

CasA

Figure 11

SF SSM SSA OF DSM Csa
STRENGTH OF LEARNING

nnge #-of -innances | ratio NB cuiset B SF | ssM CBJ | CSF | CSSM | CSSA
H%
0-1000) 0.19 454 404 Bl | 244 | 252 | 283 | 285 | 70 267 267
1000-5000 11 029 | 1702 2360 | 1229 | 1152 | 1125 | 1423 | 1023 | 96 98% 1201
5000-10000 2 023 5182 4335 | 1966 | 1769 | 1778 | 1872 | 2256 | 1988 | 17W7 1501
10000- 20000 10 0.17 | 15423 8683 | 2740 | 2508 | 2668 | 2345 | 1730 | 1437 | 13%9 235
20000-350000 7 039 | 35157 | 39188 | 5225 | 5050 | 4683 | 4672 | 3887 | 3611 | 3437 1974
50000- 100000 7 028 | 104730 | 33150 | 6455 | 4500 | 5260 | 5574 | 5809 | 4229 | 3528 6065

Table 1: average number of consistency checks for different backtracks.
formance by 50% and incorporating it with the cutset method produced an additional
improvement of 40% and this is inspite the fact the size (;f the cutset (20 out of the 25
variables are in the cutset). The shallow-learning scheme did not have a substantial

effect on the Zebra problem, only deep leamning provided an additional improvement.

2066 | 1241 | 1234 | 1234 | 1272 | 834 | 782 | 759 | TI9 | 313 | 1189

Table 2: The zebra problem
8. Conclusions

The experiments presented in the paper show that the integrated strategy provides
an improvement on each of its individual constituents; Backjump, leaming, and the

cycle-cutset method. Each of the individual schemes shows its strength in a different

23

classes of problem instances and the integrated scheme takes advantage of each scheme’s
power when appropriate. For instance, when the constraint-graph is sparse, backjump
and the cutset method are most effective. When it is a highly densed, backjump and the
cutset-method lose their effectiveness and learning schemes take over. For intermediate

cases both the cutset method backjump cooperate and, together, they do better then each

one alone,

For easy problems the integrated scheme showed some deterioration. However,
at this range of performances, the variations are small (in absolute terms) and cancel

against the improvements in difficult problems.

24

W ® NN v e wN

— et e ek ek pad
LA

APPENDIX: The Zebra problem

There are five houses, each of a different color and inhabited by men of different
nationalities, with different pets, drinks, and cigarettes.

The Englishman lives in the red house

The Spaniard owns a dog.

Coffee is drunk in the green house.

The Ukranian drinks tea

The green house is immediately to the right of the ivory house.
The old-gold smoker owns snails

Kools are being smoked in the yellow house.

Milk is drunk in the middle house.

The Norwegian lives in the first house on the left.

The chesterfield smoker lives next to the fox owner.

Kools are smoked in the house next io the house where the horse is kept.
The Lucky-Strike smoker drinks orange juice.

The Japanese smoke Parliament

The Norwegian lives next to the blue house.

The query is: Who drinks water? and who owns the Zebra?

The problem can be represented as a binary CSP using 25 variables divided into 5

clusters as follows:

1.

2
3.
4
5

red; blue; yellow; green; ivory

nory;gian; ukrainian; englishman; spaniard; japanese
coffee; tea; water; milk; orange

zebra; dog; horse; fox; snails

old-gold; parliament; kools; lucky; chesterfield

25

Each of the variables has the domain values {1,2,3,4,5} assoctating a house
number with the characteristic represented by the variable (e.g., assigning the value 2 to

the variable red means that the second house is red, etc.).

The constraints of the puzzle are wanslated into binary constraints among the
variables. For instance, the sentence ‘‘The spaniard owns a dog”' describes a constraint
between the variable spaniard and the variable dog that allows only the pairs : ((1,1)
(2,2) (3,3) (4,4) (5,5)}). In addition, there is a constraint between any pair of variable of
the same ‘‘cluster’’ ensuring that they are not assigned the same value. The constraint
graph for this problem is given in figure 12 (the constraints among the variables of each

cluster are omitted for clarity).

Garl'\ament kgols chesterfield old.gold lugky
1

' (zebra[horse b= oeg

(japanese \ ukrainian englighman spdniard nomegugﬂ

N \
< L}
(ivory vellaw red green blue
V4
(water tea coffee milk orangg

Figure 12: The constraint graph of the zebra problem

26

References

[Bruynooghe 1984] Bruynooghe, Maurice and Luis M. Pereira, *‘Deduction Revision by

[Dechter 1985])

[Dechter 1986])

[Dechter 1987.]

[Doyle 1979]

[(Even 1979)

[Gaschnig 1979a)

(Gaschnig 1979b]

[Haralick 1980]

Intelligent backtracking,’ in /mplementation of Prolog, J.A. Camp-
bell, Ed. Ellis Harwood, 1984, pp. 194-215.

Dechter, R. and J. Pearl, ‘‘“The anatomy of easy problems: a
constraint-satisfaction formulation,”” in Proceedings Ninth [nterna-
tional Conference on Artificial Intelligence, Los Angeles, Cal: 1985,
pp. 1066-1072.

Dechter, R., ‘‘Learning while searching in constraint-satisfaction-
pr%%lems." in Proceedings AAAI-86, Philadelphia, Pensilvenia:
1986.

Dechter, R. and J. Pearl, ‘“The cycle-cutset method for improving
search performance in Al applications,”” in To be published in the
Proceeding of the 3rd IEEE on Al Applications, Orlando, Florida.:
1987.. .

Doyle, Jon, ‘A muth tﬁaintenance system,’’ Artificial Intelligence,
Vol. 12, 1979, pp. 231-272.

Even, S., Graph Algorithms, Maryland, USA: Computer Science
Press, 1979,

Gaschnig, J., ‘*A problem similarity approach to devising heuristics:
first resuls,”” in Proceedings Gth international joint conf. on
Artificial Intelligence., Tokyo, Jappan: 1979, pp. 301-307.

Gaschnig, J., ‘‘Performance measurement and analysis of certain
search algorithms.,”” Carmnegie-Mellon University, Pitsburg, Pensil-
venia, Tech. Rep. CMU-CS-79-124, 1979.

Haralick, R. M. and G.L. Elliot, *‘Increasing tree search efficiency
for constraint safisfaction probiems,”” Af Journal, Vol. 14, 1980, pp.
263-313.

[Mackworth1977] Mackworth, A.K., ‘‘Consistency in networks of relations,’’ Artifficial

intelligence, Vol. 8, No. 1, 1977, pp. 99-118.

27

